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EQG = 𝒪(EP) , EP ≈ 1.22 × 1019 GeV• Where one expects

• MDRs provide an effective way of describing the propagation of particles in a quantum spacetime 

[Amelino-Camelia, Liv. Rev. Rel. (2013)].

m2 = E2 − p2 +
1

EQG
[αE3 + βE2p + γEp2 + λp3] + . . .

• Important constraints are given by the analysis of massless particles by searching for a time delay from 
astrophysical sources: LIV -  [Acciari et al. (MAGIC Collaboration), PRL (2020)] 

                                                LIV+DSR [Levy et al. (PoS ICRC2021) arXiv:2108.03992]

EQG ≥ 0.58 × 1019 GeV

• Forbidden decays of particles can be affected in a LIV scenario [Albert et al. (HAWK Collaboration), PRL (2020)] 

Depends on the conservation law of energy-momentum in decays 1 → 2 + 3

Motivation



Geometry as a tool

• The presence of a Planck scale departures of relativistic equations, like the MDR, does not necessarily imply 
in a violation of the relativity principle

• The DSR approach is responsible for showing that it is possible to deform rather than break Lorentz 
symmetry at the Planck scale

• The principles behind relativistic theories, like the relativity principle, equivalence principle and clock 
postulate, can be conveniently described by geometrical means

• Relativity principle

• Equivalence principle

• Clock postulate

• Symmetries

• Geodesic trajectory

• Proper time is the arc-length

• Dispersion Relation • Norm of 4-momentum



Finsler geometry

• Convenient geometry

• We adopt the use of Finsler geometry of spacetime

• Action = Arc-length => Finsler function• Geodesics are the extremizing trajectories of the action

• Killing vectors give DSR symmetries

• MDR is a norm calculated with the Finsler metric
gμν(x, ·x) =

1
2

∂2F2

∂ ·xμ∂ ·xν

S[x, p, λ]H = ∫ dμ[ ·xapa − λ (H(x, p)−m2)] S[x] = m∫ F(x, ·x)dμ

[Girelli, Liberati, Sindoni, PRD (2007)] 

[Amelino-Camelia et al., PRD (2014)],

[Lobo, Loret, Nettel, PRD (2017)],
[Letizia, Liberati, PRD (2017)]



pμ =
∂F
∂ ·xμ

• Definition of momenta
p0(v) = γm −

ℓ
2

m2(γ2 − 1)(2γ2 − 1)

pi(v) = − γvim + ℓm2γ4vi

• Deformed Lorentz Transformation from the 
rest frame to the lab frame H(p(v)) = H(p(0)) = m2

• Can we find a more general transformation connecting arbitrary frames that move relative to each other 
with speed v?

F( ·x) = η( ·x, ·x) +
ℓm
2

·x0δij
·xi ·xj

η( ·x, ·x)
H(p) = p2

0 − | ⃗p |2 − ℓp0 | ⃗p |2 = m2• -Poincaréκ

γ = 1/ 1 − v2

 [IPL, Pfeifer, PRD (2021)]



p̃0 = γ(p0 − vp1) +
ℓ
2 [p2

1γ(2γ3 − γ − 1) − p2
0(γ2 − 1)(2γ2 − 1)]

p̃1 = γ(p1 − vp0)+ℓ v[p2
0γ4 −

p2
1

2
γ(2γ3 − 2γ − 1)]

• Finite deformed Lorentz 
transformation

p̃0 = γ(p0−vp1) + ℓ [Ap0p1 + Bp2
1−

1
2

p2
0(γ2 − 1)(2γ2 − 1)]

p̃1 = γ(p1−vp0) + ℓ (p2
0vγ4+Fp0p1 + Gp2

1)
• General Lorentz symmetry

H(p) = H(p̃)

p̃0 = p0 cosh(ξ) + p1 sinh(ξ) − ℓ sinh2 ( ξ
2 ) [(p2

0 + p2
1) cosh(ξ) + p0(p0 + 2p1 sinh(ξ))]

p̃1 = p0 sinh(ξ) + p1 cosh(ξ) − ℓ sinh ( ξ
2 ) [p2

0 cosh ( ξ
2 ) + (p2

0 + p2
1) cosh ( 3ξ

2 ) + 2p0p1 sinh ( 3ξ
2 )]

• Usual k-Poincaré finite boost transformation [Gubitosi, Mercati, CQG (2013)]

ξ(v) = arcsinh(vγ) + ℓ[−v3γ3p0 + p1(γ3 − 1)]• Map between rapidity and spacetime velocity

Λ(v, p) =



Modified composition law

Λ(v; ((p ⊕ q)0, (p ⊕ q)1)) = Λ(𝔳v;q0,q1
; (p0, p1)) ⊕ Λ(𝔳v;p0,p1

; (q0, q1))

