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Introduction
• Primordial Black Holes (PBHs) are formed out of the collapse of enhanced energy 

density perturbations upon horizon reentry of the typical size of the collapsing 
overdensity region. This happens when   [Carr - 1975].δ > δc(w ≡ p/ρ)

mPBH = 105g

mPBH = 109g
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mPBH = 105M⊙

mPBH = 1015g

t = 10−33s

t = 10−29s

t = 10−23s

t = 10−5s
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End of Inflation

PBHs evaporate at BBN

PBHs evaporate today

LIGO/VIRGO Progenitors

SMBHs, LSS?

QCD Phase Transition

BBN

PBHs as DM ?

See for reviews in [Carr et al.- 2020, Sasaki et al - 2018, Clesse et al. - 2017]
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mPBH = γMH ∝ H−1 where γ ∼ O(1)



PBHs and GWs

• 1) Primordial induced GWs generated through second order gravitational 
effects: , [Bugaev - 2009, Kohri & Terada - 2018].  

• 2) Relic Hawking radiated gravitons from PBH evaporation [Anantua et al. - 
2008, Dong et al. - 2015].


• 3) GWs emitted by PBH mergers [Eroshenko - 2016, Raidal et al. - 2017].


• 4) GWs induced at second order by PBHs themselves [Papanikolaou et al. - 
2020]. 


ℒ(3)
Φ,h ∋ hΦ2

GWs PBHs
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Induced GWs from ultralight PBHs

• We studied ultralight PBHs with  which have formed in the very early universe 
and have evaporated by BBN.


• These ultralight PBHs can change drastically the standard cosmological scenario by giving 
rise to an early matter dominated era (eMD) and driving the reheating process through 
their evaporation [Zagorac et al. - 2019, Martin et al. - 2019, Inomata et al. - 2020].


• However, these very small PBHs leave no direct observational imprint, apart from 
possible Planckian relics, since they Hawking evaporate even before Big Bang 
Nucleosynthesis (BBN).


• A possible way to constrain them is to study the emitted secondary GWs induced from a 
gas of PBHs which can propagate until today and leave an indirect imprint of the PBH 
past experience.

mPBH < 109g
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The PBH Matter Field

PδPBH
(k) ≡ ⟨ |δPBH

k |2 ⟩ =
4π
3 ( r̄

a )
3

=
4π

3k3
UV

, where k < kUV =
a
r̄

𝒫Φ(k) =
2

3π ( k
kUV )

3

(5 +
4
9

k2

k2
d )

−2

{Poisson Statistics [Desjacques & Riotto - 2018, Ali-Haimoud - 2018] 


Same mass [Dizgah, Franciolini & Riotto - 2019] 

 is inhomogeneous 
 


 is homogeneous

ρPBH

ρtot

{

  can be seen as an isocurvature perturbation.δPBH

the isocurvature perturbation,  will 
convert during the PBHD era to a curvature perturbation , associated to a 
PBH gravitational potential . 

ΩPBH = ρPBH/ρtot ∝ a−3/a−4 ∝ a ⇒ δPBH
ζPBH

Φ

6



• Choosing as the gauge for the GW frame the Newtonian gauge, the metric is 
written as


• The equation of motion for the Fourier modes, , read as:


• The source term,  can be recast as:


• At the end, the energy density of GWs can be recast as [M. Maggiore - 2000]:

h ⃗k

S ⃗k

ds2 = a2(η) −(1 + 2Φ)dη2 + [(1 − 2Φ)δij +
hij

2 ] dxidxj

hs,′ ′ 

⃗k
+ 2ℋhs,′ 

⃗k
+ k2hs

⃗k
= 4Ss

⃗k

Ss
⃗k
= ∫

d3 ⃗q
(2π)3/2

es
ij( ⃗k )qiqj [2Φ ⃗q Φ ⃗k − ⃗q +

4
3(1 + w)

(ℋ−1Φ′ ⃗q + Φ ⃗q )(ℋ−1Φ′ ⃗k − ⃗q
+ Φ ⃗k − ⃗q )]

Basics of Scalar Induced Gravitational Waves
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ρGW(η, ⃗x ) =
M2

Pl

8 (∂thαβ∂thαβ + ∂ihαβ∂ihαβ) .

