General relativity as an effective field theory of quantum gravity

Daniel Blixt

Contents for this talk

This talk will cover

- Overview of popular action formulations for GR
- Trinity of gravity
- York-Gibbons-Hawking boundary term
- ► Inertial frame description for Energy in GR
- Feasible action formulations from an EFT point of view

Conventions: A circle denotes zero torsion (or Levi-Civita connection) for instance the Ricci scalar in GR is denoted by $\stackrel{\circ}{R}$

Disclaimer

I am new to the field of quantum gravity, and this is work in progress

I assume the following for treating GR as an EFT for quantum gravity:

- GR have an action that gives rise to Einstein field equations
- ► The quantum theory has higher order invariances which preserves the symmetries of Einstein field equations

$$G_{\mu\nu} = \kappa \, T_{\mu\nu} \tag{1}$$

Some history

Einstein gravity

$$S_{\rm E} = \frac{1}{2\kappa} \int d^4x \sqrt{-g} g^{\mu\nu} \left(\Gamma^{\alpha}{}_{\mu\beta} \Gamma^{\beta}{}_{\alpha\nu} - \Gamma^{\alpha}{}_{\mu\nu} \Gamma^{\beta}{}_{\alpha\beta} \right) + S_{\rm matter}$$
 (2)

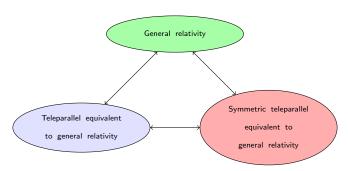
Hilberts correction

$$S_{\rm EH} = \frac{1}{2\kappa} \int \mathrm{d}^4 x \sqrt{-g} \overset{\circ}{R} + S_{\rm matter}. \tag{3}$$

The 2 formulations differ by a boundary term which is only invariant under diffeomorphisms after Hilbert's correction.

EH-action as an EFT for Quantum gravity

The action is not renormalizable, but quantum gravity works as an EFT up to some scale where the theory breaks down


$$S_{\text{EFT}} = \int d^{4}x \sqrt{-g} \left(\frac{R}{16\pi G} + c_{1}(\mu)R^{2} + c_{2}(\mu)R_{\mu\nu}R^{\mu\nu} + c_{3}(\mu)R_{\mu\nu\rho\sigma}R^{\mu\nu\rho\sigma} \right)$$

$$- \int d^{4}x \sqrt{-g} \left[\alpha R \ln \left(\frac{\square}{\mu^{2}} \right) R + \beta R_{\mu\nu} \ln \left(\frac{\square}{\mu^{2}} \right) R^{\mu\nu} + \gamma R_{\mu\nu\rho\sigma} \ln \left(\frac{\square}{\mu^{2}} \right) R^{\mu\nu\rho\sigma} \right]$$

$$(4)$$

$$R_{\mu\nu\rho\sigma} = \overset{\circ}{R}_{\mu\nu\rho\sigma}$$

Alternative theories to general relativity

Ricci scalar of a general metric affine connection is given by:

$$R(\Gamma) = \overset{\circ}{R} + \mathbb{T} + \mathbb{Q} - Q_{\mu} T^{\mu} + \overline{Q}_{\mu} T^{\mu} + \overset{\circ}{\nabla} \left(Q^{\mu} - \overline{Q}^{\mu} + 2 T^{\mu} \right)$$
 (5)

1. J. Beltrán Jiménez et. al Phys. Lett. B. 805. arxiv:1909.09045

Teleparallism

Teleparallism means that $R(\Gamma) = 0$

This implies

$$\stackrel{\circ}{R} = -\mathbb{T} - \mathbb{Q} + Q_{\mu} T^{\mu} - \overline{Q}_{\mu} T^{\mu} - \stackrel{\circ}{\nabla} \left(Q^{\mu} - \overline{Q}^{\mu} + 2 T^{\mu} \right)$$
 (6)

The Einstein-Hilbert action is given by

$$S_{\rm EH} = \frac{1}{2\kappa} \int d^4 x \sqrt{-g} \, \mathring{R} + S_{\rm matter} \tag{7}$$

We can use equation (6) to substitute $\stackrel{\circ}{R}$ in equation (7)

On the equivalence

 $-\overset{\circ}{\nabla}\left(Q^{\mu}-\overline{Q}^{\mu}+2T^{\mu}\right) \text{ is a total derivative and becomes a boundary term which we can "classically" neglect.}$