• General 
composition law

(p ⊕ q)0 = p0 + q0 + ℓ(αp0q0+βp1q1+ωp0q1+ηp1q0)

(p ⊕ q)1 = p1 + q1 + ℓ(δp1q0+ϵp0q1+λp1q1+μp0q0)

• Covariance condition

𝔳v;q0,q1
= v + ℓ(Hq0 + Jq1)

(p ⊕ q)0 = p0 + q0 + ℓp1q1

(p ⊕ q)1 = p1 + q1

𝔳v;k0,k1
= v + ℓ [( 1

γ
− γ) k1 − vγk0]

(p ⊕ q)0 = p0 + q0

(p ⊕ q)1 = p1 + q1 − ℓp0q1

𝔳v;q0,q1
= v − ℓ [v

(γ2 − 1)
γ

q0 + (γ −
1
γ2 ) q1]

𝔳v;p0,p1
= v − ℓ [vγp0 + (γ −

1
γ ) p1]

Back-reaction



Phenomenological opportunities: Time dilation
• Deformed Lorentz transformation

• Clock postulate

• Clock postulate + Deformed Lorentz transformation

Dimensionless correction of the order

ℓp3
0 /m2

p0(v) ≈ γm − ℓm2γ4

γ ≈ (p0/m)(1 + ℓp3
0 /m2)

Δτ = ∫
tB

tA

F(x, ·x) dt ≈ γ−1Δt (1 + ℓmγ3/2)

Δt = γΔτ ≈ (p0/m)Δτ (1 + ℓp3
0 /m2)

Δt ≈ γΔτ(1 − ℓmγ3/2)

Δt ≈ (p0/m)Δτ(1 + ℓp3
0 /2m2)

ℓmγ3



• Lifetime of pion π 
(m = 140 MeV)



Threshold effects

• We analyzed the two-body decay in this scenario M → m1 + m2

• We particularly analyzed the case π → μ + ν

• We calculated the threshold lab frame energies in the lab frame

• We calculated the maxima and minima energies in the 
center of momentum frame and then boosted them to the 
lab frame

The results are the same, as a 
verification of the relativity 
principle in DSR

E(±)
μ,ν = (E(±)

μ,ν )SR(1 + 𝒪(ℓEπ))
Results

There is no amplification in threshold energies analyses in DSR



Lessons from DSR 

Threshold effects do not contribute significantly

• The time dilation presents a correction of the order ℓE3/m2

• This is a manifestation of the relativistic nature of this approach, therefore it should be valid for other 
powers of corrections

• Modifications in the time dilation affect the distance particles propagate, which is an input in cosmic rays 
analyses

Δt ≈ ΔtSR[1 + (ℓE)nE2/m2]E2 − p2 + (ℓE)nE2 = m2

• Verified in previous cases, but reconfirmed 
using our finite transformations

 [IPL, Pfeifer, PRD (2021)]

 [Amelino-Camelia, Liv. Rev. Rel. (2013)]



LIV?

1. Unmodified composition law 
One frame is preferred and usual threshold effects of LIV are present [Albert et al. (HAWK Collaboration), PRL (2020)]

2. Lorentz transformations: 
2.1    Standard ones do not carry new measurable contributions 
2.2   Other kind of modified Lorentz transformation could carry measurable contributions 
[Abreu et al. (Pierre Auger ) PoS IRC2021 (2021)]

3. Clock postulate 
3.1    If valid = measurable contribution 
3.2    If not valid = no measurable contribution

E2 − p2 = m2 + (ℓE)nE2 = mLIV E/mLIV ≈ (E/m)(1 − (ℓE)nE2/2m2) = γLIV

Δt = γLIVΔτ



Conclusion

• From the Finsler function inspired by the bicrossproduct basis of -Poincaré, we identified a deformed 
Lorentz transformation that connects the rest frame of a particle to the lab frame

κ

• We extended this transformation in D to connect arbitrary frames and verified its compatibility with 
the boost generator of the -Poincaré algebra

1 + 1
κ

• We constructed its relativistic-compatible composition law and back-reaction rules

• As results we found that the DSR effects only impacts the time dilation, without threshold effects in two-
body decays

• As prospects, we shall proceed into further investigations considering cosmic rays thanks to the network 
provided by the COST Action CA18108

• Possible impact in addressing the muon puzzle, that corresponds to an excess in the measured number of muons in air 
showers initiated by UHECRs compared to cosmic predictions



Thank you!
Grazie!



