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© Introduction



Quantum Gravity Theories

@ Attempts of unification: string theory, loop quantum gravity,
supergravity, causal set theory...
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Quantum Gravity Theories

@ Attempts of unification: string theory, loop quantum gravity,
supergravity, causal set theory...

@ In most of them a minimal length appears = Planck length
(Ip)77

@ This is closely related to an energy scale = Planck energy
(N)?7?

@ Problem: there are no experimental evidences of a fundamental

QGT
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@ Classical spacetime — “quantum’ spacetime



Spacetime: the last frontier

o Classical spacetime — “quantum’ spacetime

e Symmetries? — LI should be broken/deformed at Planckian
scales
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Spacetime: the last frontier

o Classical spacetime — “quantum’ spacetime

e Symmetries? — LI should be broken/deformed at Planckian
scales

o New effects — Micro black holes creation?

@ Spacetime can be regarded as a “foam”
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Spacetime: the last frontier
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@ This possibility was first considered in 60's

@ There is a loss of the relativity principle



Lorentz invariance violation (LIV)

@ This possibility was first considered in 60's
@ There is a loss of the relativity principle

@ There is a privileged observer — physical laws depending on
the observer
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Lorentz invariance violation (LIV)

@ This possibility was first considered in 60's
@ There is a loss of the relativity principle

@ There is a privileged observer — physical laws depending on
the observer

@ Formulated in the quantum field theory framework — standard
model extension (SME)
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@ There is a relativity principle



Doubly Special Relativity (DSR)

@ There is a relativity principle

@ Two invariants in every inertial frame: speed of light ¢ and
Planck length Ip
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@ Kinematics in DSR



Kinematics

Ingoing particles |:> Interaction |:> Outgoing particles
past CQ future O
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@ Ingoing and outgoing particles movement is described by the
dispersion relation
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Kinematics

Ingoing particles |:> Interaction |:> Outgoing particles
past CQ future O

@ Ingoing and outgoing particles movement is described by the
dispersion relation

@ In the interaction, the conservation of total momentum holds
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@ Dispersion relation

k3
C(k)=k§—l?2+W°+...=m2



Kinematics in DSR

@ Dispersion relation
k3
C(k) = k§—/?2+W°+... = m

o Conservation laws

Puqo

Total momentum = (p® q)y = pu +qu + A



Kinematics in DSR

@ Dispersion relation

o Conservation laws

Purq0

A + ...

Total momentum = (p® q)y = pu+ qu +

@ Dispersion relation and conservation law compatible with
relativity principle — deformed Lorentz transformations
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Kinematics in DSR

@ k-Poincaré: very much studied model appearing in the context
of Hopf algebras [Majid and Ruegg, 1994]

Javier Relancio Geometrize and conquer: KG and Dirac equations in DSR



Kinematics in DSR

@ k-Poincaré: very much studied model appearing in the context
of Hopf algebras [Majid and Ruegg, 1994]

o Particular example: symmetric basis [Lukierski et al., 1992]

Javier Relancio Geometrize and conquer: KG and Dirac equations in DSR



Kinematics in DSR

@ k-Poincaré: very much studied model appearing in the context
of Hopf algebras [Majid and Ruegg, 1994]

o Particular example: symmetric basis [Lukierski et al., 1992]
@ Deformed dispersion relation (DDR)

cS(p) = <2Asinh (%))2 R
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Kinematics in DSR

@ k-Poincaré: very much studied model appearing in the context
of Hopf algebras [Majid and Ruegg, 1994]

o Particular example: symmetric basis [Lukierski et al., 1992]
@ Deformed dispersion relation (DDR)

cS(p) = <2Asinh (%)\))2 R

@ Deformed conservation law (DCL)

(P2 =po+q. (p®q) = pie®?N 4 ge=Po/2A
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© Geometry in momentum space



Our perspective [Carmona et al., 2019]

@ Dispersion relation — Squared distance from the origin to k
[Amelino-Camelia et al., 2011]



Our perspective [Carmona et al., 2019]

@ Dispersion relation — Squared distance from the origin to k
[Amelino-Camelia et al., 2011]

@ Translations, deformed “Lorentz” generators — 10 isometries
of the metric!
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Our perspective [Carmona et al., 2019]

@ Dispersion relation — Squared distance from the origin to k
[Amelino-Camelia et al., 2011]

@ Translations, deformed “Lorentz” generators — 10 isometries
of the metric!

