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Outline

§ Tests of General Relativity and modified gravity

Consistency tests / parametrised tests / other model-independent tests 

§ Measuring the propagation speed of GWs with LISA

§ Constraining extra dimensions with LIGO/Virgo data

§ Constraining Quantum Gravity candidates with GWs

LISA  Collaboration (including MS) (2022)

Baker et al (including MS) (2022)

LVC (including MS) (2018)

Calcagni, Kuroyanagi, Marsat, MS, Tamanini, Tasinato (2019)

LVC (including MS) (2019)



§ Consistency tests of GR          Assuming that GR is correct compare GR waveform with GW data



§ Consistency tests of GR          Assuming that GR is correct compare GR waveform with GW data

o Residual tests         Pick up arbitrary departures of the theory from the data

Bayesian inference algorithm: Estimate parameters that maximise likelihood
If GR correct description of GWs               data consistent with waveform predicted by GR

Residual, constructed by subtracting best-fit waveform from data, would be consistent with background noise
GW data often contaminated by non-stationary and non-Gaussian background

- Such tests have been applied to the existing GW events by the LIGO/Virgo collaboration
Challenge: - LISA will always have a background of sources that are on during the entire observation period  
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the GR waveform with GW data. The second one aims at constraining modified theories of gravity
by performing a certain model-independent test and then mapping the outcome to specific modified
gravity models. We will discuss these tests in some detail in what follows.

A. Consistency tests of GR

Let us first discuss tests to check the consistency of GR predictions with the detected GW signals.
We begin with the residual test, which is the most generic, model-independent test that could, in
principle, pick up arbitrary departures of the theory from the data. We will then describe a test
looking for consistency in the intrinsic parameters of the source (e.g. the merger remnant’s mass
and spin) as determined from the early inspiral phase and the late IMR phase of the coalescence
event. Finally, we discuss a generalization of the BH no-hair test using the entire IMR waveform,
wherein one compares the intrinsic parameters of the source determined from the different multipole
modes of the signal.

It is worth noting that consistency tests are also possible by comparing the parameters obtained
from the GW signal with those from other techniques in a multi-messenger scenario (Baker et al.,
2019b). There are already systems observed in GW detectors (with LIGO/Virgo) and EM tele-
scopes (Abbott et al., 2017d). This will become much more prevalent with LISA (Chen et al.,
2020; Korol et al., 2017; McGee et al., 2020; Mukherjee et al., 2020; Wyithe and Loeb, 2003). In
particular, joint observations of GW systems (Congedo and Taylor, 2019; Edwards et al., 2020;
McGee et al., 2020), will provide independent estimates of the BH parameters assuming GR, which
can be compared for consistency.

1. Residual Tests

A Bayesian inference algorithm can be used to estimate the parameters of a signal/source in the
data (Abbott et al., 2020a). Such an algorithm would essentially maximize the likelihood P (d|h),
where d is the data and h is the expected signal. The parameters �↵, that maximize the likelihood,
are deemed to be the best estimate of the signal parameters. If GR gives the correct description
of GWs, then the data would be consistent with the waveform predicted by GR. In that case the
residual , constructed by subtracting the best-fit waveform from the data, would be consistent with
background noise. Failure of GR to accurately describe the data would lead to a residual that is
statistically inconsistent with background noise. Such tests have been applied to the existing GW
events by the LIGO/Virgo collaboration (Abbott et al., 2019d, 2016b).

For the test to be effective, it is critical to characterize the statistical properties of the residual.
The data from GW detectors is often contaminated by non-stationary and non-Gaussian back-
ground. Thus, one cannot simply ask if the residual is consistent with a Gaussian distribution but
one must ask if it is consistent with the detector noise at times when no GW signals are known
to be present. One can deploy statistical tools such as Anderson-Darling or Kolmogorov–Smirnov
tests to compare the residual with the data at other times. Alternatively, one can use a transient
detection algorithm, e.g. Bayeswave (Cornish and Littenberg, 2015), to estimate the coherent SNR

in the residual data at a certain statistical significance and ask what is the probability that one
gets an SNR as large as for data sets that contain only noise.

By construction, the residual test is the most generic model-independent method that one can
construct. This is because, the test does not require any non-GR waveforms, does not use additional
parameters in the waveform to look for deviations (unlike, e.g., in parameterized tests of GR
described in Sect. VI.B below) and is sensitive to departures from GR outside the region where GR
waveform has most of its support, (e.g. echoes). Its drawback, however, is that subtle departures
from GR cannot be easily identified since the test is not phase coherent and the purely statistical
nature will make it difficult to identify the origin of the failure of the theory.

More work is needed to determine how to implement such a residual test in LISA. An approach
similar to LIGO/Virgo’s may not work because, unlike LIGO/Virgo currently, LISA will always
have a background of sources that are on during the entire observation period. Therefore, removing
only the loudest signal from the data will not necessarily lead to a residual that is consistent with
noise, i.e. there could be other signals hidden below the loudest one. Work has began to determine
how to deal with multiple simultaneous sources in the data for parameter estimation reasons, but
similar studies should be undertaken to generalize LIGO/Virgo’s residual tests to LISA.
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o Inspiral-merger-ringdown tests       Check if 90% credible contours corresponding to different ways of measuring 
parameters overlap with each other

Compare parameters determined using inspiral phase of signal only to those using the late-time merger-ringdown 
If  GR correct description of GWs               parameters determined from the two phases consistent with each other   

Challenge:  - Better understanding of mass and spin of the remnant in mergers of intermediate mass ratio systems 
and systems with non-negligible eccentricity and double-spin precession  (crucial for LISA binary sources)

- No simple mapping to convert theory-agnostic IMR test to bounds on specific theories
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o Inspiral tests       to verify the PN structure of the waveform phase

Decompose the Fourier-domain waveform model into a frequency-dependent amplitude and a frequency-dependent phase    
and write the phase as

Treat coefficients        as independent and find their best-fit values by comparing this template waveform with the data
Check the consistency of the measured masses from each of these coefficients

Challenge: - Extend the mapping between generic deviations and specific theories
- Determine how to handle parametrically modifications of GR that do not admit simple PN expansion in inspiral

Note: Multiband observations of stellar-mass BBHs are important in constraining modified gravity via parametrised tests
Multibanding allows to combine information from early inspiral dynamics using LISA with late inspiral, merger and   
ringdown observations using 3rd generation ground-based detectors
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intrinsic parameters to describe the phase evolution of the quadrupole and higher-order modes
and, as in the IMR consistency test described earlier, check to see if the parameters determined
from these modes are consistent with one another. Alternatively, one could introduce additional
parameters to describe the amplitude of the higher modes while keeping the amplitude of the
quadrupole mode as in GR. Such tests could reveal any modification from GR of the multipolar
structure of the binary that is imprinted in the GWs observed at detectors.

An advance that would be useful in this context is the development of a mapping between
such generic higher-mode deviations from GR and specific modified theories. Most studies of
the dynamics of binary systems outside of GR have been only done to leading PN order in the
inspiral. Going beyond leading order would be essential to find the higher-modes discussed above
as predicted in a given theory.

B. Parametrized Tests

We now discuss model-independent tests that introduce generic parameters capturing non-GR
effects independent of the underlying gravitational theory. We first present a generic framework,
followed by a few examples on how one can use such parameterized tests to probe specific non-GR
theories and BH spacetimes beyond Kerr.

Many modified gravity theories have been proposed over the years, and sufficiently accurate
gravitational waveform models are only available for a small subset of these theories, when their
calculation is even possible at all (Berti et al., 2015). Therefore it is appealing to develop generic
“null” tests of Einstein’s theory, following the approach pursued with Solar System tests, where the
parametrized PN (PPN) framework proposed by Will and Nordtvedt (Nordtvedt and Will, 1972;
Nordtvedt, 1968; Will, 1971; Will and Nordtvedt, 1972) has provided a unifying scheme for tests
of GR that has been in use for over 50 years.

1. Inspiral tests

In GW data analysis, a natural generalization of the PPN approach consists of verifying the
PN structure of the waveform phase (Arun et al., 2006b). The idea is to decompose the Fourier-
domain waveform model into a frequency-dependent amplitude and a frequency-dependent phase,
and to then rewrite the phase (schematically, and ignoring logarithmic terms) as  GR(f) =P7

n=0 ↵nv(f)�5+n. In GR the PN coefficients ↵n are known functions of the parameters of the bi-
nary (the individual masses m1 and m2 for non-spinning BH binaries of total mass m = m1+m2),
and v(f) = (⇡mf)1/3 is the orbital velocity. The idea is to treat all of these coefficients (or just a
subset; Arun et al. 2006a) as independent, and find their best-fit values by comparing the above
template waveform with the data. One can then check the consistency of the measured masses from
each of the above coefficients. This procedure resembles binary pulsar tests in the parameterized
post-Keplerian formalism (Damour and Taylor, 1992; Stairs, 2003), but it has some limitations.
There are known modified theories of gravity for which the Fourier phase does not have a leading-
order term / v�5: these include, for example, theories with dipole emission (/ v�7) and variability
of the fundamental constants like the gravitational constant G (/ v�13). Second, some modified
gravity theories may modify the GW amplitude more than the phase: one example is gravitational
birefringence (Alexander et al., 2008; Yagi and Yang, 2018; Yunes et al., 2010).

One proposal to address these problems is the so-called ppE approach (Yunes and Pretorius,
2009b). In this framework, one extends the GR waveform model as follows:

h̃(f) = ÃGR(f) [1 + ↵ppE v(f)a] ei GR(f)+i�ppE v(f)b . (13)

Here ÃGR(f) and  GR(f) represent the most accurate GR models for the Fourier amplitude and
phase. The quantities (↵ppE,�ppE) are ppE constants that control the magnitude of deviations from
GR, while (a, b) are real numbers that determine the type of deviation that is being constrained.
The ppE approach is similar in spirit to the parametric analysis performed by the LIGO/Virgo
collaboration (Abbott et al., 2019c, 2016b). Different variants and extensions of this idea have been
proposed (Chatziioannou et al., 2012; Cornish et al., 2011; Sampson et al., 2013, 2014). Constraints
on ppE parameters can be mapped to constraints on specific extensions of GR (Yunes and Siemens,
2013; Yunes et al., 2016). Astrophysical bounds on ppE parameters have also been derived using
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birefringence (Alexander et al., 2008; Yagi and Yang, 2018; Yunes et al., 2010).

One proposal to address these problems is the so-called ppE approach (Yunes and Pretorius,
2009b). In this framework, one extends the GR waveform model as follows:

h̃(f) = ÃGR(f) [1 + ↵ppE v(f)a] ei GR(f)+i�ppE v(f)b . (13)

Here ÃGR(f) and  GR(f) represent the most accurate GR models for the Fourier amplitude and
phase. The quantities (↵ppE,�ppE) are ppE constants that control the magnitude of deviations from
GR, while (a, b) are real numbers that determine the type of deviation that is being constrained.
The ppE approach is similar in spirit to the parametric analysis performed by the LIGO/Virgo
collaboration (Abbott et al., 2019c, 2016b). Different variants and extensions of this idea have been
proposed (Chatziioannou et al., 2012; Cornish et al., 2011; Sampson et al., 2013, 2014). Constraints
on ppE parameters can be mapped to constraints on specific extensions of GR (Yunes and Siemens,
2013; Yunes et al., 2016). Astrophysical bounds on ppE parameters have also been derived using
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intrinsic parameters to describe the phase evolution of the quadrupole and higher-order modes
and, as in the IMR consistency test described earlier, check to see if the parameters determined
from these modes are consistent with one another. Alternatively, one could introduce additional
parameters to describe the amplitude of the higher modes while keeping the amplitude of the
quadrupole mode as in GR. Such tests could reveal any modification from GR of the multipolar
structure of the binary that is imprinted in the GWs observed at detectors.

An advance that would be useful in this context is the development of a mapping between
such generic higher-mode deviations from GR and specific modified theories. Most studies of
the dynamics of binary systems outside of GR have been only done to leading PN order in the
inspiral. Going beyond leading order would be essential to find the higher-modes discussed above
as predicted in a given theory.

B. Parametrized Tests

We now discuss model-independent tests that introduce generic parameters capturing non-GR
effects independent of the underlying gravitational theory. We first present a generic framework,
followed by a few examples on how one can use such parameterized tests to probe specific non-GR
theories and BH spacetimes beyond Kerr.

Many modified gravity theories have been proposed over the years, and sufficiently accurate
gravitational waveform models are only available for a small subset of these theories, when their
calculation is even possible at all (Berti et al., 2015). Therefore it is appealing to develop generic
“null” tests of Einstein’s theory, following the approach pursued with Solar System tests, where the
parametrized PN (PPN) framework proposed by Will and Nordtvedt (Nordtvedt and Will, 1972;
Nordtvedt, 1968; Will, 1971; Will and Nordtvedt, 1972) has provided a unifying scheme for tests
of GR that has been in use for over 50 years.