Assuming vanishing torsion $\Gamma^{\rho}{}_{\nu\mu}-\Gamma^{\rho}{}_{\mu\nu}=T^{\rho}{}_{\mu\nu}=0$ in addition to flatness we get symmetric teleparallel equivalent to general relativity

$$S_{\text{STEGR}} = -\frac{1}{2\kappa} \int d^4x \sqrt{-g} \mathbb{Q} + S_{\text{matter}}$$
 (8)

Assuming vanishing non-metricity ($\nabla g_{\mu\nu} = 0$) instead we get teleparallel equivalent to general relativity

$$S_{\text{TEGR}} = -\frac{1}{2\kappa} \int d^4 x \theta \, \mathbb{T} + S_{\text{matter}} \tag{9}$$

York-Gibbons-Hawking boundary term

Goal: To make sense of mass in GR.

- 1. Integrate by parts to get well-defined momenta and Hamiltonian (This gives a boundary term)
- 2. Evaluating the Hamiltonian for a BH gives infinity
- 3. Subtract the vacuum Minkowski value (another boundary term)
- The result is the ADM-mass which comes from adding YGH-term to EH-action

Criticism:

- Ad-hoc
- Is it really consistent with quantum gravity (my criticism)

Mass in trinity of gravity

In TEGR and STEGR mass is dependent on the gauge

Prescription *inertial frame* \implies better prescription for mass and energy in gravity.[2]

2. D.A. Gomes et. al arxiv:2205.09716

Modified teleparallel gravity

In the spirit of f(R) theories of gravity we can create f(T)

Note that
$$f(\mathbb{T}) \neq f(\overset{\circ}{R}) = f(-\mathbb{T} + B)$$

The Torsion scalar T can be written out as

$$\mathbb{T} = \frac{1}{4} T^{\rho}{}_{\mu\nu} T_{\rho}{}^{\mu\nu} + \frac{1}{2} T^{\rho}{}_{\mu\nu} T^{\nu\mu}{}_{\rho} - T^{\rho}{}_{\mu\rho} T^{\sigma\mu}{}_{\sigma}$$

Changing the fixed parameters yields 2 parameter space of new theories historically named "new general relativity"

$$\mathbb{T}_{\mathrm{NGR}} = c_1 \, T^\rho{}_{\mu\nu} \, T_\rho{}^{\mu\nu} + c_2 \, T^\rho{}_{\mu\nu} \, T^{\nu\mu}{}_\rho + c_3 \, T^\rho{}_{\mu\rho} \, T^{\sigma\mu}{}_\sigma$$

Constraints

The primary constraints related to Lorentz invariance of type II in TEGR, f(T)-gravity and 1-parameter NGR:

$${}^{\mathcal{V}}C^{i} = \frac{{}^{\mathcal{V}}\pi^{i}\kappa}{\frac{\phi}{\sqrt{\gamma}}} - T^{B}{}_{kl}\gamma^{il}\theta_{B}{}^{k} \approx 0 \tag{10}$$

$${}^{\mathscr{A}}C^{ij} = \frac{{}^{\mathscr{A}}\pi^{ij}\kappa}{\frac{\phi}{\sqrt{\gamma}}} - \frac{1}{2}T^{A}{}_{kl}\gamma^{il}\gamma^{jk}n_{A} \approx 0 \tag{11}$$

- $ightharpoonup f(T) = T \Longrightarrow \phi = 1$
- ▶ 1-parameter NGR does not satisfy ${}^{\mathscr{A}}C^{ij}\approx 0$

Lorentz invariance of type II is broken by

- $f(T) \Longrightarrow \phi \neq 1$ which spoils the Lorentz algebra
- ► 1-parameter NGR missing ${}^{\mathcal{A}}C^{ij}\approx 0$

Summary

- Classically the Einstein-Hilbert action is not the unique action description for GR
- Trinity of gravity contain improved descriptions for considering mass in GR
- ► However, the boundary terms break symmetries which restricts the possibility in treating GR as and EFT for quantum gravity.

Outlook

- Modified gravity as an EFT for quantum gravity
- Explore truly equivalent gauge theories for EH (tetrad GR with spin connection, Lagrange multipliers, etc)
- Other prescriptions to quantize gravity?

Boundary terms are important to discuss in the context of treating GR as an EFT for quantum gravity