@ Only a maximally symmetric momentum space (MSS) satisfies
thisl — Minkowski, de Sitter or anti de Sitter
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Construction of kinematics: de Sitter momentum space

@ Start by a momentum metric

Pip;j

goo(p) = 1, goi(p) = gio(p) = gi(p) = —dje /N5

L
2N’
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Construction of kinematics: de Sitter momentum space

@ Start by a momentum metric

goo(p) = 1, goilp) = gio(p) = 71 &i(P) Sje +one

e Compute the Casimir using [Relancio and Liberati, 2020]

190G
Colp) = gulp)”, (o) = 5 )
n
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Construction of kinematics: de Sitter momentum space

@ Start by a momentum metric

Pi - B i —po/N_, PiPj
ono Gilp) = —dje™™ TN

goo(p) = 1, goi(p) = gio(p) = A

e Compute the Casimir using [Relancio and Liberati, 2020]

, 190G
Colp) = PP, 1(p) = 3227
i
@ Compute the composition law using
d(p®q), d(paq)
v(PDQ) = —F5—8po(q)—F—"
guw (P®q) 9q, & (q) 90,
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Construction of kinematics: de Sitter momentum space

@ Start by a momentum metric

goo(p) = 1, goilp) = gio(p) = 71 &i(P) Sje +one

e Compute the Casimir using [Relancio and Liberati, 2020]

5 10G
Colp) = PP, 1(p) = 3227
i
@ Compute the composition law using
d(p®q), d(paq)
v(P®q) = —F—8o(q)—F—"
gu (P& q) 9q, & () 90,

@ Using this metric one obtains the same kinematics of
k-Poincaré in the symmetric basis!
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o Cp# (p but Cp = h(CA)



o Cp # Cp but (p = h(CA)
o Different kinematics can be obtained from the same metric:



Important comments

@ Cp# Cp but (p = h(CA)
o Different kinematics can be obtained from the same metric:
same dispersion relation but different composition laws
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Important comments

@ Cp# Cp but (p = h(CA)
o Different kinematics can be obtained from the same metric:
same dispersion relation but different composition laws

o Particular example:

guw(P) = N + pupu /N
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Important comments

@ Cp# Cp but (p = h(CA)
o Different kinematics can be obtained from the same metric:
same dispersion relation but different composition laws

o Particular example:

guw(P) = N + pupu /N

@ Snyder kinematics [Battisti and Meljanac, 2010]

nyder q? pun™ qy
(P = pu [ /14 5 + +qy
A2 <1+\/1+p2//\2>
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Important comments

@ Cp# Cp but (p = h(CA)

o Different kinematics can be obtained from the same metric:
same dispersion relation but different composition laws

o Particular example:

guw(P) = N + pupu /N

@ Snyder kinematics [Battisti and Meljanac, 2010]

qj+ Pun™ qu
A2 A2 (1+ /1+p2//\2>

e r-Poincaré in classical basis [Borowiec and Pachol, 2010]

B
P V1+p2/A%2 — po/N qan*’ pg
(p@a); =7 = <” " /\72 + 7) e [ 1- 2/N2 do+ 3 T

where n, :=(1,0,0,0).
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@ Deformed relativistic wave equations



Deformed Klein—Gordon equation: construction

@ Klein—Gordon and Dirac equations already obtained in Hopf
algebras [Lukierski et al., 1992, Nowicki et al., 1993]
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Deformed Klein—Gordon equation: construction

@ Klein—Gordon and Dirac equations already obtained in Hopf
algebras [Lukierski et al., 1992, Nowicki et al., 1993]

@ Our aim — geometrical derivation of these equations
[Franchino-Vifias and Relancio, 2022]
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Deformed Klein—Gordon equation: construction

@ Klein—Gordon and Dirac equations already obtained in Hopf
algebras [Lukierski et al., 1992, Nowicki et al., 1993]

@ Our aim — geometrical derivation of these equations
[Franchino-Vifias and Relancio, 2022]

@ We are able to reproduce them from a curved momentum
space!
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Klein—Gordon equation: construction

@ Klein-Gordon equation derived from the Casimir (squared
distance)

=2
</\2 arccosh? (cosh (%) - 2p/\2> - m2> o(p) =0
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Klein—Gordon equation: construction