1. Inspiral tests

In GW data analysis, a natural generalization of the PPN approach consists of verifying the
PN structure of the waveform phase (Arun et al., 2006b). The idea is to decompose the Fourier-
domain waveform model into a frequency-dependent amplitude and a frequency-dependent phase,
and to then rewrite the phase (schematically, and ignoring logarithmic terms) as  GR(f) =P7

n=0 ↵nv(f)�5+n. In GR the PN coefficients ↵n are known functions of the parameters of the bi-
nary (the individual masses m1 and m2 for non-spinning BH binaries of total mass m = m1+m2),
and v(f) = (⇡mf)1/3 is the orbital velocity. The idea is to treat all of these coefficients (or just a
subset; Arun et al. 2006a) as independent, and find their best-fit values by comparing the above
template waveform with the data. One can then check the consistency of the measured masses from
each of the above coefficients. This procedure resembles binary pulsar tests in the parameterized
post-Keplerian formalism (Damour and Taylor, 1992; Stairs, 2003), but it has some limitations.
There are known modified theories of gravity for which the Fourier phase does not have a leading-
order term / v�5: these include, for example, theories with dipole emission (/ v�7) and variability
of the fundamental constants like the gravitational constant G (/ v�13). Second, some modified
gravity theories may modify the GW amplitude more than the phase: one example is gravitational
birefringence (Alexander et al., 2008; Yagi and Yang, 2018; Yunes et al., 2010).

One proposal to address these problems is the so-called ppE approach (Yunes and Pretorius,
2009b). In this framework, one extends the GR waveform model as follows:

h̃(f) = ÃGR(f) [1 + ↵ppE v(f)a] ei GR(f)+i�ppE v(f)b . (13)

Here ÃGR(f) and  GR(f) represent the most accurate GR models for the Fourier amplitude and
phase. The quantities (↵ppE,�ppE) are ppE constants that control the magnitude of deviations from
GR, while (a, b) are real numbers that determine the type of deviation that is being constrained.
The ppE approach is similar in spirit to the parametric analysis performed by the LIGO/Virgo
collaboration (Abbott et al., 2019c, 2016b). Different variants and extensions of this idea have been
proposed (Chatziioannou et al., 2012; Cornish et al., 2011; Sampson et al., 2013, 2014). Constraints
on ppE parameters can be mapped to constraints on specific extensions of GR (Yunes and Siemens,
2013; Yunes et al., 2016). Astrophysical bounds on ppE parameters have also been derived using
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and write the phase as

Treat coefficients        as independent and find their best-fit values by comparing this template waveform with the data.
Check the consistency of the measured masses from each of these coefficients

Challenge: - Extend the mapping between generic deviations and specific theories
- Determine how to handle parametrically modifications of GR that do not admit simple PN expansion in inspiral

Note: Multiband observations of stellar-mass BBHs are important in constraining modified gravity via parametrised tests
Multibanding allows to combine information from early inspiral dynamics using LISA with late inspiral, merger and   
ringdown observations using 3rd generation ground-based detectors

51

intrinsic parameters to describe the phase evolution of the quadrupole and higher-order modes
and, as in the IMR consistency test described earlier, check to see if the parameters determined
from these modes are consistent with one another. Alternatively, one could introduce additional
parameters to describe the amplitude of the higher modes while keeping the amplitude of the
quadrupole mode as in GR. Such tests could reveal any modification from GR of the multipolar
structure of the binary that is imprinted in the GWs observed at detectors.

An advance that would be useful in this context is the development of a mapping between
such generic higher-mode deviations from GR and specific modified theories. Most studies of
the dynamics of binary systems outside of GR have been only done to leading PN order in the
inspiral. Going beyond leading order would be essential to find the higher-modes discussed above
as predicted in a given theory.

B. Parametrized Tests

We now discuss model-independent tests that introduce generic parameters capturing non-GR
effects independent of the underlying gravitational theory. We first present a generic framework,
followed by a few examples on how one can use such parameterized tests to probe specific non-GR
theories and BH spacetimes beyond Kerr.

Many modified gravity theories have been proposed over the years, and sufficiently accurate
gravitational waveform models are only available for a small subset of these theories, when their
calculation is even possible at all (Berti et al., 2015). Therefore it is appealing to develop generic
“null” tests of Einstein’s theory, following the approach pursued with Solar System tests, where the
parametrized PN (PPN) framework proposed by Will and Nordtvedt (Nordtvedt and Will, 1972;
Nordtvedt, 1968; Will, 1971; Will and Nordtvedt, 1972) has provided a unifying scheme for tests
of GR that has been in use for over 50 years.

1. Inspiral tests

In GW data analysis, a natural generalization of the PPN approach consists of verifying the
PN structure of the waveform phase (Arun et al., 2006b). The idea is to decompose the Fourier-
domain waveform model into a frequency-dependent amplitude and a frequency-dependent phase,
and to then rewrite the phase (schematically, and ignoring logarithmic terms) as  GR(f) =P7

n=0 ↵nv(f)�5+n. In GR the PN coefficients ↵n are known functions of the parameters of the bi-
nary (the individual masses m1 and m2 for non-spinning BH binaries of total mass m = m1+m2),
and v(f) = (⇡mf)1/3 is the orbital velocity. The idea is to treat all of these coefficients (or just a
subset; Arun et al. 2006a) as independent, and find their best-fit values by comparing the above
template waveform with the data. One can then check the consistency of the measured masses from
each of the above coefficients. This procedure resembles binary pulsar tests in the parameterized
post-Keplerian formalism (Damour and Taylor, 1992; Stairs, 2003), but it has some limitations.
There are known modified theories of gravity for which the Fourier phase does not have a leading-
order term / v�5: these include, for example, theories with dipole emission (/ v�7) and variability
of the fundamental constants like the gravitational constant G (/ v�13). Second, some modified
gravity theories may modify the GW amplitude more than the phase: one example is gravitational
birefringence (Alexander et al., 2008; Yagi and Yang, 2018; Yunes et al., 2010).

One proposal to address these problems is the so-called ppE approach (Yunes and Pretorius,
2009b). In this framework, one extends the GR waveform model as follows:

h̃(f) = ÃGR(f) [1 + ↵ppE v(f)a] ei GR(f)+i�ppE v(f)b . (13)

Here ÃGR(f) and  GR(f) represent the most accurate GR models for the Fourier amplitude and
phase. The quantities (↵ppE,�ppE) are ppE constants that control the magnitude of deviations from
GR, while (a, b) are real numbers that determine the type of deviation that is being constrained.
The ppE approach is similar in spirit to the parametric analysis performed by the LIGO/Virgo
collaboration (Abbott et al., 2019c, 2016b). Different variants and extensions of this idea have been
proposed (Chatziioannou et al., 2012; Cornish et al., 2011; Sampson et al., 2013, 2014). Constraints
on ppE parameters can be mapped to constraints on specific extensions of GR (Yunes and Siemens,
2013; Yunes et al., 2016). Astrophysical bounds on ppE parameters have also been derived using
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intrinsic parameters to describe the phase evolution of the quadrupole and higher-order modes
and, as in the IMR consistency test described earlier, check to see if the parameters determined
from these modes are consistent with one another. Alternatively, one could introduce additional
parameters to describe the amplitude of the higher modes while keeping the amplitude of the
quadrupole mode as in GR. Such tests could reveal any modification from GR of the multipolar
structure of the binary that is imprinted in the GWs observed at detectors.

An advance that would be useful in this context is the development of a mapping between
such generic higher-mode deviations from GR and specific modified theories. Most studies of
the dynamics of binary systems outside of GR have been only done to leading PN order in the
inspiral. Going beyond leading order would be essential to find the higher-modes discussed above
as predicted in a given theory.

B. Parametrized Tests

We now discuss model-independent tests that introduce generic parameters capturing non-GR
effects independent of the underlying gravitational theory. We first present a generic framework,
followed by a few examples on how one can use such parameterized tests to probe specific non-GR
theories and BH spacetimes beyond Kerr.

Many modified gravity theories have been proposed over the years, and sufficiently accurate
gravitational waveform models are only available for a small subset of these theories, when their
calculation is even possible at all (Berti et al., 2015). Therefore it is appealing to develop generic
“null” tests of Einstein’s theory, following the approach pursued with Solar System tests, where the
parametrized PN (PPN) framework proposed by Will and Nordtvedt (Nordtvedt and Will, 1972;
Nordtvedt, 1968; Will, 1971; Will and Nordtvedt, 1972) has provided a unifying scheme for tests
of GR that has been in use for over 50 years.

1. Inspiral tests

In GW data analysis, a natural generalization of the PPN approach consists of verifying the
PN structure of the waveform phase (Arun et al., 2006b). The idea is to decompose the Fourier-
domain waveform model into a frequency-dependent amplitude and a frequency-dependent phase,
and to then rewrite the phase (schematically, and ignoring logarithmic terms) as  GR(f) =P7

n=0 ↵nv(f)�5+n. In GR the PN coefficients ↵n are known functions of the parameters of the bi-
nary (the individual masses m1 and m2 for non-spinning BH binaries of total mass m = m1+m2),
and v(f) = (⇡mf)1/3 is the orbital velocity. The idea is to treat all of these coefficients (or just a
subset; Arun et al. 2006a) as independent, and find their best-fit values by comparing the above
template waveform with the data. One can then check the consistency of the measured masses from
each of the above coefficients. This procedure resembles binary pulsar tests in the parameterized
post-Keplerian formalism (Damour and Taylor, 1992; Stairs, 2003), but it has some limitations.
There are known modified theories of gravity for which the Fourier phase does not have a leading-
order term / v�5: these include, for example, theories with dipole emission (/ v�7) and variability
of the fundamental constants like the gravitational constant G (/ v�13). Second, some modified
gravity theories may modify the GW amplitude more than the phase: one example is gravitational
birefringence (Alexander et al., 2008; Yagi and Yang, 2018; Yunes et al., 2010).

One proposal to address these problems is the so-called ppE approach (Yunes and Pretorius,
2009b). In this framework, one extends the GR waveform model as follows:

h̃(f) = ÃGR(f) [1 + ↵ppE v(f)a] ei GR(f)+i�ppE v(f)b . (13)

Here ÃGR(f) and  GR(f) represent the most accurate GR models for the Fourier amplitude and
phase. The quantities (↵ppE,�ppE) are ppE constants that control the magnitude of deviations from
GR, while (a, b) are real numbers that determine the type of deviation that is being constrained.
The ppE approach is similar in spirit to the parametric analysis performed by the LIGO/Virgo
collaboration (Abbott et al., 2019c, 2016b). Different variants and extensions of this idea have been
proposed (Chatziioannou et al., 2012; Cornish et al., 2011; Sampson et al., 2013, 2014). Constraints
on ppE parameters can be mapped to constraints on specific extensions of GR (Yunes and Siemens,
2013; Yunes et al., 2016). Astrophysical bounds on ppE parameters have also been derived using
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intrinsic parameters to describe the phase evolution of the quadrupole and higher-order modes
and, as in the IMR consistency test described earlier, check to see if the parameters determined
from these modes are consistent with one another. Alternatively, one could introduce additional
parameters to describe the amplitude of the higher modes while keeping the amplitude of the
quadrupole mode as in GR. Such tests could reveal any modification from GR of the multipolar
structure of the binary that is imprinted in the GWs observed at detectors.

An advance that would be useful in this context is the development of a mapping between
such generic higher-mode deviations from GR and specific modified theories. Most studies of
the dynamics of binary systems outside of GR have been only done to leading PN order in the
inspiral. Going beyond leading order would be essential to find the higher-modes discussed above
as predicted in a given theory.

B. Parametrized Tests

We now discuss model-independent tests that introduce generic parameters capturing non-GR
effects independent of the underlying gravitational theory. We first present a generic framework,
followed by a few examples on how one can use such parameterized tests to probe specific non-GR
theories and BH spacetimes beyond Kerr.

Many modified gravity theories have been proposed over the years, and sufficiently accurate
gravitational waveform models are only available for a small subset of these theories, when their
calculation is even possible at all (Berti et al., 2015). Therefore it is appealing to develop generic
“null” tests of Einstein’s theory, following the approach pursued with Solar System tests, where the
parametrized PN (PPN) framework proposed by Will and Nordtvedt (Nordtvedt and Will, 1972;
Nordtvedt, 1968; Will, 1971; Will and Nordtvedt, 1972) has provided a unifying scheme for tests
of GR that has been in use for over 50 years.

