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Quantum Gravity Theories

Attempts of unification: string theory, loop quantum gravity,
supergravity, causal set theory...

In most of them a minimal length appears =⇒ Planck length
(lP)??
This is closely related to an energy scale =⇒ Planck energy
(Λ)??
Problem: there are no experimental evidences of a fundamental
QGT
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Spacetime: the last frontier

Classical spacetime → “quantum” spacetime

Symmetries? → LI should be broken/deformed at Planckian
scales
New effects → Micro black holes creation?
Spacetime can be regarded as a “foam”
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Lorentz invariance violation (LIV)

This possibility was first considered in 60’s

There is a loss of the relativity principle
There is a privileged observer → physical laws depending on
the observer
Formulated in the quantum field theory framework → standard
model extension (SME)
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Doubly Special Relativity (DSR)

There is a relativity principle

Two invariants in every inertial frame: speed of light c and
Planck length lP
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Kinematics

Ingoing and outgoing particles movement is described by the
dispersion relation
In the interaction, the conservation of total momentum holds

Javier Relancio Geometrize and conquer: KG and Dirac equations in DSR



Kinematics

Ingoing and outgoing particles movement is described by the
dispersion relation

In the interaction, the conservation of total momentum holds

Javier Relancio Geometrize and conquer: KG and Dirac equations in DSR



Kinematics

Ingoing and outgoing particles movement is described by the
dispersion relation
In the interaction, the conservation of total momentum holds

Javier Relancio Geometrize and conquer: KG and Dirac equations in DSR



Kinematics in DSR

Dispersion relation

C (k) = k2
0 − k⃗2 +

k3
0
Λ

+ ... = m2

Conservation laws

Total momentum = (p ⊕ q)µ = pµ + qµ +
pµq0

Λ
+ ...

Dispersion relation and conservation law compatible with
relativity principle → deformed Lorentz transformations
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Kinematics in DSR

κ-Poincaré: very much studied model appearing in the context
of Hopf algebras [Majid and Ruegg, 1994]

Particular example: symmetric basis [Lukierski et al., 1992]
Deformed dispersion relation (DDR)

C
(S)
A (p) =

(
2Λ sinh

( p0

2Λ

))2
− p⃗2

Deformed conservation law (DCL)

(p ⊕ q)0 = p0 + q0 , (p ⊕ q)i = pie
q0/2Λ + qie

−p0/2Λ
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Our perspective [Carmona et al., 2019]

Dispersion relation → Squared distance from the origin to k
[Amelino-Camelia et al., 2011]

Translations, deformed “Lorentz” generators → 10 isometries
of the metric!
Only a maximally symmetric momentum space (MSS) satisfies
this! → Minkowski, de Sitter or anti de Sitter
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Construction of kinematics: de Sitter momentum space

Start by a momentum metric

g00(p) = 1 , g0i (p) = gi0(p) =
pi
2Λ

, gij(p) = −δij e−p0/Λ+
pipj
4Λ2 .

Compute the Casimir using [Relancio and Liberati, 2020]

CD(p) = f µgµν(p)f
ν , f µ(p) :=

1
2
∂CD(p)

∂pµ

Compute the composition law using

gµν (p ⊕ q) =
∂ (p ⊕ q)µ

∂qρ
gρσ(q)

∂ (p ⊕ q)ν
∂qσ

Using this metric one obtains the same kinematics of
κ-Poincaré in the symmetric basis!
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Important comments
CA ̸= CD but CD = h(CA)

Different kinematics can be obtained from the same metric:
same dispersion relation but different composition laws
Particular example:

gµν(p) = ηµν + pµpν/Λ
2

Snyder kinematics [Battisti and Meljanac, 2010]

(p⊕q)Snyder
µ = pµ

√
1 +

q2

Λ2 +
pµη

µνqν

Λ2
(
1 +

√
1 + p2/Λ2

)
+qµ

κ-Poincaré in classical basis [Borowiec and Pachol, 2010]

(p⊕q)κ−Poincaré
µ = pµ

√1 +
q2

Λ2
+

q0

Λ

+qµ+nµ

[√
1 + p2/Λ2 − p0/Λ

1 − p⃗2/Λ2

(
q0 +

qαηαβpβ

Λ

)
− q0

]

where nµ := (1, 0, 0, 0).
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Deformed Klein–Gordon equation: construction

Klein–Gordon and Dirac equations already obtained in Hopf
algebras [Lukierski et al., 1992, Nowicki et al., 1993]

Our aim → geometrical derivation of these equations
[Franchino-Viñas and Relancio, 2022]
We are able to reproduce them from a curved momentum
space!
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Klein–Gordon equation: construction

Klein-Gordon equation derived from the Casimir (squared
distance)(

Λ2 arccosh2
(
cosh

(p0

Λ

)
− p⃗2

2Λ2

)
−m2

)
ϕ(p) = 0

Klein-Gordon equation derived from the Casimir (Hopf algebra)((
2Λ sinh

( p0

2Λ

))2
− p⃗2 −m2

)
ϕ(p) = 0

Different Casimirs: possible different behavior at ultraviolet
regime.
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Klein–Gordon equation: invariance

Action in momentum space

SKG :=

∫
d4p

√
−g ϕ∗(p)

(
CD(p)−m2)ϕ(p)