The proper time an observer, or massive particle, experiences between events  and  along a time-like curve (her 
worldline) in a Finsler spacetime  is the length of this curve between events  and :

A B

(ℳ, F) A B

ΔτAB ≐ ∫
tB

tA

F(x, ·x) dt

F( ·x) = η( ·x, ·x) +
ℓm
2

·x0δij
·xi ·xj

η( ·x, ·x)
• Finsler 

function

H(p) = p2
0 − | ⃗p |2 − ℓp0 | ⃗p |2 = m2

• -Poincaré 
Bicrossproduct 
basis

κ
• Dilated lifetime

ΔtF ≈ γΔt [1 −
ℓm
2

γ3]

Clock postulate



• Clock postulate + Deformed Lorentz Transformation

• For p0/m ≫ 1 Δt = ΔtSR (1 +
ℓ
2

p3
0

m2 )
p0

m
Δτ

• But now, if we want to complete the DSR approach and diversify the analysis, by considering for instance, 

data from cosmic rays, we need to find transformations between arbitrary frames and its corresponding 

composition law

MOTIVATION



Composition law

• To preserve interaction vertices under deformed Lorentz transformations, it’s necessary to compensate the 
non-linearity of the transformation with a deformed composition law

Λ(p ⊕ q) = Λ(p) ⊕ Λ(q)

• General 
composition law

(p ⊕ q)0 = p0 + q0 + ℓ(αp0q0+βp1q1+ωp0q1+ηp1q0)

(p ⊕ q)1 = p1 + q1 + ℓ(δp1q0+ϵp0q1+λp1q1+μp0q0)

• Back-reaction on boost parameter is needed to accomplish the relativistic condition [Majid, arXiv:hep-th/060413, (2006)]

Λ(v, p ⊕ q) = Λ(v ◃ q, p) ⊕ Λ(v ◃̃ p, q)
v ◃ q = v + ℓ(Hq0+Jq1)

v ◃̃ p = v + ℓ(Mp0+Rp1)

• FOCUS ON THE MAIN ISSUES



THRESHOLD EFFECTS (ALGORITHM OF THE PAPER)

• Special relativistic flat distribution
dni

dEi
=

1
2γvp*i

=
M

2p*i PL

• If “ ” is the rest frame of the parent particle, “ ” labels particles “ ” and “ ”,  is the momentum of the 
parent particle and  connects the frame “ ” and the lab [Gaisser, Cosmic Rays and Particle Physics, Cambridge (2016)]

* i 1 2 PL
v *

• Derived from the upper and lower limits on the lab energy of the secondary “ ”i γ (E*i ±vp*i )
• If we have a deformed Lorentz transformation, the limits change, but the difference is the same

γ(E*i ±vp*i ) +
ℓ
2 [(p*i )2γ(2γ3 − γ − 1) − (E*i )2(γ2 − 1)(2γ2 − 1)]

• Which shall give the same normalized, flat distribution
dni

dEi
=

1
2γvp*i

= ?



Clock postulate



  Time-based observable involving Massive Particles?

  We recently extended the clock postulate to the effective spacetime probed by fundamental particles 
    [IPL, Pfeifer, PRD (2021)]

   The lifetime of particles constitutes a natural definition of a “clock”

Recently, the lifetime of fundamental particles has been identified as an observable that can be used to test 
deformed CPT symmetry inspired by QG close to the Planck scale [Arzano, Kowalski-Glikman, Wislicki, PLB (2019)]

• Finsler geometry :g(x, ·x) gμν =
1
2

∂2F2

∂ ·xμ∂ ·xν



General case in the 
forthcoming paper  
[IPL, Pfeifer, 
arXiv:2110.xxxxx]

• For a parity-invariant composition law, we can find relations between back-reaction parameters

J = −
Hvγ
1 + γ

+
1 + γ − 2γ2

γ
, M = −

Rvγ
γ − 1

− v(1 + 2γ)

(p ⊕ q)0 = p0 + q0

(p ⊕ q)1 = p1 + q1 − ℓp0q1

v ◃ q = v + ℓ [v
(γ2 − 1)

γ
q0 −

(3γ3 − 2γ2 − 2γ + 1)
γ2

q1]
v ◃̃ p = v − ℓ [vγp0 + (γ −

1
γ ) p1]

• Infinitesimal form v ◃ q = v
v ◃̃ p = v(1 − ℓp0)

Coincides with [Gubitosi, Mercati, CQG (2013)]

Invariant energy conservation (coproduct)Invariant momentum conservation

(p ⊕ q)0 = p0 + q0 + ℓp1q1

(p ⊕ q)1 = p1 + q1

v ◃ k = v + ℓ [( 1
γ

− γ) k1 − vγk0]

• Infinitesimal form

v ◃ k = v(1 − ℓk0)