1. Inspiral tests

In GW data analysis, a natural generalization of the PPN approach consists of verifying the
PN structure of the waveform phase (Arun et al., 2006b). The idea is to decompose the Fourier-
domain waveform model into a frequency-dependent amplitude and a frequency-dependent phase,
and to then rewrite the phase (schematically, and ignoring logarithmic terms) as  GR(f) =P7

n=0 ↵nv(f)�5+n. In GR the PN coefficients ↵n are known functions of the parameters of the bi-
nary (the individual masses m1 and m2 for non-spinning BH binaries of total mass m = m1+m2),
and v(f) = (⇡mf)1/3 is the orbital velocity. The idea is to treat all of these coefficients (or just a
subset; Arun et al. 2006a) as independent, and find their best-fit values by comparing the above
template waveform with the data. One can then check the consistency of the measured masses from
each of the above coefficients. This procedure resembles binary pulsar tests in the parameterized
post-Keplerian formalism (Damour and Taylor, 1992; Stairs, 2003), but it has some limitations.
There are known modified theories of gravity for which the Fourier phase does not have a leading-
order term / v�5: these include, for example, theories with dipole emission (/ v�7) and variability
of the fundamental constants like the gravitational constant G (/ v�13). Second, some modified
gravity theories may modify the GW amplitude more than the phase: one example is gravitational
birefringence (Alexander et al., 2008; Yagi and Yang, 2018; Yunes et al., 2010).

One proposal to address these problems is the so-called ppE approach (Yunes and Pretorius,
2009b). In this framework, one extends the GR waveform model as follows:

h̃(f) = ÃGR(f) [1 + ↵ppE v(f)a] ei GR(f)+i�ppE v(f)b . (13)

Here ÃGR(f) and  GR(f) represent the most accurate GR models for the Fourier amplitude and
phase. The quantities (↵ppE,�ppE) are ppE constants that control the magnitude of deviations from
GR, while (a, b) are real numbers that determine the type of deviation that is being constrained.
The ppE approach is similar in spirit to the parametric analysis performed by the LIGO/Virgo
collaboration (Abbott et al., 2019c, 2016b). Different variants and extensions of this idea have been
proposed (Chatziioannou et al., 2012; Cornish et al., 2011; Sampson et al., 2013, 2014). Constraints
on ppE parameters can be mapped to constraints on specific extensions of GR (Yunes and Siemens,
2013; Yunes et al., 2016). Astrophysical bounds on ppE parameters have also been derived using

o Ringdown tests
Attempt to construct parametrised ringdown waveforms based on perturbative treatments of the ringdown in GR
Challenge: - Modelling of rotating BHs beyond GR (NR and GW observations indicate that spin of merger remnant is large) 

- Calculation of beyond-GR QNMs (separability of master eqs for perturbations in GR is absent in modified theories        
QNMs from numerical simulations. or, parametrise deviations in QNM frequencies and damping times
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intrinsic parameters to describe the phase evolution of the quadrupole and higher-order modes
and, as in the IMR consistency test described earlier, check to see if the parameters determined
from these modes are consistent with one another. Alternatively, one could introduce additional
parameters to describe the amplitude of the higher modes while keeping the amplitude of the
quadrupole mode as in GR. Such tests could reveal any modification from GR of the multipolar
structure of the binary that is imprinted in the GWs observed at detectors.

An advance that would be useful in this context is the development of a mapping between
such generic higher-mode deviations from GR and specific modified theories. Most studies of
the dynamics of binary systems outside of GR have been only done to leading PN order in the
inspiral. Going beyond leading order would be essential to find the higher-modes discussed above
as predicted in a given theory.

B. Parametrized Tests

We now discuss model-independent tests that introduce generic parameters capturing non-GR
effects independent of the underlying gravitational theory. We first present a generic framework,
followed by a few examples on how one can use such parameterized tests to probe specific non-GR
theories and BH spacetimes beyond Kerr.

Many modified gravity theories have been proposed over the years, and sufficiently accurate
gravitational waveform models are only available for a small subset of these theories, when their
calculation is even possible at all (Berti et al., 2015). Therefore it is appealing to develop generic
“null” tests of Einstein’s theory, following the approach pursued with Solar System tests, where the
parametrized PN (PPN) framework proposed by Will and Nordtvedt (Nordtvedt and Will, 1972;
Nordtvedt, 1968; Will, 1971; Will and Nordtvedt, 1972) has provided a unifying scheme for tests
of GR that has been in use for over 50 years.

1. Inspiral tests

In GW data analysis, a natural generalization of the PPN approach consists of verifying the
PN structure of the waveform phase (Arun et al., 2006b). The idea is to decompose the Fourier-
domain waveform model into a frequency-dependent amplitude and a frequency-dependent phase,
and to then rewrite the phase (schematically, and ignoring logarithmic terms) as  GR(f) =P7

n=0 ↵nv(f)�5+n. In GR the PN coefficients ↵n are known functions of the parameters of the bi-
nary (the individual masses m1 and m2 for non-spinning BH binaries of total mass m = m1+m2),
and v(f) = (⇡mf)1/3 is the orbital velocity. The idea is to treat all of these coefficients (or just a
subset; Arun et al. 2006a) as independent, and find their best-fit values by comparing the above
template waveform with the data. One can then check the consistency of the measured masses from
each of the above coefficients. This procedure resembles binary pulsar tests in the parameterized
post-Keplerian formalism (Damour and Taylor, 1992; Stairs, 2003), but it has some limitations.
There are known modified theories of gravity for which the Fourier phase does not have a leading-
order term / v�5: these include, for example, theories with dipole emission (/ v�7) and variability
of the fundamental constants like the gravitational constant G (/ v�13). Second, some modified
gravity theories may modify the GW amplitude more than the phase: one example is gravitational
birefringence (Alexander et al., 2008; Yagi and Yang, 2018; Yunes et al., 2010).

One proposal to address these problems is the so-called ppE approach (Yunes and Pretorius,
2009b). In this framework, one extends the GR waveform model as follows:

h̃(f) = ÃGR(f) [1 + ↵ppE v(f)a] ei GR(f)+i�ppE v(f)b . (13)

Here ÃGR(f) and  GR(f) represent the most accurate GR models for the Fourier amplitude and
phase. The quantities (↵ppE,�ppE) are ppE constants that control the magnitude of deviations from
GR, while (a, b) are real numbers that determine the type of deviation that is being constrained.
The ppE approach is similar in spirit to the parametric analysis performed by the LIGO/Virgo
collaboration (Abbott et al., 2019c, 2016b). Different variants and extensions of this idea have been
proposed (Chatziioannou et al., 2012; Cornish et al., 2011; Sampson et al., 2013, 2014). Constraints
on ppE parameters can be mapped to constraints on specific extensions of GR (Yunes and Siemens,
2013; Yunes et al., 2016). Astrophysical bounds on ppE parameters have also been derived using
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FIG. 4. 90% upper bounds on the absolute magnitude of the GR-
violating parameters �'̂n, from �1PN through 3.5PN in the inspiral
phase. At each PN order, we show results obtained from each of
the events listed in Table I that cross the SNR threshold in the inspi-
ral regime, analyzed with IMRPhenomPv2. Bounds obtained from
combining posteriors of events detected with a significance that ex-
ceeds a threshold of FAR < (1000 yr)�1 in both modelled searches
are shown for both analyses, using IMRPhenomPv2 (filled diamonds)
and SEOBNRv4 (empty diamonds).

across all events considered. This assumption should not be
made when testing a specific theory that predicts violations
that depend on the binary’s parameters. Posterior distribu-
tions of � p̂i for the individual-event analysis, also showing full
consistency with GR, are provided in Sec. 3 of the Appendix.

Figure 4 shows the 90% upper bounds on |�'̂i| for all the
individual events which cross the SNR threshold (SNR > 6) in
the inspiral regime (the most massive of which is GW150914).
The bounds from the combined posteriors are also shown;
these include the events which exceed both the SNR thresh-
old in the inspiral regime as well as the significance threshold,
namely GW150914, GW151226, GW170104, GW170608, and
GW170814. The bound from the likely lightest mass binary
black hole event GW170608 at 1.5PN is currently the strongest
constraint obtained on a positive PN coe�cient from a single
binary black hole event, as shown in Fig. 4. However, the con-
straint at this order is about five times worse than that obtained
from the binary neutron star event GW170817 alone [8]. The
�1PN bound is two orders of magnitude better for GW170817
than the best bound obtained from GW170608. For all other
PN orders, GW170608 also provides the best bounds, which at
high PN orders are of the same order of magnitude as the ones
from GW170817. Our results can be compared statistically to
those obtained by performing the same tests on simulated GR
and non-GR waveforms given in [93]. The results presented
here are consistent with those of GR waveforms injected into

realistic detector data. The combined bounds are the tightest
obtained so far, improving on the bounds obtained in [5] by
factors between 1.1 and 1.8.

VII. PARAMETERIZED TESTS OF GRAVITATIONAL
WAVE PROPAGATION

We now place constraints on a phenomenological modifi-
cation of the GW dispersion relation, i.e., on a possible fre-
quency dependence of the speed of GWs. This modification,
introduced in [100] and first applied to LIGO data in [6], is
obtained by adding a power-law term in the momentum to the
dispersion relation E2 = p2c2 of GWs in GR, giving

E2 = p2c2 + A↵p↵c↵. (2)

Here, c is the speed of light, E and p are the energy and
momentum of the GWs, and A↵ and ↵ are phenomenological
parameters. We consider ↵ values from 0 to 4 in steps of 0.5.
However, we exclude ↵ = 2, where the speed of the GWs is
modified in a frequency-independent manner, and therefore
gives no observable dephasing.12 Thus, in all cases except
for ↵ = 0, we are considering a Lorentz-violating dispersion
relation. The group velocity associated with this dispersion
relation is vg/c = (dE/dp)/c = 1 + (↵ � 1)A↵E↵�2/2 + O(A2

↵).
The associated length scale is �A B hc|A↵|1/(↵�2), where h
is Planck’s constant. �A gives the scale of modifications to
the Newtonian potential (the Yukawa potential for ↵ = 0)
associated with this dispersion relation.

While Eq. (2) is a purely phenomenological model, it en-
compasses a variety of more fundamental predictions (at least
to leading order) [94, 100]. In particular, A0 > 0 corre-
sponds to a massive graviton, i.e., the same dispersion as
for a massive particle in vacuo [102], with a graviton mass
given by mg = A1/2

0 /c
2.13 Furthermore, ↵ values of 2.5, 3,

and 4 correspond to the leading predictions of multi-fractal
spacetime [103]; doubly special relativity [104]; and Hořava-
Lifshitz [105] and extra dimensional [106] theories, respec-
tively. The standard model extension also gives a leading contri-
bution with ↵ = 4 [107], only considering the non-birefringent
terms; our analysis does not allow for birefringence.

In order to obtain a waveform model with which to con-
strain these propagation e↵ects, we start by assuming that
the waveform extracted in the binary’s local wave zone (i.e.,
near to the binary compared to the distance from the binary
to Earth, but far from the binary compared to its own size) is
well-described by a waveform in GR.14 Since we are able to

12 For a source with an electromagnetic counterpart, A2 can be constrained
by comparison with the arrival time of the photons, as was done with
GW170817/GRB170817A [101].

13 Thus, the Yukawa screening length is �0 = h/(mgc).
14 This is likely to be a good assumption for ↵ < 2, where we constrain �A to

be much larger than the size of the binary. For ↵ > 2, where we constrain �A
to be much smaller than the size of the binary, one has to posit a screening
mechanism in order to be able to assume that the waveform in the binary’s
local wave zone is well-described by GR, as well as for this model to evade
Solar System constraints.
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hĈ(⌫)iTVS = �T(⌫)⌦
T

ref

✓
⌫

⌫ref

◆↵T

+ �V(⌫)⌦
V

ref

✓
⌫

⌫ref

◆↵V

+ �S(⌫)⌦
S

ref

✓
⌫

⌫ref

◆↵S

(27)

�A(⌫) ⌘
�A(⌫)

�T(⌫)
, A = {T,V, S} (28)

v/c (29)

��̂i (30)

h̃(⌫) = A(⌫)e
i�(⌫)

(31)

α = 0,0.5,1,1.5,2.5,3,3.5,4

multi-fractal ST

doubly special
relativity

Horava-Lifshitz
& extra dim

10

FIG. 4. 90% upper bounds on the absolute magnitude of the GR-
violating parameters �'̂n, from �1PN through 3.5PN in the inspiral
phase. At each PN order, we show results obtained from each of
the events listed in Table I that cross the SNR threshold in the inspi-
ral regime, analyzed with IMRPhenomPv2. Bounds obtained from
combining posteriors of events detected with a significance that ex-
ceeds a threshold of FAR < (1000 yr)�1 in both modelled searches
are shown for both analyses, using IMRPhenomPv2 (filled diamonds)
and SEOBNRv4 (empty diamonds).

across all events considered. This assumption should not be
made when testing a specific theory that predicts violations
that depend on the binary’s parameters. Posterior distribu-
tions of � p̂i for the individual-event analysis, also showing full
consistency with GR, are provided in Sec. 3 of the Appendix.

