Shower formation constraints on cubic LIV parameters in quantum electrodynamics

Petr Satunin, Andrey Sharofeev

INK Institute for Nuclear Research of the Russian Academy of Sciences

Physics Department Lomonosov Moscow State University

COST CA18108 Third Annual Conference, Napoli 15 July 2022

LIV: Dispersion relations and Effective Field Theory

• Kinematical approach – Dispersion relation

$$E^2 = m^2 + p^2 (1 \pm \eta_0) \pm rac{p^3}{E_{LIV,1}} \pm rac{p^4}{E_{LIV,2}^2} \pm ...$$

Kinematcal effects:

- time delays
- birefirgence
- threshold modifications (decays..)
- Dynamical approach EFT Lagrangian Dynamical effects
 - (Non-threshold) Modification of cross-sections Example: Bethe-Heitler process $\gamma N \rightarrow Ne^+e^-$ (the 1st interaction in γ -induced air shower)

15 July 2022 2 / 21

Current limits

Table with current limits from COST CA18108 Review 2111.05659 [hep-ph]

	Test	Sub(-) or					
e^{-}/γ	of	super(+)		Limits		Source	Ref.
	QG	luminal	$ \xi_0 (\eta_0)$	$E_{\rm LIV}^{(1)}$ (eV)	$E_{\rm LIV}^{(2)}$ (eV)		
e^-	Synch.	both	2×10^{-20}	10^{33}	2×10^{25}	CRAB	[1316, 1317, 1336]
e^-	VC	(+)	10^{-20}	10^{31}	10^{23}	CRAB	[1314, 1320, 1366]
γ	PD	(+)	7.1×10^{-19}	1.7×10^{33}	1.4×10^{24}	LH. J2032+4102	[1147]
γ	PD	(+)	1.3×10^{-17}	2.2×10^{31}	8×10^{22}	MultiSrc	[1331]
γ	PD	(+)	1.8×10^{-17}	1.4×10^{31}	5.8×10^{22}	eHWCJ1825-134	[1331]
γ	PD	(+)	2.2×10^{-17}	9.9×10^{30}	4.7×10^{22}	eHWCJ1907+063	[1331]
γ	3γ	(+)	-	-	2.5×10^{25}	LH. J2032+4102	[1147]
γ	3γ	(+)	-	-	1.2×10^{24}	eHWC J1825-134	[1331]
γ	3γ	(+)	-	-	1.0×10^{24}	eHWC J1907+063	[1331]
γ	3γ	(+)	-	-	4.1×10^{23}	CRAB	[1330]
γ	AS	(-)	-		1.7×10^{22}	diffuse (Tibet)	[1148]
γ	AS	(-)	-	(-)	6.8×10^{21}	LH. J1908+0621	[1148]
γ	AS	(-)	-	1 - 1	1.4×10^{21}	CRAB	[1330]
γ	AS	(-)	-		9.7×10^{20}	CRAB	[1330]
γ	AS	(-)	-	\-/	2.1×10^{20}	CRAB	[1336]
γ	PP	(-)	-	1.2×10^{29}	2.4×10^{21}	MultiSrc (6)	[1367]
γ	PP	(-)	-	$2.6 imes 10^{28}$	7.8×10^{20}	Mrk 501	[1368]
γ	PP	(-)	-	$1.9 imes 10^{28}$	3.1×10^{20}	MultiSrc (32)	[1334]

Table 1: Strong and recent astrophysical bounds to LIV in the QED sector using synchrotron radiation (Synch.), vacuum Cherenkov radiation (VC), photon decay (PD), photon splitting (3γ) , air shower suppression (AS), and pair production

Air shower (AS) limit for n = 1 is still not filled! (日)

Petr Satunin (INR, Moscow)

Constraints on cubic LIV from shower formati

Sac

EFT: QED with cubic LIV - Myers-Pospelov model

Myers, Pospelov hep-ph/0301124 (PRL) 2003

LI is broken by external fixed timelike vector $n_{\mu} = (1, 0, 0, 0)$

EFT (CPT-odd!!): The only LIV dim 5 operators to the Lagrangian

$$\mathcal{L} = \mathcal{L}_{\mathsf{QED}} + \mathcal{L}_{\gamma} + \mathcal{L}_{e},$$

$$\mathcal{L}_{\mathsf{QED}} = ar{\psi}(i\gamma^{\mu}D_{\mu} - m)\psi - rac{1}{4}F_{\mu
u}F^{\mu
u},$$

$$\mathcal{L}_{\gamma} = \frac{\xi}{M_{\text{Pl}}} n^{\mu} F_{\mu\nu} n \cdot \partial \left(n_{\sigma} \tilde{F}^{\sigma\nu} \right),$$

$$\mathcal{L}_{e} = \frac{1}{M_{Pl}} \bar{\psi}(\mathbf{n} \cdot \gamma) \left(\eta_{L} (1 - \gamma_{5}) + \eta_{R} (1 + \gamma_{5}) \right) \left(\mathbf{n} \cdot \partial \right)^{2} \psi.$$