Kinetic Energy (KE) Gradient Energy (GE)



• The spectral abundance,  of GWs can be written as:
ΩGW(η, k)

ΩGW(η, k) ≡
1

ρtot

dρGW

d ln k
=

1
24 ( k

a(η)H(η) )
2

𝒫h(η, k)

with 𝒫h(η, k) ∝ ∫ dk1 ∫ dk2 (∫ f(k1, k2, η)dη)
2

𝒫Φ(k1)𝒫Φ(k2) .
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The Gravitational Wave Spectrum
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[Papanikolaou et al. - 2020] 




 

GW Frequency

• GWs induced by a dominating gas of PBHs might still be detectable in the future with 
gravitational-waves experiments. 
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The case of  gravityf(R)

• Compared to GR, within  gravity the gravitational action reads as: 


• Treating again the PBH energy density fluctuations as isocurvature 
perturbations converting to curvature perturbations during the PBH 
dominated era one can straightforwardly show that 

f(R)

10

𝒫Φ(k) ≡
k3

2π2
PΦ(k) =

2
3π ( k

kUV )
3

5 +
2
3 ( k

ℋ )
2

F
1 + 3 k2

a2

F,R

F

1 + 2 k2

a2

F,R

F

ξ(a)

−2

,

S =
1

16πG ∫ d4x −g R ⟹ S =
1

16πG ∫ d4x −g f(R) .

where ξ(a(t)) ≡
δPBH(a(t))
δPBH(af)

FRμν −
1
2

gμν f + (gμν□ − ∇μ ∇ν)F = 8πGTm
μν with F(R) ≡

df(R)
dR



The tensor perturbations
• In  gravity, one is met with the existence of a new propagating degree of 

freedom, namely the scalaron field  which follows a wave 
equation:


• The equation of motion for the tensor perturbations is now modified and can 
be recast as:


    where  when  and  when .                            


• The respective polarisation tensors read as

f(R)
ϕsc ≡ F(R)

λ = 0 s = ( + ), ( × ) λ = 1 s = (sc)

11

hs,′ ′ 

⃗k
+ 2ℋhs,′ 

⃗k
+ (k2 − λm2

sc)hs
⃗k
= 4Ss

⃗k
,

e(+)
ij ( ⃗k ) =

1

2 (
1 0 0
0 −1 0
0 0 0), e(×)

ij ( ⃗k ) =
1

2 (
0 1 0
1 0 0
0 0 0), e(sc)

ij ( ⃗k ) =
1

2 (
0 0 0
0 0 0
0 0 1) .

□ F(R) = m2
scF(R), with m2

sc ≡
1
3 ( F

F,R
− R)



The case of Starobinsky gravity
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[Papanikolaou et al. - 2021] 


• We make here a case study considering a Starobinsky gravity model with a non-

fixed mass scale parameter :   .M f(R) = R +
1

6M2
R2
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Constraints on the parameters of the gravity theory

ΩPBH,f ≤ 10−4 ( 109g
mPBH )

1/4

ξ21/32
d (M, ΩPBH,f)

[Papanikolaou et al. - 2021] 


ΩPBH,f < 10−3 ⇒ Mmin = Hf =
4πM2

Pl

mPBH

ΩPBH,f > 10−3 ⇒ 5 × 10−14 < Mmin/MPl < 0.1

ΩGW,tot(ηevap) ≤ 1



• We studied the scalar induced GWs during a transient period of PBH 
domination in the early universe. 


• By requiring that GWs do not lead to a back-reaction problem at 
evaporation time,  i.e.  , we derive a model-independent 
upper bound on the initial abundance of PBHs.