Figure 4 shows the 90% upper bounds on |�'̂i| for all the
individual events which cross the SNR threshold (SNR > 6) in
the inspiral regime (the most massive of which is GW150914).
The bounds from the combined posteriors are also shown;
these include the events which exceed both the SNR thresh-
old in the inspiral regime as well as the significance threshold,
namely GW150914, GW151226, GW170104, GW170608, and
GW170814. The bound from the likely lightest mass binary
black hole event GW170608 at 1.5PN is currently the strongest
constraint obtained on a positive PN coe�cient from a single
binary black hole event, as shown in Fig. 4. However, the con-
straint at this order is about five times worse than that obtained
from the binary neutron star event GW170817 alone [8]. The
�1PN bound is two orders of magnitude better for GW170817
than the best bound obtained from GW170608. For all other
PN orders, GW170608 also provides the best bounds, which at
high PN orders are of the same order of magnitude as the ones
from GW170817. Our results can be compared statistically to
those obtained by performing the same tests on simulated GR
and non-GR waveforms given in [93]. The results presented
here are consistent with those of GR waveforms injected into

realistic detector data. The combined bounds are the tightest
obtained so far, improving on the bounds obtained in [5] by
factors between 1.1 and 1.8.

VII. PARAMETERIZED TESTS OF GRAVITATIONAL
WAVE PROPAGATION

We now place constraints on a phenomenological modifi-
cation of the GW dispersion relation, i.e., on a possible fre-
quency dependence of the speed of GWs. This modification,
introduced in [100] and first applied to LIGO data in [6], is
obtained by adding a power-law term in the momentum to the
dispersion relation E2 = p2c2 of GWs in GR, giving

E2 = p2c2 + A↵p↵c↵. (2)

Here, c is the speed of light, E and p are the energy and
momentum of the GWs, and A↵ and ↵ are phenomenological
parameters. We consider ↵ values from 0 to 4 in steps of 0.5.
However, we exclude ↵ = 2, where the speed of the GWs is
modified in a frequency-independent manner, and therefore
gives no observable dephasing.12 Thus, in all cases except
for ↵ = 0, we are considering a Lorentz-violating dispersion
relation. The group velocity associated with this dispersion
relation is vg/c = (dE/dp)/c = 1 + (↵ � 1)A↵E↵�2/2 + O(A2

↵).
The associated length scale is �A B hc|A↵|1/(↵�2), where h
is Planck’s constant. �A gives the scale of modifications to
the Newtonian potential (the Yukawa potential for ↵ = 0)
associated with this dispersion relation.

While Eq. (2) is a purely phenomenological model, it en-
compasses a variety of more fundamental predictions (at least
to leading order) [94, 100]. In particular, A0 > 0 corre-
sponds to a massive graviton, i.e., the same dispersion as
for a massive particle in vacuo [102], with a graviton mass
given by mg = A1/2

0 /c
2.13 Furthermore, ↵ values of 2.5, 3,

and 4 correspond to the leading predictions of multi-fractal
spacetime [103]; doubly special relativity [104]; and Hořava-
Lifshitz [105] and extra dimensional [106] theories, respec-
tively. The standard model extension also gives a leading contri-
bution with ↵ = 4 [107], only considering the non-birefringent
terms; our analysis does not allow for birefringence.

In order to obtain a waveform model with which to con-
strain these propagation e↵ects, we start by assuming that
the waveform extracted in the binary’s local wave zone (i.e.,
near to the binary compared to the distance from the binary
to Earth, but far from the binary compared to its own size) is
well-described by a waveform in GR.14 Since we are able to

12 For a source with an electromagnetic counterpart, A2 can be constrained
by comparison with the arrival time of the photons, as was done with
GW170817/GRB170817A [101].

13 Thus, the Yukawa screening length is �0 = h/(mgc).
14 This is likely to be a good assumption for ↵ < 2, where we constrain �A to

be much larger than the size of the binary. For ↵ > 2, where we constrain �A
to be much smaller than the size of the binary, one has to posit a screening
mechanism in order to be able to assume that the waveform in the binary’s
local wave zone is well-described by GR, as well as for this model to evade
Solar System constraints.

massive gravity
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FIG. 4. 90% upper bounds on the absolute magnitude of the GR-
violating parameters �'̂n, from �1PN through 3.5PN in the inspiral
phase. At each PN order, we show results obtained from each of
the events listed in Table I that cross the SNR threshold in the inspi-
ral regime, analyzed with IMRPhenomPv2. Bounds obtained from
combining posteriors of events detected with a significance that ex-
ceeds a threshold of FAR < (1000 yr)�1 in both modelled searches
are shown for both analyses, using IMRPhenomPv2 (filled diamonds)
and SEOBNRv4 (empty diamonds).

across all events considered. This assumption should not be
made when testing a specific theory that predicts violations
that depend on the binary’s parameters. Posterior distribu-
tions of � p̂i for the individual-event analysis, also showing full
consistency with GR, are provided in Sec. 3 of the Appendix.

Figure 4 shows the 90% upper bounds on |�'̂i| for all the
individual events which cross the SNR threshold (SNR > 6) in
the inspiral regime (the most massive of which is GW150914).
The bounds from the combined posteriors are also shown;
these include the events which exceed both the SNR thresh-
old in the inspiral regime as well as the significance threshold,
namely GW150914, GW151226, GW170104, GW170608, and
GW170814. The bound from the likely lightest mass binary
black hole event GW170608 at 1.5PN is currently the strongest
constraint obtained on a positive PN coe�cient from a single
binary black hole event, as shown in Fig. 4. However, the con-
straint at this order is about five times worse than that obtained
from the binary neutron star event GW170817 alone [8]. The
�1PN bound is two orders of magnitude better for GW170817
than the best bound obtained from GW170608. For all other
PN orders, GW170608 also provides the best bounds, which at
high PN orders are of the same order of magnitude as the ones
from GW170817. Our results can be compared statistically to
those obtained by performing the same tests on simulated GR
and non-GR waveforms given in [93]. The results presented
here are consistent with those of GR waveforms injected into

realistic detector data. The combined bounds are the tightest
obtained so far, improving on the bounds obtained in [5] by
factors between 1.1 and 1.8.

VII. PARAMETERIZED TESTS OF GRAVITATIONAL
WAVE PROPAGATION

We now place constraints on a phenomenological modifi-
cation of the GW dispersion relation, i.e., on a possible fre-
quency dependence of the speed of GWs. This modification,
introduced in [100] and first applied to LIGO data in [6], is
obtained by adding a power-law term in the momentum to the
dispersion relation E2 = p2c2 of GWs in GR, giving

E2 = p2c2 + A↵p↵c↵. (2)

Here, c is the speed of light, E and p are the energy and
momentum of the GWs, and A↵ and ↵ are phenomenological
parameters. We consider ↵ values from 0 to 4 in steps of 0.5.
However, we exclude ↵ = 2, where the speed of the GWs is
modified in a frequency-independent manner, and therefore
gives no observable dephasing.12 Thus, in all cases except
for ↵ = 0, we are considering a Lorentz-violating dispersion
relation. The group velocity associated with this dispersion
relation is vg/c = (dE/dp)/c = 1 + (↵ � 1)A↵E↵�2/2 + O(A2

↵).
The associated length scale is �A B hc|A↵|1/(↵�2), where h
is Planck’s constant. �A gives the scale of modifications to
the Newtonian potential (the Yukawa potential for ↵ = 0)
associated with this dispersion relation.

While Eq. (2) is a purely phenomenological model, it en-
compasses a variety of more fundamental predictions (at least
to leading order) [94, 100]. In particular, A0 > 0 corre-
sponds to a massive graviton, i.e., the same dispersion as
for a massive particle in vacuo [102], with a graviton mass
given by mg = A1/2

0 /c
2.13 Furthermore, ↵ values of 2.5, 3,

and 4 correspond to the leading predictions of multi-fractal
spacetime [103]; doubly special relativity [104]; and Hořava-
Lifshitz [105] and extra dimensional [106] theories, respec-
tively. The standard model extension also gives a leading contri-
bution with ↵ = 4 [107], only considering the non-birefringent
terms; our analysis does not allow for birefringence.

In order to obtain a waveform model with which to con-
strain these propagation e↵ects, we start by assuming that
the waveform extracted in the binary’s local wave zone (i.e.,
near to the binary compared to the distance from the binary
to Earth, but far from the binary compared to its own size) is
well-described by a waveform in GR.14 Since we are able to

12 For a source with an electromagnetic counterpart, A2 can be constrained
by comparison with the arrival time of the photons, as was done with
GW170817/GRB170817A [101].

13 Thus, the Yukawa screening length is �0 = h/(mgc).
14 This is likely to be a good assumption for ↵ < 2, where we constrain �A to

be much larger than the size of the binary. For ↵ > 2, where we constrain �A
to be much smaller than the size of the binary, one has to posit a screening
mechanism in order to be able to assume that the waveform in the binary’s
local wave zone is well-described by GR, as well as for this model to evade
Solar System constraints.
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bound these propagation e↵ects to be very small, we can work
to linear order in A↵ when computing the e↵ects of this disper-
sion on the frequency-domain GW phasing,15 thus obtaining a
correction [100] that is added to �( f ) in Eq. (1):

��↵( f ) = sign(A↵)

8>>>>>>><
>>>>>>>:

⇡DL

↵ � 1
�↵�2

A,e↵

 
f
c

!↵�1

, ↵ , 1

⇡DL

�A,e↵
ln

 
⇡GMdet f

c3

!
, ↵ = 1

. (3)

Here, DL is the binary’s luminosity distance, Mdet is the bi-
nary’s detector-frame (i.e., redshifted) chirp mass, and �A,e↵
is the e↵ective wavelength parameter used in the sampling,
defined as

�A,e↵ B
"
(1 + z)1�↵DL

D↵

#1/(↵�2)

�A . (4)

The parameter z is the binary’s redshift, and D↵ is a distance
parameter given by

D↵ =
(1 + z)1�↵

H0

Z z

0

(1 + z̄)↵�2
p
⌦m(1 + z̄)3 +⌦⇤

dz̄ , (5)

where H0 = 67.90 km s�1 Mpc�1 is the Hubble constant, and
⌦m = 0.3065 and ⌦⇤ = 0.6935 are the matter and dark energy
density parameters; these are the TT+lowP+lensing+ext values
from [108].16

The dephasing in Eq. (3) is obtained by treating the gravita-
tional wave as a stream of particles (gravitons), which travel
at the particle velocity vp/c = pc/E = 1 � A↵E↵�2/2 + O(A2

↵).
There are suggestions to use the particle velocity when consid-
ering doubly special relativity, though there are also sugges-
tions to use the group velocity vg in that case (see, e.g., [110]
and references therein for both arguments). However, the group
velocity is appropriate for, e.g., multi-fractal spacetime theo-
ries (see, e.g., [111]). To convert the bounds presented here to
the case where the particles travel at the group velocity, scale
the A↵ bounds for ↵ , 1 by factors of 1/(1 � ↵). The group
velocity calculation gives an unobservable constant phase shift
for ↵ = 1.

We consider the cases of positive and negative A↵ separately,
and obtain the results shown in Table IV and Fig. 5 when
applying this analysis to the GW events under consideration.
While we sample with a flat prior in log �A,e↵, our bounds are
given using priors flat in A↵ for all results except for the mass of
the graviton, where we use a prior flat in the graviton mass. We
also show the results from combining together all the signals

15 The dimensionless parameter controlling the size of the linear correction
is A↵ f ↵�2, which is . 10�18 at the 90% credible level for the events we
consider and frequencies up to 1 kHz.

16 We use these values for consistency with the results presented in [14].
If we instead use the more recent results from [109], specifically the
TT,TE,EE+lowE+lensing+BAO values used for comparison in [14], then
there are very minor changes to the results presented in this section. For
instance, the upper bounds in Table IV change by at most ⇠ 0.1%.

FIG. 5. 90% credible upper bounds on the absolute value of the modi-
fied dispersion relation parameter A↵. We show results for positive
and negative values of A↵ separately. Specifically, we give the up-
dated versions of the results from combining together GW150914,
GW151226, and GW170104 (first given in [6]), as well as the re-
sults from combining together all the events meeting our significance
threshold for combined results (see Table I). Picoelectronvolts (peV)
provide a convenient scale, because 1 peV ' h ⇥ 250 Hz, where
250 Hz is roughly around the most sensitive frequencies of the LIGO
and Virgo instruments.

FIG. 6. Violin plots of the full posteriors on the modified dispersion
relation parameter A↵ calculated from the combined events, with the
90% credible interval around the median indicated.

that satisfy our selection criterion. We are able to combine
together the results from di↵erent signals with no ambiguity,
since the known distance dependence is accounted for in the
waveforms.