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

Myers-Pospelov model - Dispersion relations

Left- and Right- polarized photons:

$$\varepsilon^{\mu}_{(L)} = \frac{1}{\sqrt{2}}(0, 1, -i, 0), \qquad \varepsilon^{\mu}_{(R)} = \frac{1}{\sqrt{2}}(0, 1, i, 0)$$

Differents signs in the dispersion relation for different polarizations

$$\begin{split} E_{(L)}^2 &= k_{(L)}^2 + \frac{2\xi}{M_{Pl}} k_{(L)}^3 \qquad \text{Superluminal} \\ E_{(R)}^2 &= k_{(R)}^2 - \frac{2\xi}{M_{Pl}} k_{(R)}^3 \qquad \text{Subluminal} \end{split}$$

Left- and Right- chiral electrons:

$$E_{(.)}^2 = m^2 + p_{(.)}^2 + 2\eta_{(.)} \frac{p_{(.)}^3}{M_{Pl}},$$
 (.) = (L) or (R)

Myers-Pospelov model: Kinematical constraints on $E_{LIV,1}$ for photons

refs from COST CA18108 Review 2111.05659 [hep-ph]

(日) (日) (日) (日) (日)

6/21

Time d	elays	
AGN:	$E_{LIV,1} > 2\cdot 10^{18}\mathrm{GeV}$	H.E.S.S. 2011
GRB:	$E_{LIV,1} > 1.5 \cdot 10^{19} { m GeV}$	Fermi 2009

 $\begin{array}{lll} \text{Birefirgence (n=1 only)} \\ \text{GRBs:} & \xi < 3.4 \cdot 10^{-16} & \leftrightarrow & E_{LIV,1} > 1.8 \cdot 10^{34} \, \text{GeV} & \textit{Gotz et al, 2013} \\ \text{combined:} & \xi < 8.6 \cdot 10^{-17} & \leftrightarrow & E_{LIV,1} > 7.1 \cdot 10^{34} \, \text{GeV} & \textit{Galaverni et al, 2015} \end{array}$

Extremely strong limits from birefirgence. However, independent constraints from other processes may be also interesting

The fate of VHE (TeV-PeV) photon & crucial reactions

QED processes crucial for super- and subluminal photons

Appear in case of superluminal LIV $(E^2 = k^2 + \frac{k^{n+2}}{E_{n-1}^n})$:

- Photon decay $\gamma \rightarrow e^+ e^-$
- Photon splitting $\gamma \rightarrow 3\gamma$

Both processes supress the photon flux

Modified in case of subluminal LIV $(E^2 = k^2 - \frac{k^{n+2}}{E_{n+1}^n})$:

• Pair production on background photons, $\gamma \gamma_b \rightarrow e^+ e^$ responsible for suppression of the extragalactic photon flux in LI case in subluminal LIV the process suppressed \rightarrow the photon flux may be enhanced

• Pair production in Coulomb field of a nuclei $\gamma N \rightarrow N e^+ e^-$ (Bethe-Heitler process) in subluminal LIV the process suppressed \rightarrow the observed photon flux suppressed Petr Satunin (INR, Moscow)

Assumption: both polarizations produced in the source (additional analysis is needed!)

$$\begin{split} E_{(L)}^2 &= k_{(L)}^2 + \frac{2\xi}{M_{Pl}}k_{(L)}^3 \qquad \text{Superluminal} \\ E_{(R)}^2 &= k_{(R)}^2 - \frac{2\xi}{M_{Pl}}k_{(R)}^3 \qquad \text{Subluminal} \end{split}$$

If some photon-like events detected (polarization is uknown):

- No decay/splitting at these energies
- No observational suppression of shower formation

Atmosphere shower formation: sensitivity to LIV

- First interaction in the atmosphere

 pair production in the Coulomb
 field of a nuclei
 Bethe, Heitler, 1934
- The most energetic interaction → the most sensitive to LIV.
 Suppressed in case of subluminal LV (see the next slide).
- Subsequent interactions less energetic, no change in LIV case in the leading order

15 July 2022 10 / 21

Bethe-Heitler process and sensitivity to LIV

Cross-section in LI case (with screening): Bethe, I

Bethe, Heitler, 1934

$$\sigma_{\rm BH}^{\rm LI} = \frac{28Z^2\alpha^3}{9m_e^2} \Big(\log\frac{183}{Z^{1/3}} - \frac{1}{42}\Big)$$

In case of **subluminal** LIV Bethe-Heitler cross-section gets suppressed *idea: Vankov, Stanev, 2002* Calculation for (n = 2) LIV — *Rubtsov, P.S., Sibiryakov 2012*

(n=1, R-polarization) In the limit $E_{\gamma}^3 \gg m_e E_{LIV,1}^2$ Bethe-Hetler cross-section reads,

this work

$$\sigma_{\rm BH}^{\rm LV} \simeq \sigma_{\rm BH}^{\rm LI} \cdot 1.7 \frac{m_e^2 E_{LIV,1}}{E_{\gamma}^3} \cdot \log \frac{E_{\gamma}^3}{2m_e^2 E_{LIV,1}}$$