• We applied our formalism in the case of  gravity making a case study 
for Starobisky gravity extracting at the end constraints on  and vice-
versa on the mass scale  of the Starobinsky model. 

• This novel probe of SIGWs can be studied within the context of any gravity 
theory being used as an extra tool to detect possible deviations from GR 
and break the observational degeneracy between different gravity 
theories. 

ΩGW,tot(ηevap) < 1

f(R)
ΩPBH,f

M

Conclusions 
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Thank you for your attention!
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The case of  gravityf(T)
• In  gravity, the gravitational action reads as:


• Accounting for a) source and b) propagation effects we find a GW signal 
with no significant deviations from GR. 

f(T )
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S =
1

16πG ∫ d4x −g f(T ) .
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mPBH )

1/4
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The Gravitational Wave Spectrum

• One identifies a broken power law for the GW spectrum. Two scales enter in the problem, 
 and .


• For some regions in the parameter space , we find that ! 

kd = ℋd kUV = afHfΩ1/3
PBH,f

(ΩPBH,f, mPBH) ΩGW,tot(ηevap) > 1

ΩGW(ηevap, k) ≃ 1019 ( geff

100 )
−2/3

( mPBH

109g )
4/3

Ω16/3
PBH,f × {

k
kd

for k ≪ ℋd

8 for k ≫ ℋd
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• The solution of the equation of motion of tensor modes can be written analytically by 
the use of the Green function, which satisfies the homogeneous equation,


• The gravitational potential, , present in the source term, , in the absence of 
anisotropic stress, satisfies the following equation,


• The solution of the above equation can be written analytically as. 


• If there is a dominant mode, which is the case when  then 
. In the case of a PBH era ( ), .

Φ ⃗k Ss
⃗k

w = 0 or 1/3
Φ ⃗k = ϕ ⃗k TΦ(kη) w = 0 TΦ(kη) = constant

hs
⃗k
(η) =

4
a(η) ∫

η

ηd

dη̄G ⃗k (η, η̄)a(η̄)Ss
⃗k
(η̄) .

Φ′ ′ ⃗k
+

6(1 + w)
1 + 3w

1
η

Φ′ ⃗k
+ wk2Φ ⃗k = 0.

Basics of Scalar Induced Gravitational Waves

Φ ⃗k (η) =
1
yλ (C1(k)Jλ(y) + C2(k)Yλ(y)) where λ =

1
2

5 + 3w
1 + 3w

and y = wkη
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The PBH Gravitational Potential Power Spectrum
• We assume that PBHs form in the radiation era, . Thus, PBH formation can 

be regarded as a transition of a fraction of radiation into dust matter. 


• Given the random spatial distribution of PBHs,  is inhomogeneous while  is 
homogeneous. Thus, the  can be viewed as an isocurvature perturbation. 

• If  is sufficiently large then PBHs will dominate the energy budget of the universe 
since . Consequently, in the subsequent PBH 
domination era, the isocurvature perturbation will convert to a curvature 
perturbation associated to a PBH gravitational potential .


• By treating separately the sub and super-horizon scales, the PBH gravitational potential 
power spectrum reads as

ρPBH ≪ ρtot

ρPBH ρtot
δPBH

ΩPBH,f
ΩPBH = ρPBH/ρtot ∝ a−3/a−4 ∝ a

Φ

𝒫Φ(k) =
2

3π ( k
kUV )

3

(5 +
4
9

k2

ℋ2
d )

−2

= {
∝ k3 for k ≪ ℋd

∝ 1
k for k ≫ ℋd
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The isocurvature perturbation
• The uniform energy density curvature perturbations  and :


• The isocurvature perturbation


• The comoving curvature perturbation 


• When ,  and . Thus, for , .


• For , . Thus,  for  .