√
−g guarantees invariance under a change of momentum

basis.
Invariance under deformed Lorentz transformations of the
metric assuming the field transforms as a scalar

ϕ′(p′) = ϕ(p)

since
CD(p) = CD(p

′)
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Dirac equation: formulation

As for curved spacetimes, we use the momentum tetrad(
γµfµ(p)−m

)
ψ(p) = 0

with
fµ(p) := gµν(p)f

ν(p) =
1
2
gµν(p)

∂CD(p)

∂pν

and
γµ := γaeµa(p)

The new gamma matrices satisfy

{γµ, γν} = 2gµν(p)1
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Dirac equation: formulation

This equation can be obtained from the action

SDirac :=

∫
d4p

√
−g ψ̄(−p)

(
γµfµ(p)−m

)
ψ(p)

Klein–Gordon equation is obtained straightforwardly from(
γν fν(p)−m

) (
γν fν(p) +m

)
= CD(p)−m2
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Dirac equation: invariance and symmetries

Invariant under deformed Lorentz transformations

Invariant under change of momentum coordinates
Discrete symmetries

P0 : = iγ0 , ψ̃P : = iγ0ψ̃(p0,−p⃗) ,

T0 : = iγ1γ3K , ψ̃T : = iγ1γ3ψ̃∗(p0,−p⃗) ,

C0 : = iγ2K , ψ̃C : = iγ2ψ̃∗(−p) .

Invariant under P and T
Invariant under C when Λ → −Λ
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Dirac equation: choice of tetrad
Different tetrads lead to the same metric → which one should
we use?

The composition law identifies one and only one tetrad:

gµν (p ⊕ q) =
∂ (p ⊕ q)µ

∂qρ
gρσ (q)

∂ (p ⊕ q)ν
∂qσ

so for q → 0

gµν (p) =
∂ (p ⊕ q)µ

∂qρ

∣∣∣∣
q→0

ηρσ
∂ (p ⊕ q)ν

∂qσ

∣∣∣∣
q→0

One finds the tetrad to be

eµ
a(p) := δaν

∂ (p ⊕ q)µ
∂qν

∣∣∣∣
q→0

We can construct the Dirac equation for different relativistic
kinematics!
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Dirac equation in κ-Poincaré
For the symmetric basis we find

D(S)
D :=

√
C
(S)
D (p)

Λ2

2Λ sinh


√

C
(S)
D (p)

Λ2


[
2Λe−

p0
2Λ γ

i pi + γ
0
(

2Λ2 sinh

(
p0

Λ

)
− p⃗2

)]

If we use instead C
(S)
A (p)

D(S)
A := γ0

(
Λ sinh

(p0

Λ

)
− p⃗2

2Λ

)
+ e−p0/2Λpiγ

i

which is the same result obtained in Hopf
algebras! [Nowicki et al., 1993]
Our construction leads to(

D(S)
D

)2
= C

(S)
D
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Conclusions

We have developed a geometrical interpretation of relativistic
wave equations

We obtain the Klein–Gordon and Dirac equations in
κ-Poincaré from a de Sitter momentum space, which are the
same results obtained in the Hopf algebra scheme
Analogous equations can be obtained for other kinematics,
such as Snyder model
We have made a first attempt into the identification of the
relevant Hilbert space in a quantization process
Future work: include interactions
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Thanks for your attention!

Javier Relancio Geometrize and conquer: KG and Dirac equations in DSR



Amelino-Camelia, G., Freidel, L., Kowalski-Glikman, J., and
Smolin, L. (2011).
The principle of relative locality.
Phys. Rev., D84:084010.

Battisti, M. V. and Meljanac, S. (2010).
Scalar Field Theory on Non-commutative Snyder Space-Time.
Phys. Rev., D82:024028.

Borowiec, A. and Pachol, A. (2010).
Classical basis for kappa-Poincare algebra and doubly special
relativity theories.
J. Phys., A43:045203.

Carmona, J. M., Cortés, J. L., and Relancio, J. J. (2019).
Relativistic deformed kinematics from momentum space
geometry.
Phys. Rev., D100(10):104031.

Franchino-Viñas, S. A. and Relancio, J. J. (2022).

Javier Relancio Geometrize and conquer: KG and Dirac equations in DSR



Geometrize and conquer: the Klein-Gordon and Dirac equations
in Doubly Special Relativity.

Lukierski, J., Nowicki, A., and Ruegg, H. (1992).
New quantum Poincare algebra and k deformed field theory.
Phys. Lett., B293:344–352.

Majid, S. and Ruegg, H. (1994).
Bicrossproduct structure of kappa Poincare group and
noncommutative geometry.
Phys. Lett., B334:348–354.

Nowicki, A., Sorace, E., and Tarlini, M. (1993).
The Quantum deformed Dirac equation from the kappa
Poincare algebra.
Phys. Lett. B, 302:419–422.

Relancio, J. J. and Liberati, S. (2020).
Phenomenological consequences of a geometry in the
cotangent bundle.
Phys. Rev., D101:064062.

Javier Relancio Geometrize and conquer: KG and Dirac equations in DSR


	Introduction
	Kinematics in DSR
	Geometry in momentum space
	Deformed relativistic wave equations
	Conclusions

	anm0: 
	0.9: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