Figure 6 displays the full A↵ posteriors obtained by combin-
ing all selected events (using IMRPhenomPv2 waveforms). To
obtain the full A↵ posteriors, we combine together the positive
and negative A↵ results for individual events by weighting by
their Bayesian evidences; we then combine the posteriors from
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most recent Solar System bound
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FIG. 4. 90% upper bounds on the absolute magnitude of the GR-
violating parameters �'̂n, from �1PN through 3.5PN in the inspiral
phase. At each PN order, we show results obtained from each of
the events listed in Table I that cross the SNR threshold in the inspi-
ral regime, analyzed with IMRPhenomPv2. Bounds obtained from
combining posteriors of events detected with a significance that ex-
ceeds a threshold of FAR < (1000 yr)�1 in both modelled searches
are shown for both analyses, using IMRPhenomPv2 (filled diamonds)
and SEOBNRv4 (empty diamonds).

across all events considered. This assumption should not be
made when testing a specific theory that predicts violations
that depend on the binary’s parameters. Posterior distribu-
tions of � p̂i for the individual-event analysis, also showing full
consistency with GR, are provided in Sec. 3 of the Appendix.

Figure 4 shows the 90% upper bounds on |�'̂i| for all the
individual events which cross the SNR threshold (SNR > 6) in
the inspiral regime (the most massive of which is GW150914).
The bounds from the combined posteriors are also shown;
these include the events which exceed both the SNR thresh-
old in the inspiral regime as well as the significance threshold,
namely GW150914, GW151226, GW170104, GW170608, and
GW170814. The bound from the likely lightest mass binary
black hole event GW170608 at 1.5PN is currently the strongest
constraint obtained on a positive PN coe�cient from a single
binary black hole event, as shown in Fig. 4. However, the con-
straint at this order is about five times worse than that obtained
from the binary neutron star event GW170817 alone [8]. The
�1PN bound is two orders of magnitude better for GW170817
than the best bound obtained from GW170608. For all other
PN orders, GW170608 also provides the best bounds, which at
high PN orders are of the same order of magnitude as the ones
from GW170817. Our results can be compared statistically to
those obtained by performing the same tests on simulated GR
and non-GR waveforms given in [93]. The results presented
here are consistent with those of GR waveforms injected into

realistic detector data. The combined bounds are the tightest
obtained so far, improving on the bounds obtained in [5] by
factors between 1.1 and 1.8.

VII. PARAMETERIZED TESTS OF GRAVITATIONAL
WAVE PROPAGATION

We now place constraints on a phenomenological modifi-
cation of the GW dispersion relation, i.e., on a possible fre-
quency dependence of the speed of GWs. This modification,
introduced in [100] and first applied to LIGO data in [6], is
obtained by adding a power-law term in the momentum to the
dispersion relation E2 = p2c2 of GWs in GR, giving

E2 = p2c2 + A↵p↵c↵. (2)

Here, c is the speed of light, E and p are the energy and
momentum of the GWs, and A↵ and ↵ are phenomenological
parameters. We consider ↵ values from 0 to 4 in steps of 0.5.
However, we exclude ↵ = 2, where the speed of the GWs is
modified in a frequency-independent manner, and therefore
gives no observable dephasing.12 Thus, in all cases except
for ↵ = 0, we are considering a Lorentz-violating dispersion
relation. The group velocity associated with this dispersion
relation is vg/c = (dE/dp)/c = 1 + (↵ � 1)A↵E↵�2/2 + O(A2

↵).
The associated length scale is �A B hc|A↵|1/(↵�2), where h
is Planck’s constant. �A gives the scale of modifications to
the Newtonian potential (the Yukawa potential for ↵ = 0)
associated with this dispersion relation.

While Eq. (2) is a purely phenomenological model, it en-
compasses a variety of more fundamental predictions (at least
to leading order) [94, 100]. In particular, A0 > 0 corre-
sponds to a massive graviton, i.e., the same dispersion as
for a massive particle in vacuo [102], with a graviton mass
given by mg = A1/2

0 /c
2.13 Furthermore, ↵ values of 2.5, 3,

and 4 correspond to the leading predictions of multi-fractal
spacetime [103]; doubly special relativity [104]; and Hořava-
Lifshitz [105] and extra dimensional [106] theories, respec-
tively. The standard model extension also gives a leading contri-
bution with ↵ = 4 [107], only considering the non-birefringent
terms; our analysis does not allow for birefringence.

In order to obtain a waveform model with which to con-
strain these propagation e↵ects, we start by assuming that
the waveform extracted in the binary’s local wave zone (i.e.,
near to the binary compared to the distance from the binary
to Earth, but far from the binary compared to its own size) is
well-described by a waveform in GR.14 Since we are able to

12 For a source with an electromagnetic counterpart, A2 can be constrained
by comparison with the arrival time of the photons, as was done with
GW170817/GRB170817A [101].

13 Thus, the Yukawa screening length is �0 = h/(mgc).
14 This is likely to be a good assumption for ↵ < 2, where we constrain �A to

be much larger than the size of the binary. For ↵ > 2, where we constrain �A
to be much smaller than the size of the binary, one has to posit a screening
mechanism in order to be able to assume that the waveform in the binary’s
local wave zone is well-described by GR, as well as for this model to evade
Solar System constraints.
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FIG. 4. 90% upper bounds on the absolute magnitude of the GR-
violating parameters �'̂n, from �1PN through 3.5PN in the inspiral
phase. At each PN order, we show results obtained from each of
the events listed in Table I that cross the SNR threshold in the inspi-
ral regime, analyzed with IMRPhenomPv2. Bounds obtained from
combining posteriors of events detected with a significance that ex-
ceeds a threshold of FAR < (1000 yr)�1 in both modelled searches
are shown for both analyses, using IMRPhenomPv2 (filled diamonds)
and SEOBNRv4 (empty diamonds).

across all events considered. This assumption should not be
made when testing a specific theory that predicts violations
that depend on the binary’s parameters. Posterior distribu-
tions of � p̂i for the individual-event analysis, also showing full
consistency with GR, are provided in Sec. 3 of the Appendix.

Figure 4 shows the 90% upper bounds on |�'̂i| for all the
individual events which cross the SNR threshold (SNR > 6) in
the inspiral regime (the most massive of which is GW150914).
The bounds from the combined posteriors are also shown;
these include the events which exceed both the SNR thresh-
old in the inspiral regime as well as the significance threshold,
namely GW150914, GW151226, GW170104, GW170608, and
GW170814. The bound from the likely lightest mass binary
black hole event GW170608 at 1.5PN is currently the strongest
constraint obtained on a positive PN coe�cient from a single
binary black hole event, as shown in Fig. 4. However, the con-
straint at this order is about five times worse than that obtained
from the binary neutron star event GW170817 alone [8]. The
�1PN bound is two orders of magnitude better for GW170817
than the best bound obtained from GW170608. For all other
PN orders, GW170608 also provides the best bounds, which at
high PN orders are of the same order of magnitude as the ones
from GW170817. Our results can be compared statistically to
those obtained by performing the same tests on simulated GR
and non-GR waveforms given in [93]. The results presented
here are consistent with those of GR waveforms injected into

realistic detector data. The combined bounds are the tightest
obtained so far, improving on the bounds obtained in [5] by
factors between 1.1 and 1.8.

VII. PARAMETERIZED TESTS OF GRAVITATIONAL
WAVE PROPAGATION

We now place constraints on a phenomenological modifi-
cation of the GW dispersion relation, i.e., on a possible fre-
quency dependence of the speed of GWs. This modification,
introduced in [100] and first applied to LIGO data in [6], is
obtained by adding a power-law term in the momentum to the
dispersion relation E2 = p2c2 of GWs in GR, giving

E2 = p2c2 + A↵p↵c↵. (2)

Here, c is the speed of light, E and p are the energy and
momentum of the GWs, and A↵ and ↵ are phenomenological
parameters. We consider ↵ values from 0 to 4 in steps of 0.5.
However, we exclude ↵ = 2, where the speed of the GWs is
modified in a frequency-independent manner, and therefore
gives no observable dephasing.12 Thus, in all cases except
for ↵ = 0, we are considering a Lorentz-violating dispersion
relation. The group velocity associated with this dispersion
relation is vg/c = (dE/dp)/c = 1 + (↵ � 1)A↵E↵�2/2 + O(A2

↵).
The associated length scale is �A B hc|A↵|1/(↵�2), where h
is Planck’s constant. �A gives the scale of modifications to
the Newtonian potential (the Yukawa potential for ↵ = 0)
associated with this dispersion relation.

While Eq. (2) is a purely phenomenological model, it en-
compasses a variety of more fundamental predictions (at least
to leading order) [94, 100]. In particular, A0 > 0 corre-
sponds to a massive graviton, i.e., the same dispersion as
for a massive particle in vacuo [102], with a graviton mass
given by mg = A1/2

0 /c
2.13 Furthermore, ↵ values of 2.5, 3,

and 4 correspond to the leading predictions of multi-fractal
spacetime [103]; doubly special relativity [104]; and Hořava-
Lifshitz [105] and extra dimensional [106] theories, respec-
tively. The standard model extension also gives a leading contri-
bution with ↵ = 4 [107], only considering the non-birefringent
terms; our analysis does not allow for birefringence.

In order to obtain a waveform model with which to con-
strain these propagation e↵ects, we start by assuming that
the waveform extracted in the binary’s local wave zone (i.e.,
near to the binary compared to the distance from the binary
to Earth, but far from the binary compared to its own size) is
well-described by a waveform in GR.14 Since we are able to

12 For a source with an electromagnetic counterpart, A2 can be constrained
by comparison with the arrival time of the photons, as was done with
GW170817/GRB170817A [101].

13 Thus, the Yukawa screening length is �0 = h/(mgc).
14 This is likely to be a good assumption for ↵ < 2, where we constrain �A to

be much larger than the size of the binary. For ↵ > 2, where we constrain �A
to be much smaller than the size of the binary, one has to posit a screening
mechanism in order to be able to assume that the waveform in the binary’s
local wave zone is well-described by GR, as well as for this model to evade
Solar System constraints.
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FIG. 4. 90% upper bounds on the absolute magnitude of the GR-
violating parameters �'̂n, from �1PN through 3.5PN in the inspiral
phase. At each PN order, we show results obtained from each of
the events listed in Table I that cross the SNR threshold in the inspi-
ral regime, analyzed with IMRPhenomPv2. Bounds obtained from
combining posteriors of events detected with a significance that ex-
ceeds a threshold of FAR < (1000 yr)�1 in both modelled searches
are shown for both analyses, using IMRPhenomPv2 (filled diamonds)
and SEOBNRv4 (empty diamonds).

across all events considered. This assumption should not be
made when testing a specific theory that predicts violations
that depend on the binary’s parameters. Posterior distribu-
tions of � p̂i for the individual-event analysis, also showing full
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�1PN bound is two orders of magnitude better for GW170817
than the best bound obtained from GW170608. For all other
PN orders, GW170608 also provides the best bounds, which at
high PN orders are of the same order of magnitude as the ones
from GW170817. Our results can be compared statistically to
those obtained by performing the same tests on simulated GR
and non-GR waveforms given in [93]. The results presented
here are consistent with those of GR waveforms injected into

realistic detector data. The combined bounds are the tightest
obtained so far, improving on the bounds obtained in [5] by
factors between 1.1 and 1.8.
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We now place constraints on a phenomenological modifi-
cation of the GW dispersion relation, i.e., on a possible fre-
quency dependence of the speed of GWs. This modification,
introduced in [100] and first applied to LIGO data in [6], is
obtained by adding a power-law term in the momentum to the
dispersion relation E2 = p2c2 of GWs in GR, giving

E2 = p2c2 + A↵p↵c↵. (2)

Here, c is the speed of light, E and p are the energy and
momentum of the GWs, and A↵ and ↵ are phenomenological
parameters. We consider ↵ values from 0 to 4 in steps of 0.5.
However, we exclude ↵ = 2, where the speed of the GWs is
modified in a frequency-independent manner, and therefore
gives no observable dephasing.12 Thus, in all cases except
for ↵ = 0, we are considering a Lorentz-violating dispersion
relation. The group velocity associated with this dispersion
relation is vg/c = (dE/dp)/c = 1 + (↵ � 1)A↵E↵�2/2 + O(A2

↵).
The associated length scale is �A B hc|A↵|1/(↵�2), where h
is Planck’s constant. �A gives the scale of modifications to
the Newtonian potential (the Yukawa potential for ↵ = 0)
associated with this dispersion relation.

While Eq. (2) is a purely phenomenological model, it en-
compasses a variety of more fundamental predictions (at least
to leading order) [94, 100]. In particular, A0 > 0 corre-
sponds to a massive graviton, i.e., the same dispersion as
for a massive particle in vacuo [102], with a graviton mass
given by mg = A1/2
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and 4 correspond to the leading predictions of multi-fractal
spacetime [103]; doubly special relativity [104]; and Hořava-
Lifshitz [105] and extra dimensional [106] theories, respec-
tively. The standard model extension also gives a leading contri-
bution with ↵ = 4 [107], only considering the non-birefringent
terms; our analysis does not allow for birefringence.