@ Klein-Gordon equation derived from the Casimir (squared
distance)

=2
</\2 arccosh? (cosh (%) - 2p/\2> - m2> o(p) =0

e Klein-Gordon equation derived from the Casimir (Hopf algebra)

((2nsin (22))" =5~ ) o) = 0
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Klein—Gordon equation: construction

@ Klein-Gordon equation derived from the Casimir (squared
distance)

2
2 2 Poy _ P\ _ 2 =
</\ arccosh (cosh ( /\) 2/\2> m ) o(p) =0
e Klein-Gordon equation derived from the Casimir (Hopf algebra)

((2nsin (22))" =5~ ) o) = 0

e Different Casimirs: possible different behavior at ultraviolet
regime.
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@ Action in momentum space

Sk = / d*p /" " (p) (Co(p) — m?) 6(p)



Klein—Gordon equation: invariance

@ Action in momentum space

Sk = / d*p /g6 (p) (Colp) — m?) 6(p)

@ /—g guarantees invariance under a change of momentum
basis.
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Klein—Gordon equation: invariance

@ Action in momentum space

Sk = / d*p /g6 (p) (Colp) — m?) 6(p)

@ /—g guarantees invariance under a change of momentum
basis.

o Invariance under deformed Lorentz transformations of the
metric assuming the field transforms as a scalar

¢'(p") = o(p)

Cp(p) = Co(p)
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@ As for curved spacetimes, we use the momentum tetrad

(+*fu(p) — m) 9(p) = 0



Dirac equation: formulation

@ As for curved spacetimes, we use the momentum tetrad

(v fu(p) — m) ¥(p) = 0

with
) = gulp)(5) = Sgulp) )
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Dirac equation: formulation

@ As for curved spacetimes, we use the momentum tetrad

(v fu(p) — m) ¥(p) = 0

with
) = gulp)(5) = Sgulp) )

and
" = 7% a(p)
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Dirac equation: formulation

@ As for curved spacetimes, we use the momentum tetrad

(v fu(p) — m) ¥(p) = 0

with

) = gulp)(5) = Sgulp) )

and
" = 7% a(p)

@ The new gamma matrices satisfy

{7y = 28" (p)1
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Dirac equation: formulation

@ This equation can be obtained from the action

Soinae = / d*p/=gB(—p) (7"£,(p) — m) v(p)
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Dirac equation: formulation

@ This equation can be obtained from the action

Soinae = / d*p/=gB(—p) (7"£,(p) — m) v(p)

@ Klein—Gordon equation is obtained straightforwardly from

(+/£,(p) — m) (+'f(p) + m) = Co(p) — m?
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@ Invariant under deformed Lorentz transformations



Dirac equation: invariance and symmetries

o Invariant under deformed Lorentz transformations

@ Invariant under change of momentum coordinates
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Dirac equation: invariance and symmetries

o Invariant under deformed Lorentz transformations
@ Invariant under change of momentum coordinates

@ Discrete symmetries

Po: = iy°, Up o = i7°%(po, —P)
To: = iV'¥’K, dr = iv'y* 0" (po, —P),
Co: = iV’K, &01:177/’( p)-
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Dirac equation: invariance and symmetries

o Invariant under deformed Lorentz transformations
@ Invariant under change of momentum coordinates

@ Discrete symmetries

Po: = iy°, Up o = i7°%(po, —P)
To: = iV'¥’K, dr = iv'y* 0" (po, —P),
Co: = iV’K, &01:177/’( p)-

@ Invariant under P and T
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Dirac equation: invariance and symmetries

o Invariant under deformed Lorentz transformations

@ Invariant under change of momentum coordinates

@ Discrete symmetries
Po: = iy?, dp o = 17%(po, —P),
%Z:i’7173l<:, wT:y}/"y@/}(pO, )7
Co: = K, Jet = 2 (=p).

@ Invariant under P and T

@ Invariant under C when A — —A
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o Different tetrads lead to the same metric — which one should
we use?