• For sub-horizon scales, i.e. , 


• Knowing that , one gets that 

ζPBH ζr

ℛ

w = 0 Φ = constant Φ′ = 0 k ≪ ℋ ℛ = − ζ =
5
3

Φ

k ≪ ℋ ζ = ζPBH = ζr + S/3 ≃ S/3 ≃ δPBH(tf)/3 Φ = δPBH(tf)/5 k ≪ ℋ

k ≫ ℋ

δPBH = −
2
3 ( k

aH )
2

Φ Φ = −
9
4 ( ℋd

k )
2

δPBH(tf) for k ≫ ℋ .

ζr = − Φ +
1
4

δr, ζPBH = − Φ +
1
3

δPBH

S = 3 (ζPBH − ζr) = δPBH −
3
4

δr

ℛ =
2
3

Φ′ /ℋ + Φ
1 + w

+ Φ ≃ − ζ for k ≪ ℋ

d2δPBH

ds2
+

2 + 3s
2s(s + 1)

dδPBH

ds
−

3
2s(s + 1)

δPBH = 0 ⇒ δPBH =
2 + 3s
2 + 3sf

δPBH(tf) with s = a/ad
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The isocurvature perturbation in  gravityf(R)
• The uniform energy density curvature perturbations  and :


• The isocurvature perturbation can be recast as:


• The total curvature perturbation can be written as: 


• The matter growth equation becomes 


• In sub-horizon scales, ie. :

ζPBH ζr

k ≫ ℋ

ζr = − Φ +
1
4

δr, ζPBH = − Φ +
1
3

δPBH, ζf(R) = − Φ +
1

3(1 + wf(R))
δf(R)

S = 3 (ζPBH − ζr) = δPBH −
3
4

δr

d2δPBH

ds2
+

2 + 3s
2s(s + 1)

dδPBH

ds
−

3
2s(s + 1)

1
F

1 + 4 k2

a2

F,R

F

1 + 3 k2

a2

F,R

F

δPBH = 0 with s = a/ad .
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ζ = − Φ +
δtot

3(1 + wtot)
=

4
3 ρ̄rζr + ρ̄PBHζPBH + (1 + wf(R))ρ̄f(R)ζf(R)

4
3 ρ̄r + ρ̄PBH + (1 + wf(R))ρ̄f(R)

wf(R)≃−1
4
3 ρ̄rζr + ρ̄PBHζPBH

4
3 ρ̄r + ρ̄PBH

δPBH = −
2
3 ( k

ℋ )
2 F (1 + 3 k2

a2

F,R

F )
1 + 2 k2

a2

F,R

F

Φ .



• The spectral abundance then of GWs, , after a straightforward calculation 
reads as:


    In the above expressions,  and .

ΩGW(η, k)

y = k /ℋd Λ =
kUV

k
= y−1Ω−2/3

PBH,f

ΩGW(η, k) =
4

75π2 ( k
aH )

2

( k
kUV )

6

ℱ(y, ΩPBH,f), where

The Gravitational Wave Spectrum

ℱ(y, ΩPBH,f) = ∫
Λ

0
dv∫

min(Λ,1+v)

|1−v|
du

4v2 − (1 + v2 − u2)2

4 (3 + 4
15 y2u2) (3 + 4

15 y2v2)

2

uv

ℱ(y, ΩPBH,f)

1125 5π

256y7 for y ≪ 1 and ΩPBH,f ≪ 1

50625π2

2048y8 for y ≫ 1
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• A word of caution should be raised here. From the point of view of the 
gravitational potential , or from the point of view of the curvature perturbation 
, all scalar fluctuations incorporated in the calculation lie in the perturbative 

regime. However, in the PBH era  and can take values larger than one 
while  or  is constant and smaller than one.


• The status of these scales is unclear: the growth of  above one may signal the 
onset of PBH clustering, which might result in the enhancement of the power 
spectrum above the Poissonian value, which might in turn be responsible for 
an even larger signal than the one we have computed. In this sense, the 
bounds we have derived could be conservative only, although a more thorough 
investigation of the virialisation dynamics at small scales would be required. 

Φ
ζ

δPBH ∼ a
Φ ζ

δ

Conclusions
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