In order to obtain a waveform model with which to con-
strain these propagation e↵ects, we start by assuming that
the waveform extracted in the binary’s local wave zone (i.e.,
near to the binary compared to the distance from the binary
to Earth, but far from the binary compared to its own size) is
well-described by a waveform in GR.14 Since we are able to

12 For a source with an electromagnetic counterpart, A2 can be constrained
by comparison with the arrival time of the photons, as was done with
GW170817/GRB170817A [101].

13 Thus, the Yukawa screening length is �0 = h/(mgc).
14 This is likely to be a good assumption for ↵ < 2, where we constrain �A to

be much larger than the size of the binary. For ↵ > 2, where we constrain �A
to be much smaller than the size of the binary, one has to posit a screening
mechanism in order to be able to assume that the waveform in the binary’s
local wave zone is well-described by GR, as well as for this model to evade
Solar System constraints.
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bound these propagation e↵ects to be very small, we can work
to linear order in A↵ when computing the e↵ects of this disper-
sion on the frequency-domain GW phasing,15 thus obtaining a
correction [100] that is added to �( f ) in Eq. (1):

��↵( f ) = sign(A↵)
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Here, DL is the binary’s luminosity distance, Mdet is the bi-
nary’s detector-frame (i.e., redshifted) chirp mass, and �A,e↵
is the e↵ective wavelength parameter used in the sampling,
defined as

�A,e↵ B
"
(1 + z)1�↵DL

D↵

#1/(↵�2)

�A . (4)

The parameter z is the binary’s redshift, and D↵ is a distance
parameter given by

D↵ =
(1 + z)1�↵

H0

Z z

0

(1 + z̄)↵�2
p
⌦m(1 + z̄)3 +⌦⇤

dz̄ , (5)

where H0 = 67.90 km s�1 Mpc�1 is the Hubble constant, and
⌦m = 0.3065 and ⌦⇤ = 0.6935 are the matter and dark energy
density parameters; these are the TT+lowP+lensing+ext values
from [108].16

The dephasing in Eq. (3) is obtained by treating the gravita-
tional wave as a stream of particles (gravitons), which travel
at the particle velocity vp/c = pc/E = 1 � A↵E↵�2/2 + O(A2

↵).
There are suggestions to use the particle velocity when consid-
ering doubly special relativity, though there are also sugges-
tions to use the group velocity vg in that case (see, e.g., [110]
and references therein for both arguments). However, the group
velocity is appropriate for, e.g., multi-fractal spacetime theo-
ries (see, e.g., [111]). To convert the bounds presented here to
the case where the particles travel at the group velocity, scale
the A↵ bounds for ↵ , 1 by factors of 1/(1 � ↵). The group
velocity calculation gives an unobservable constant phase shift
for ↵ = 1.

We consider the cases of positive and negative A↵ separately,
and obtain the results shown in Table IV and Fig. 5 when
applying this analysis to the GW events under consideration.
While we sample with a flat prior in log �A,e↵, our bounds are
given using priors flat in A↵ for all results except for the mass of
the graviton, where we use a prior flat in the graviton mass. We
also show the results from combining together all the signals

15 The dimensionless parameter controlling the size of the linear correction
is A↵ f ↵�2, which is . 10�18 at the 90% credible level for the events we
consider and frequencies up to 1 kHz.

16 We use these values for consistency with the results presented in [14].
If we instead use the more recent results from [109], specifically the
TT,TE,EE+lowE+lensing+BAO values used for comparison in [14], then
there are very minor changes to the results presented in this section. For
instance, the upper bounds in Table IV change by at most ⇠ 0.1%.

FIG. 5. 90% credible upper bounds on the absolute value of the modi-
fied dispersion relation parameter A↵. We show results for positive
and negative values of A↵ separately. Specifically, we give the up-
dated versions of the results from combining together GW150914,
GW151226, and GW170104 (first given in [6]), as well as the re-
sults from combining together all the events meeting our significance
threshold for combined results (see Table I). Picoelectronvolts (peV)
provide a convenient scale, because 1 peV ' h ⇥ 250 Hz, where
250 Hz is roughly around the most sensitive frequencies of the LIGO
and Virgo instruments.

FIG. 6. Violin plots of the full posteriors on the modified dispersion
relation parameter A↵ calculated from the combined events, with the
90% credible interval around the median indicated.

that satisfy our selection criterion. We are able to combine
together the results from di↵erent signals with no ambiguity,
since the known distance dependence is accounted for in the
waveforms.

Figure 6 displays the full A↵ posteriors obtained by combin-
ing all selected events (using IMRPhenomPv2 waveforms). To
obtain the full A↵ posteriors, we combine together the positive
and negative A↵ results for individual events by weighting by
their Bayesian evidences; we then combine the posteriors from
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can be 10 times larger compared to tensorial or scalar-transverse modes; in the lower frequency the sensitivity is the same
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Another important example theory that can be tested within the ppE framework is quadratic
gravity that introduces quadratic-curvature corrections (coupled to a scalar field) to the Einstein-
Hilbert action. Under the small-coupling approximation, the leading-order modification to the
Fourier phase  (f) takes on the ppE form (Yunes and Pretorius, 2009b) in Eq. (13), where bdCS =

�1/3 in dCS gravity (a 2PN correction) and bEdGB = �7/3 in Einstein-dilaton Gauss–Bonnet
gravity gravity (a �1PN correction). The specific mapping to these two well-motivated theories
can be found in Nair et al. (2019); Yagi et al. (2012a) for EdGB, and in Nair et al. (2019); Yagi
et al. (2012b) for dCS. From the data presented in first LIGO/Virgo catalogue, GWTC-1 (Abbott
et al., 2019b), EdGB’s coupling constant was constrained to ↵1/2

EdGB . 5.6 km (Nair et al., 2019)
from single events and ↵1/2

EdGB . 1.7 km (Perkins et al., 2021a; Yamada et al., 2019) from combined
multiple events, and the latter is better than previous bounds, such as those from BH low-mass
x-ray binaries (Yagi, 2012). On the other hand, dCS gravity still remains unconstrained from the
leading PN order correction to the waveform phase, although recent consistency constraints from
the combination of LIGO/Virgo and NICER data require ↵1/2

dCS < 8.5 km (Silva et al., 2021a).
Work on other modified theories within the broad class of quadratic gravity models (Yagi et al.,
2016) remains to be done.

Apart from testing specific non-GR theories, one can use the parameterized tests to probe
beyond-Kerr BH spacetime in a generic way. For example, it is possible to map the ppE constraints
from the inspiral regime to constraints on parametric deviations from the GR BH metric (Cardenas-
Avendano et al., 2020; Carson and Yagi, 2020c). The modified ringdown frequencies can also be
used to place constraints on deviations away from the GR BH metric (Konoplya and Zhidenko,
2020; Völkel and Barausse, 2020). Similar to the IMR consistency tests discussed in Sect. VI.A.2,
one can perform consistency checks between the above BH spacetime tests from the inspiral and
ringdown. The two sets of constraints can be compared for discrepancies (which might be an
indicator of new physics) or improving the overall constraints (Carson and Yagi, 2020c).

C. Other Model-independent Tests

There are other model-independent tests one can perform on GW observations with LISA (some
of them have already been applied to the existing GW events by the LIGO/Virgo collaboration).
In this section, we describe three such model-independent tests. First, one can look for additional
GW (scalar and vector) polarization modes that are absent in GR. Next, one can study how the
modified propagation of GWs affect the amplitude and phase of gravitational waveforms and how
one can use multi-messenger observations or the arrival time difference of GWs at different detectors
to probe such modified GW propagation. Lastly, one can use the SGWB of either astrophysical or
cosmological (primordial) origin to test GR.

1. Polarization Tests

A model-independent test of GR is based on the possibility of detecting additional polarizations,
not present in GR. Metric theories of gravity can have up to six polarization modes – two ten-
sorial, two scalar and two vector modes. While in GR only the tensorial polarization modes are
present, this is not the case for most of the viable alternative theories of gravity (Will, 2014). Such
additional polarizations can be detected with the GW observations of inspiraling compact objects
(Chatziioannou et al., 2012; Pang et al., 2020; Takeda et al., 2018, 2019). Indeed, ground based de-
tectors have already put an upper limit on such additional polarization modes in a theory-agnostic
way (Abbott et al., 2017b, 2019c,d, 2021; Takeda et al., 2021a), including the case with mixed
polarizations of standard tensor modes with additional non-GR ones (Chatziioannou et al., 2021;
Takeda et al., 2021b).

LISA offers new possibilities for testing the non-GR polarizations with an increased sensitivity
(Tinto and da Silva Alves, 2010). For frequencies larger than roughly 6⇥10

�2
Hz, the sensitivity of

LISA for scalar-longitudinal and vector polarization modes can be up to ten times larger compared
to the tensorial or scalar-transverse modes, while in the lower frequency, the sensitivity is of the
same order. Therefore, it is expected that LISA will be able to assess the polarization of the
detected GWs and thus put strong constraints on modified gravity.

The SGWBs (to be discussed in more detail in Sect. VI.C.3) can also be a powerful test of
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Another important example theory that can be tested within the ppE framework is quadratic
gravity that introduces quadratic-curvature corrections (coupled to a scalar field) to the Einstein-
Hilbert action. Under the small-coupling approximation, the leading-order modification to the
Fourier phase  (f) takes on the ppE form (Yunes and Pretorius, 2009b) in Eq. (13), where bdCS =

�1/3 in dCS gravity (a 2PN correction) and bEdGB = �7/3 in Einstein-dilaton Gauss–Bonnet
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can be found in Nair et al. (2019); Yagi et al. (2012a) for EdGB, and in Nair et al. (2019); Yagi
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from single events and ↵1/2

EdGB . 1.7 km (Perkins et al., 2021a; Yamada et al., 2019) from combined
multiple events, and the latter is better than previous bounds, such as those from BH low-mass
x-ray binaries (Yagi, 2012). On the other hand, dCS gravity still remains unconstrained from the
leading PN order correction to the waveform phase, although recent consistency constraints from
the combination of LIGO/Virgo and NICER data require ↵1/2

dCS < 8.5 km (Silva et al., 2021a).
Work on other modified theories within the broad class of quadratic gravity models (Yagi et al.,
2016) remains to be done.

Apart from testing specific non-GR theories, one can use the parameterized tests to probe
beyond-Kerr BH spacetime in a generic way. For example, it is possible to map the ppE constraints
from the inspiral regime to constraints on parametric deviations from the GR BH metric (Cardenas-
Avendano et al., 2020; Carson and Yagi, 2020c). The modified ringdown frequencies can also be
used to place constraints on deviations away from the GR BH metric (Konoplya and Zhidenko,
2020; Völkel and Barausse, 2020). Similar to the IMR consistency tests discussed in Sect. VI.A.2,
one can perform consistency checks between the above BH spacetime tests from the inspiral and
ringdown. The two sets of constraints can be compared for discrepancies (which might be an
indicator of new physics) or improving the overall constraints (Carson and Yagi, 2020c).

C. Other Model-independent Tests

There are other model-independent tests one can perform on GW observations with LISA (some
of them have already been applied to the existing GW events by the LIGO/Virgo collaboration).
In this section, we describe three such model-independent tests. First, one can look for additional
GW (scalar and vector) polarization modes that are absent in GR. Next, one can study how the
modified propagation of GWs affect the amplitude and phase of gravitational waveforms and how
one can use multi-messenger observations or the arrival time difference of GWs at different detectors
to probe such modified GW propagation. Lastly, one can use the SGWB of either astrophysical or
cosmological (primordial) origin to test GR.

1. Polarization Tests

A model-independent test of GR is based on the possibility of detecting additional polarizations,
not present in GR. Metric theories of gravity can have up to six polarization modes – two ten-
sorial, two scalar and two vector modes. While in GR only the tensorial polarization modes are
present, this is not the case for most of the viable alternative theories of gravity (Will, 2014). Such
additional polarizations can be detected with the GW observations of inspiraling compact objects
(Chatziioannou et al., 2012; Pang et al., 2020; Takeda et al., 2018, 2019). Indeed, ground based de-
tectors have already put an upper limit on such additional polarization modes in a theory-agnostic
way (Abbott et al., 2017b, 2019c,d, 2021; Takeda et al., 2021a), including the case with mixed
polarizations of standard tensor modes with additional non-GR ones (Chatziioannou et al., 2021;
Takeda et al., 2021b).

LISA offers new possibilities for testing the non-GR polarizations with an increased sensitivity
(Tinto and da Silva Alves, 2010). For frequencies larger than roughly 6⇥10
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Hz, the sensitivity of

LISA for scalar-longitudinal and vector polarization modes can be up to ten times larger compared
to the tensorial or scalar-transverse modes, while in the lower frequency, the sensitivity is of the
same order. Therefore, it is expected that LISA will be able to assess the polarization of the
detected GWs and thus put strong constraints on modified gravity.