The cross-section decreases with energy as $E_{\gamma}^{-3} \log E_{\gamma}$ (fixed $E_{LIV,1}$)

Photon-induced shower formation: LI vs. LIV cases

- LI: First interaction $\langle X_0
 angle = m_{at}/\sigma_{BH} pprox 57 {\rm ~g~cm^{-2}}$
- Shower maximum $X_{max} = X_0 + \Delta X.$ $\langle X_{max} \rangle \approx 320 \text{ g cm}^{-2}.$

LIV:

- X₀ increases
- ΔX does not change (in the leading order)

Photon-induced showers become deeper and may avoid detection!

Petr Satunin (INR, Moscow) Constraints on cubic LIV from shower formati 15 July 2022 12/21

$$\langle X_0 \rangle_{LIV} = m_{at} / \sigma_{BH}^{LIV}$$

The probability for a photon to produce pair in the atmosphere reads,

$$P = \int_0^{X_{
m atm}} dX_0 \; {{
m e}^{-X_0/\langle X_0
angle_{LIV}}\over \langle X_0
angle_{LIV}} \; = 1 - {
m e}^{-X_{
m atm}/\langle X_0
angle_{LIV}}$$

The detected photon flux gets reduced,

$$\left(\frac{d\Phi}{dE}\right)_{LIV} = P \times \left.\frac{d\Phi}{dE}\right|_{source}$$

Petr Satunin (INR, Moscow) Constraints on cubic LIV from shower formati

▶ < ≣ ▶ ≣ ∽ < ⊂ 15 July 2022 13 / 21

・ロト ・回ト ・ヨト

Attenuation of galactic $\gamma\text{-ray}$ flux due to pair production on CMB

M.f.p. for 1 PeV photon is \sim 10 kpc — galactic scales!

LHAASO coll. Nature, 2021

 $\left(\frac{d\Phi}{dE}\right)_{LI} = e^{-\tau} \times \left.\frac{d\Phi}{dE}\right|_{source_{<\Box > < \Box > < \Box > < \equiv > < \equiv > }}$

Petr Satunin (INR, Moscow)

Constraints on cubic LIV from shower formati

15 July 2022 14 / 21

Sac

Sub-PeV $\gamma\text{-ray}$ flux: Shower formation vs pair production on CMB

Subluminal LIV shifts the threshold of p.p. from CMB peak to EBL where it is almost negligible

$$\left(\frac{d\Phi}{dE}\right)_{LIV} = \frac{P_{sh.form}(E_{\gamma}, E_{LIV,1})}{e^{-\tau(L_{source}, E_{\gamma})}} \times \left.\frac{d\Phi}{dE}\right|_{source}$$

More details in application to (n=2) case

P.S. EPJC 2021

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Experimental data

 Tibet ASγ — diffuse γ-rays from the Galactic Disk. Maximal photon energy 0.8 PeV
 LHAASO — observation of 12 galactic sources in > 100 TeV Maximal photon energy 1.4 PeV
 LHAASO — Crab Nebula spectrum up to PeV Maximal photon energy 1.1 PeV
 LHAASO, Science, 2021

16/21

Petr Satunin (INR, Moscow) Constraints on cubic LIV from shower formati 15 July 2022

Tibet AS γ . Diffuse gammas

Tibet AS γ : observation of diffuse γ -ray flux from the galactic disk — more than predicted by theoretical models Model consistent with Tibet-AS γ — Koldobskiy, Neronov, Semikoz '21

Distance to the outer disk $L \sim 1-5$ kpc, the absorption coeff. due to p.p. on CMB $e^{-\tau} = 0.73$ ($L_{max} \sim 5$ kpc)

Petr Satunin (INR, Moscow) Constraints on cubic LIV from shower formati 15 Ju

15 July 2022 17 / 21

LHAASO

• 12 sources (Pevatrons) with energy 100+ TeV discovered.

• We test the hypothesys of LIV shower suppression assuming the most conservative power-law flux with experimental data points.

Shower formation limits on subluminal $E_{LIV,1}$

Source	L, kpc	Bound $E_{LIV,1}$, 10 ²⁰ GeV
Tibet diffuse	1-5	8.2
LHAASO		
Crab Nebula	2	0.5
J2226+6057	0.8	1.5
J1908+0621	2.37	2.1

Table: The 95% CL constraints on LIV mass scale from 3 sub-PeV sources observed by LHAASO.

Sac

< ロト < 同ト < ヨト < ヨト

- EFT impies birefirgent photons for n = 1 LIV
- Obtained shower formation constraints are many orders of magnitude weaker than the birefirgence limits but independent and comparable with other limits
- Shower formation with LIV in electrons work in progress

Thank you for your attention!

Thank you for your attention!¹

¹This work is supported by RSF foundation under contract 22 \pm 12-00253. \equiv \circ \sim