Dirac equation: choice of tetrad

o Different tetrads lead to the same metric — which one should
we use?
@ The composition law identifies one and only one tetrad:

d(p®q) o(p®aq),
guw(p®q) = T“gpa (q)(aq)
p o
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Dirac equation: choice of tetrad

o Different tetrads lead to the same metric — which one should
we use?
@ The composition law identifies one and only one tetrad:

d(p®q) o(p®aq),
guw(p®q) = T“gpa (q)(aq)
p o

so forg — 0
adp®a), d(p®q),

uw\P) = ——FH— n
! ( ) aqp q—0 a 8q‘7 q—0
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Dirac equation: choice of tetrad

o Different tetrads lead to the same metric — which one should
we use?
@ The composition law identifies one and only one tetrad:

d(p®q) o(p®aq),
guw(p®q) = ?“gpa (q)(aq)
p o

so forg — 0

I(peq),

d(p@aq),
dq, P

guw (P) =
q—0 990

qg—0

@ One finds the tetrad to be

) ,0(padq)
e’(p) == 0y TM

qg—0
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Dirac equation: choice of tetrad

o Different tetrads lead to the same metric — which one should
we use?
@ The composition law identifies one and only one tetrad:

d(p®q) o(p®aq),
guw(p®q) = T“gpa (q)(aq)
p o

so forg — 0

I(peq),
dq,

d(p@q),
q—0 g 990

Buv (P) =
qg—0
@ One finds the tetrad to be

) ,0(padq)
e’(p) == 0y TH

qg—0

@ We can construct the Dirac equation for different relativistic
kinematics!
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@ For the symmetric basis we find

Sw
2 Py .
PoIQ S - [2Ae‘ﬁy’pi +4° (2/\2 sinh (%) - f)]

(S)
2Asinh ( CE;\Z(’J))



Dirac equation in xk-Poincaré

@ For the symmetric basis we find

2 PO
p® = ¥V M [2Ae*ﬁ7’p, +4° (2/\2 sinh (%") - ﬁ2>]

; 2Asinh (\/ C'(Dil(p))
o If we use instead C'gs)(p)

_Q .
D) = 40 </\ sinh (22 — 5/\) + e P/
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Dirac equation in xk-Poincaré

@ For the symmetric basis we find

o)

2 PO
p® = ¥V M [2Ae*ﬁ7’p, +4° (2/\2 sinh (%") - ﬁz>]

D
(S)
2Asinh ( Cl:z\z(p))

o If we use instead Cﬁs)(p)

_Q .
DY) = 40 </\ sinh (22 — 5/\> + e P/

which is the same result obtained in Hopf
algebras! [Nowicki et al., 1993]
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Dirac equation in xk-Poincaré

@ For the symmetric basis we find

2 PO
p® = ¥V M [2Ae*ﬁ7’p, +4° (2/\2 sinh (%") - ﬁz>]

D
(S)
2Asinh ( Cl:z\z(p))

o If we use instead C'gs)(p)

_Q .
D) = 40 </\ sinh (22 — 5/\> + e P/

which is the same result obtained in Hopf
algebras! [Nowicki et al., 1993]

@ Our construction leads to

(o) -

Javier Relancio Geometrize and conquer: KG and Dirac equations in DSR



© Conclusions



@ We have developed a geometrical interpretation of relativistic
wave equations



Conclusions

@ We have developed a geometrical interpretation of relativistic
wave equations

@ We obtain the Klein—-Gordon and Dirac equations in
k-Poincaré from a de Sitter momentum space, which are the
same results obtained in the Hopf algebra scheme
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Conclusions

@ We have developed a geometrical interpretation of relativistic
wave equations

@ We obtain the Klein—-Gordon and Dirac equations in
k-Poincaré from a de Sitter momentum space, which are the
same results obtained in the Hopf algebra scheme

@ Analogous equations can be obtained for other kinematics,
such as Snyder model
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Conclusions

@ We have developed a geometrical interpretation of relativistic
wave equations

@ We obtain the Klein—-Gordon and Dirac equations in
k-Poincaré from a de Sitter momentum space, which are the
same results obtained in the Hopf algebra scheme

@ Analogous equations can be obtained for other kinematics,
such as Snyder model

@ We have made a first attempt into the identification of the
relevant Hilbert space in a quantization process
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Conclusions

@ We have developed a geometrical interpretation of relativistic
wave equations

@ We obtain the Klein—-Gordon and Dirac equations in
k-Poincaré from a de Sitter momentum space, which are the
same results obtained in the Hopf algebra scheme

@ Analogous equations can be obtained for other kinematics,
such as Snyder model

@ We have made a first attempt into the identification of the
relevant Hilbert space in a quantization process

@ Future work: include interactions
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Thanks for your attention!
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