The SGWBs (to be discussed in more detail in Sect. VI.C.3) can also be a powerful test of
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as a violation of the traceless property of the gravitational wave measured by the detector located
in our D = 4 spacetime. Such an anomalous behavior could possibly serve as a sign of the exis-
tence of higher dimensions. Although this effect has already been described in Podolsky and Svarc
(2012) and analyzed in the model of exact plane GWs (and their generalizations within the Kundt
family of geometries) (Podolský and Švarc, 2013), the specific representation of the violation of
the transverse-traceless property in the triangular LISA configuration remains an open problem.

The development of polarization tests in the LISA context is still not mature enough for de-
ployment in a data analysis pipeline. Few studies have been performed to determine how well
LISA can constrain the extra polarizations of specific modified theories, given current constraints
on the speed of tensor modes. The idea of the construction of null channels has been suggested for
LIGO/Virgo (Chatziioannou et al., 2012), but can also be extended for LISA in the ppE frame-
work. The mapping of generic polarization tests to specific modified theories has also not yet been
developed.

2. GW Propagation Tests

As discussed in Secs. II.B.2 and V.B.2, GW propagation over cosmological distances for gener-
alised theories of gravity and other extensions of ⇤CDM can be parametrised by the wave equa-
tion (Belgacem et al., 2018c; Gleyzes et al., 2014; Lombriser, 2018; Lombriser and Taylor, 2016;
Nishizawa, 2018; Saltas et al., 2014)
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where hij is the linear traceless spatial tensor perturbation and primes indicate derivatives with
respect to ln a. In addition to the Hubble friction, the damping term may receive a contribution
from ⌫, which can for instance parametrise an effective Planck mass evolution rate or the impact
of extra dimensions. The wave propagation may further be modified by a deviation in its speed cT
and the mass of the graviton µ. Finally, there can be a source term ��ij , which may for instance
arise in bimetric theories or from anisotropic stress. The modifications can generally be time and
scale, or frequency, dependent, where GR/⇤CDM is recovered in the limit of ⌫ = µ = � = 0

and cT = c. The modifications in Eq. (15) can also be cast into the ppE framework (Yunes and
Pretorius, 2009b) in Sect. VI.B.1, where the ppE amplitude parameter ↵ can be expressed as an
integral over ⌫ while the ppE phase parameter � may be expressed as an integral involving cT and
µ (Mirshekari et al., 2012; Nishizawa, 2018).

Late-time constraints on the modified damping term have been forecasted in Amendola et al.
(2018a); Belgacem et al. (2018c, 2019c); Lombriser and Taylor (2016) based on standard sirens
tests (Holz and Hughes, 2005; Schutz, 1986), and early-time modifications can be constrained by
CMB B-modes (Amendola et al., 2014). So far there has not been much exploration of a possible
frequency dependence of ⌫ (see, however, Belgacem et al. 2019c for forecasts on oscillations in the
GW amplitude).

The GW speed cT is constrained by a variety of measurements. The detection of ultra high energy
cosmic rays implies a strong constraint on gravitational Cherenkov radiation from a subluminal
propagation of the waves as otherwise the radiation would decay away at a rate proportional to the
square of their energy O(10

11 GeV) before reaching us (Caves, 1980; Kimura and Yamamoto, 2012;
Moore and Nelson, 2001). For galactic O(10 kpc) or cosmological O(1 Gpc) origin, the relative
deviation in cT is constrained to be smaller than O(10

�15
) or O(10

�19
), respectively. This bound,

however, only applies for subluminal propagation, redshifts of z . 0.1, and modifications in the
high-energy regime. Another constraint on cT at the subpercent level can be inferred from the
energy loss in binary pulsar systems (Beltran Jimenez et al., 2016; Brax et al., 2016). A stringent
and prominent direct constraint on deviations of cT /c = 1 of . O(10

�15
) was obtained from the

arrival times of the GW from the LIGO/Virgo event GW170817 (Abbott et al., 2017c,e) and its
EM counterparts (photons have been assumed to be massless given the stringent experimental
upper bounds on their mass, though we note that some standard-model extensions imply Lorentz-
violations that naturally give rise to massive photons (Bonetti et al., 2018; Colladay and Kostelecký,
1997, 1998; Spallicci et al., 2021)). As anticipated the measurement left a strong impact across
a wide range of cosmic acceleration models (Baker et al., 2017; Battye et al., 2018; Creminelli
and Vernizzi, 2017; Ezquiaga and Zumalacárregui, 2017; Lombriser and Lima, 2017; Lombriser

GW propagation over 
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graviton mass source term(e.g., in bimetric
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as a violation of the traceless property of the gravitational wave measured by the detector located
in our D = 4 spacetime. Such an anomalous behavior could possibly serve as a sign of the exis-
tence of higher dimensions. Although this effect has already been described in Podolsky and Svarc
(2012) and analyzed in the model of exact plane GWs (and their generalizations within the Kundt
family of geometries) (Podolský and Švarc, 2013), the specific representation of the violation of
the transverse-traceless property in the triangular LISA configuration remains an open problem.

The development of polarization tests in the LISA context is still not mature enough for de-
ployment in a data analysis pipeline. Few studies have been performed to determine how well
LISA can constrain the extra polarizations of specific modified theories, given current constraints
on the speed of tensor modes. The idea of the construction of null channels has been suggested for
LIGO/Virgo (Chatziioannou et al., 2012), but can also be extended for LISA in the ppE frame-
work. The mapping of generic polarization tests to specific modified theories has also not yet been
developed.

2. GW Propagation Tests

As discussed in Secs. II.B.2 and V.B.2, GW propagation over cosmological distances for gener-
alised theories of gravity and other extensions of ⇤CDM can be parametrised by the wave equa-
tion (Belgacem et al., 2018c; Gleyzes et al., 2014; Lombriser, 2018; Lombriser and Taylor, 2016;
Nishizawa, 2018; Saltas et al., 2014)
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where hij is the linear traceless spatial tensor perturbation and primes indicate derivatives with
respect to ln a. In addition to the Hubble friction, the damping term may receive a contribution
from ⌫, which can for instance parametrise an effective Planck mass evolution rate or the impact
of extra dimensions. The wave propagation may further be modified by a deviation in its speed cT
and the mass of the graviton µ. Finally, there can be a source term ��ij , which may for instance
arise in bimetric theories or from anisotropic stress. The modifications can generally be time and
scale, or frequency, dependent, where GR/⇤CDM is recovered in the limit of ⌫ = µ = � = 0

and cT = c. The modifications in Eq. (15) can also be cast into the ppE framework (Yunes and
Pretorius, 2009b) in Sect. VI.B.1, where the ppE amplitude parameter ↵ can be expressed as an
integral over ⌫ while the ppE phase parameter � may be expressed as an integral involving cT and
µ (Mirshekari et al., 2012; Nishizawa, 2018).

Late-time constraints on the modified damping term have been forecasted in Amendola et al.
(2018a); Belgacem et al. (2018c, 2019c); Lombriser and Taylor (2016) based on standard sirens
tests (Holz and Hughes, 2005; Schutz, 1986), and early-time modifications can be constrained by
CMB B-modes (Amendola et al., 2014). So far there has not been much exploration of a possible
frequency dependence of ⌫ (see, however, Belgacem et al. 2019c for forecasts on oscillations in the
GW amplitude).

The GW speed cT is constrained by a variety of measurements. The detection of ultra high energy
cosmic rays implies a strong constraint on gravitational Cherenkov radiation from a subluminal
propagation of the waves as otherwise the radiation would decay away at a rate proportional to the
square of their energy O(10

11 GeV) before reaching us (Caves, 1980; Kimura and Yamamoto, 2012;
Moore and Nelson, 2001). For galactic O(10 kpc) or cosmological O(1 Gpc) origin, the relative
deviation in cT is constrained to be smaller than O(10

�15
) or O(10

�19
), respectively. This bound,

however, only applies for subluminal propagation, redshifts of z . 0.1, and modifications in the
high-energy regime. Another constraint on cT at the subpercent level can be inferred from the
energy loss in binary pulsar systems (Beltran Jimenez et al., 2016; Brax et al., 2016). A stringent
and prominent direct constraint on deviations of cT /c = 1 of . O(10

�15
) was obtained from the

arrival times of the GW from the LIGO/Virgo event GW170817 (Abbott et al., 2017c,e) and its
EM counterparts (photons have been assumed to be massless given the stringent experimental
upper bounds on their mass, though we note that some standard-model extensions imply Lorentz-
violations that naturally give rise to massive photons (Bonetti et al., 2018; Colladay and Kostelecký,
1997, 1998; Spallicci et al., 2021)). As anticipated the measurement left a strong impact across
a wide range of cosmic acceleration models (Baker et al., 2017; Battye et al., 2018; Creminelli
and Vernizzi, 2017; Ezquiaga and Zumalacárregui, 2017; Lombriser and Lima, 2017; Lombriser
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Another important example theory that can be tested within the ppE framework is quadratic
gravity that introduces quadratic-curvature corrections (coupled to a scalar field) to the Einstein-
Hilbert action. Under the small-coupling approximation, the leading-order modification to the
Fourier phase  (f) takes on the ppE form (Yunes and Pretorius, 2009b) in Eq. (13), where bdCS =

�1/3 in dCS gravity (a 2PN correction) and bEdGB = �7/3 in Einstein-dilaton Gauss–Bonnet
gravity gravity (a �1PN correction). The specific mapping to these two well-motivated theories
can be found in Nair et al. (2019); Yagi et al. (2012a) for EdGB, and in Nair et al. (2019); Yagi
et al. (2012b) for dCS. From the data presented in first LIGO/Virgo catalogue, GWTC-1 (Abbott
et al., 2019b), EdGB’s coupling constant was constrained to ↵1/2

EdGB . 5.6 km (Nair et al., 2019)
from single events and ↵1/2

EdGB . 1.7 km (Perkins et al., 2021a; Yamada et al., 2019) from combined
multiple events, and the latter is better than previous bounds, such as those from BH low-mass
x-ray binaries (Yagi, 2012). On the other hand, dCS gravity still remains unconstrained from the
leading PN order correction to the waveform phase, although recent consistency constraints from
the combination of LIGO/Virgo and NICER data require ↵1/2

dCS < 8.5 km (Silva et al., 2021a).
Work on other modified theories within the broad class of quadratic gravity models (Yagi et al.,
2016) remains to be done.

Apart from testing specific non-GR theories, one can use the parameterized tests to probe
beyond-Kerr BH spacetime in a generic way. For example, it is possible to map the ppE constraints
from the inspiral regime to constraints on parametric deviations from the GR BH metric (Cardenas-
Avendano et al., 2020; Carson and Yagi, 2020c). The modified ringdown frequencies can also be
used to place constraints on deviations away from the GR BH metric (Konoplya and Zhidenko,
2020; Völkel and Barausse, 2020). Similar to the IMR consistency tests discussed in Sect. VI.A.2,
one can perform consistency checks between the above BH spacetime tests from the inspiral and
ringdown. The two sets of constraints can be compared for discrepancies (which might be an
indicator of new physics) or improving the overall constraints (Carson and Yagi, 2020c).

C. Other Model-independent Tests

There are other model-independent tests one can perform on GW observations with LISA (some
of them have already been applied to the existing GW events by the LIGO/Virgo collaboration).
In this section, we describe three such model-independent tests. First, one can look for additional
GW (scalar and vector) polarization modes that are absent in GR. Next, one can study how the
modified propagation of GWs affect the amplitude and phase of gravitational waveforms and how
one can use multi-messenger observations or the arrival time difference of GWs at different detectors
to probe such modified GW propagation. Lastly, one can use the SGWB of either astrophysical or
cosmological (primordial) origin to test GR.

1. Polarization Tests

A model-independent test of GR is based on the possibility of detecting additional polarizations,
not present in GR. Metric theories of gravity can have up to six polarization modes – two ten-
sorial, two scalar and two vector modes. While in GR only the tensorial polarization modes are
present, this is not the case for most of the viable alternative theories of gravity (Will, 2014). Such
additional polarizations can be detected with the GW observations of inspiraling compact objects
(Chatziioannou et al., 2012; Pang et al., 2020; Takeda et al., 2018, 2019). Indeed, ground based de-
tectors have already put an upper limit on such additional polarization modes in a theory-agnostic
way (Abbott et al., 2017b, 2019c,d, 2021; Takeda et al., 2021a), including the case with mixed
polarizations of standard tensor modes with additional non-GR ones (Chatziioannou et al., 2021;
Takeda et al., 2021b).

LISA offers new possibilities for testing the non-GR polarizations with an increased sensitivity
(Tinto and da Silva Alves, 2010). For frequencies larger than roughly 6⇥10

�2
Hz, the sensitivity of

LISA for scalar-longitudinal and vector polarization modes can be up to ten times larger compared
to the tensorial or scalar-transverse modes, while in the lower frequency, the sensitivity is of the
same order. Therefore, it is expected that LISA will be able to assess the polarization of the
detected GWs and thus put strong constraints on modified gravity.

The SGWBs (to be discussed in more detail in Sect. VI.C.3) can also be a powerful test of
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as a violation of the traceless property of the gravitational wave measured by the detector located
in our D = 4 spacetime. Such an anomalous behavior could possibly serve as a sign of the exis-
tence of higher dimensions. Although this effect has already been described in Podolsky and Svarc
(2012) and analyzed in the model of exact plane GWs (and their generalizations within the Kundt
family of geometries) (Podolský and Švarc, 2013), the specific representation of the violation of
the transverse-traceless property in the triangular LISA configuration remains an open problem.

The development of polarization tests in the LISA context is still not mature enough for de-
ployment in a data analysis pipeline. Few studies have been performed to determine how well
LISA can constrain the extra polarizations of specific modified theories, given current constraints
on the speed of tensor modes. The idea of the construction of null channels has been suggested for
LIGO/Virgo (Chatziioannou et al., 2012), but can also be extended for LISA in the ppE frame-
work. The mapping of generic polarization tests to specific modified theories has also not yet been
developed.

2. GW Propagation Tests

As discussed in Secs. II.B.2 and V.B.2, GW propagation over cosmological distances for gener-
alised theories of gravity and other extensions of ⇤CDM can be parametrised by the wave equa-
tion (Belgacem et al., 2018c; Gleyzes et al., 2014; Lombriser, 2018; Lombriser and Taylor, 2016;
Nishizawa, 2018; Saltas et al., 2014)
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where hij is the linear traceless spatial tensor perturbation and primes indicate derivatives with
respect to ln a. In addition to the Hubble friction, the damping term may receive a contribution
from ⌫, which can for instance parametrise an effective Planck mass evolution rate or the impact
of extra dimensions. The wave propagation may further be modified by a deviation in its speed cT
and the mass of the graviton µ. Finally, there can be a source term ��ij , which may for instance
arise in bimetric theories or from anisotropic stress. The modifications can generally be time and
scale, or frequency, dependent, where GR/⇤CDM is recovered in the limit of ⌫ = µ = � = 0

and cT = c. The modifications in Eq. (15) can also be cast into the ppE framework (Yunes and
Pretorius, 2009b) in Sect. VI.B.1, where the ppE amplitude parameter ↵ can be expressed as an
integral over ⌫ while the ppE phase parameter � may be expressed as an integral involving cT and
µ (Mirshekari et al., 2012; Nishizawa, 2018).

Late-time constraints on the modified damping term have been forecasted in Amendola et al.
(2018a); Belgacem et al. (2018c, 2019c); Lombriser and Taylor (2016) based on standard sirens
tests (Holz and Hughes, 2005; Schutz, 1986), and early-time modifications can be constrained by
CMB B-modes (Amendola et al., 2014). So far there has not been much exploration of a possible
frequency dependence of ⌫ (see, however, Belgacem et al. 2019c for forecasts on oscillations in the
GW amplitude).

The GW speed cT is constrained by a variety of measurements. The detection of ultra high energy
cosmic rays implies a strong constraint on gravitational Cherenkov radiation from a subluminal
propagation of the waves as otherwise the radiation would decay away at a rate proportional to the
square of their energy O(10

11 GeV) before reaching us (Caves, 1980; Kimura and Yamamoto, 2012;
Moore and Nelson, 2001). For galactic O(10 kpc) or cosmological O(1 Gpc) origin, the relative
deviation in cT is constrained to be smaller than O(10

�15
) or O(10

�19
), respectively. This bound,

however, only applies for subluminal propagation, redshifts of z . 0.1, and modifications in the
high-energy regime. Another constraint on cT at the subpercent level can be inferred from the
energy loss in binary pulsar systems (Beltran Jimenez et al., 2016; Brax et al., 2016). A stringent
and prominent direct constraint on deviations of cT /c = 1 of . O(10

�15
) was obtained from the

arrival times of the GW from the LIGO/Virgo event GW170817 (Abbott et al., 2017c,e) and its
EM counterparts (photons have been assumed to be massless given the stringent experimental
upper bounds on their mass, though we note that some standard-model extensions imply Lorentz-
violations that naturally give rise to massive photons (Bonetti et al., 2018; Colladay and Kostelecký,
1997, 1998; Spallicci et al., 2021)). As anticipated the measurement left a strong impact across
a wide range of cosmic acceleration models (Baker et al., 2017; Battye et al., 2018; Creminelli
and Vernizzi, 2017; Ezquiaga and Zumalacárregui, 2017; Lombriser and Lima, 2017; Lombriser
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as a violation of the traceless property of the gravitational wave measured by the detector located
in our D = 4 spacetime. Such an anomalous behavior could possibly serve as a sign of the exis-
tence of higher dimensions. Although this effect has already been described in Podolsky and Svarc
(2012) and analyzed in the model of exact plane GWs (and their generalizations within the Kundt
family of geometries) (Podolský and Švarc, 2013), the specific representation of the violation of
the transverse-traceless property in the triangular LISA configuration remains an open problem.

The development of polarization tests in the LISA context is still not mature enough for de-
ployment in a data analysis pipeline. Few studies have been performed to determine how well
LISA can constrain the extra polarizations of specific modified theories, given current constraints
on the speed of tensor modes. The idea of the construction of null channels has been suggested for
LIGO/Virgo (Chatziioannou et al., 2012), but can also be extended for LISA in the ppE frame-
work. The mapping of generic polarization tests to specific modified theories has also not yet been
developed.

2. GW Propagation Tests

As discussed in Secs. II.B.2 and V.B.2, GW propagation over cosmological distances for gener-
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upper bounds on their mass, though we note that some standard-model extensions imply Lorentz-
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a wide range of cosmic acceleration models (Baker et al., 2017; Battye et al., 2018; Creminelli
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of a GW event and of its electromagnetic counterpart would put extremely strong limits on
|cT (z) � c|/c up to the redshift of the source, just as for GW170817/GRB 170817A.

Given the strong observational constraint from GW170817/GRB 170817A, and the lack
of explicit models where cT (z) evolves from a value equal to c within 15 digits at z < 0.01, to
a sensibly di↵erent value at higher redshift, in the following we will limit our analysis to the
case cT (z) = c. Note also that, if at higher redshift cT (z) should be sensibly di↵erent from
c, with LISA one would simply not see an electromagnetic counterpart even if it existed,
since the time delay of the electromagnetic and gravitational signal, over such distances,
would be huge. In that case the analysis of the present paper, that assumes standard sirens
with electromagnetic counterpart, would not be applicable, and one would have to resort to
statistical methods.4

2.2.4 Phenomenological parametrization of d gw

L
(z)/d em

L
(z)

In general, in modified gravity, both the cosmological background evolution and the cosmo-
logical perturbations are di↵erent with respect to GR. It is obviously useful to have phe-
nomenological parametrizations of these e↵ects, that encompass a large class of theories. In
modified gravity, the deviation of the background evolution from ⇤CDM is determined by
the DE density ⇢DE(z) or, equivalently, by the DE equation of state wDE(z). In principle
one could try to reconstruct the whole function wDE(z) from cosmological observations, but
current results are unavoidably not very accurate (see e.g. fig. 5 of [46]). The standard
approach is rather to use a parametrization for this function, that catches the qualitative
features of a large class of models. The most common is the Chevallier–Polarski–Linder
parametrization [47, 48], which makes use of two parameters (w0, wa),

wDE(a) = w0 + wa(1 � a) , (2.29)

corresponding to the value and the slope of the function at the present time. In terms of
redshift,

wDE(z) = w0 +
z

1 + z
wa . (2.30)

One can then analyze the cosmological data adding (w0, wa) to the standard set of cosmo-
logical parameters. Similarly, some standard parametrizations are used for describing the
modification from GR in the scalar perturbation sector, in order to compare with structure
formation and weak lensing, see e.g. [49, 50]. Here we are interested in tensor perturbations,
where the e↵ect is encoded in the non-trivial function d gw

L
(z)/d em

L
(z). Again, rather than

trying to reconstruct this whole function from the data, it is more convenient to look for a
simple parametrization that catches the main features of a large class of models in terms of
a small number of parameters. We shall adopt the 2-parameter parameterization proposed
in Ref. [16],

⌅(z) ⌘
d gw

L
(z)

d em

L
(z)

= ⌅0 +
1 � ⌅0

(1 + z)n
, (2.31)

which depends on the parameters ⌅0 and n, both taken to be positive. In terms of the scale
factor a = 1/(1 + z) corresponding to the redshift of the source,

d gw

L
(a)

d em

L
(a)

= ⌅0 + an(1 � ⌅0) . (2.32)

4At low-z, an alternative way to test an anomalous GW speed at LISA frequencies, cT (kLISA) 6= c, is
to measure the phase lag between GW and EM signals of continuous sources such as the LISA verification
binaries. This test can constrain the graviton mass [42, 43] as well as the propagation speed [44, 45].
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density may be approximated as a power law (Thrane and Romano, 2013) given by

⌦GWB = ⌦�

✓
f

f⇤

◆�

, (17)

where ⌦� is the GW spectral energy density at a reference frequency f⇤ and the various factors of
� correspond to different sources for the SGWB. These can be given for binary systems (� = 2/3),
r-mode instabilities (� = 2), stellar core collapse (� is model dependent), superradiant instabilities
(� = 1� 7), and magnetars (� = 3) (Kuroyanagi et al., 2018). One can use such SGWB spectrum
to test GR in a theory agnostic way, in particular the amplitude corrections in the ppE framework
(Saffer and Yagi, 2020).

A SGWB can also originate from the primordial tensor perturbations generated in the early
universe during inflation or via alternative mechanisms such as thermal production. Given a
primordial tensor spectrum Pt(k), one can compute the SGWB. The spectrum can be given directly
by the model under study or, if allowed, in a parametrized form via the tensor spectral index nt

and its running ↵t:

Pt(k) = Pt(k0) exp

"
nt(k0) ln

k

k0
+

↵t(k0)

2

✓
ln

k

k0

◆2
#
, Pt(k0) = r(k0)Ps(k0) , (18)

where nt, ↵t and the tensor-to-scalar ratio r are calculated at the pivot scale k0, while Ps(k0) is the
measured amplitude of the scalar perturbations. During inflation, the running term does not play
an important role because ↵t ⌧ 1 and [ln(k/k0)]2 ⌧ 1. However, at higher frequencies [ln(k/k0)]2
increases and the running term can be large enough to affect the spectrum, an effect consistent
with the above parametrization as long as ↵t is small. The relation between the primordial tensor
spectrum and the SGWB observed today is

⌦gw =
⇡2f2

3a20H
2
0

Pt(f) T 2
(f) , (19)

where the transfer function T , which we do not write here, depends on the history of the universe
and on the details of reheating (Kuroyanagi et al., 2015; Turner et al., 1993; Watanabe and Ko-
matsu, 2006). When the primordial tensor spectrum is blue-tilted, the amplitude of the SGWB
at high frequencies can increase up to the sensitivity threshold of LISA and other interferometers.
In general relativity with standard inflation, the tensor spectrum is red-tilted and therefore its
associated SGWB is unobservable. However, models beyond the standard paradigm in the matter
or gravity sector could have a blue tilt and a large-enough amplitude (Bartolo et al., 2016; Calcagni
and Kuroyanagi, 2021; Kuroyanagi et al., 2018).

Methods for analyzing the LISA detection of an underlying SGWB signal have been developed in
a source agnostic way (Caprini et al., 2019; Flauger et al., 2021; Karnesis et al., 2019; Pieroni and
Barausse, 2020). For example, a recent work (Pieroni and Barausse, 2020) shows that the SGWB
from stellar origin BH and NS mergers may be observable with LISA with an SNR of ⇠ 50. This
acts as a foreground noise to other backgrounds. One can employ a principal component analysis
to subtract this astrophysical foreground, which enables LISA to detect SGWB that is 10 times
weaker than the foreground. Given these methods, and a better understanding of source modelling
which may occur by launch, the prospects for detecting and analyzing a SGWB with LISA are
promising.

A strategy to separate the astrophysical from the cosmological background in the context of LISA
has been proposed in Boileau et al. (2021) using a Bayesian strategy based on an Adaptive Markov
chain Monte-Carlo algorithm. This method has been later used in the case of a SGWB produced
by a network of cosmic string loops (Boileau et al., 2022), updating a previous study where only
the instrument noise was taken into account (Auclair et al., 2020). In particular, it has been shown
that given the ability of LISA to simultaneously detect a large number of galactic double white
dwarf binaries and a large number of compact binaries, a cosmic string tension (Newton’s constant
is denoted by G and the string linear mass density by µ) in the Gµ ⇡ 10

�16 (for loop distribution
model; Kibble 1985) to Gµ ⇡ 10

�15 (for loop distribution model; Blanco-Pillado et al. 2014; Lorenz
et al. 2010; Ringeval et al. 2007) range or bigger could be measured by LISA, with the galactic
foreground affecting this limit more than the astrophysical one.
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law:
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⇣
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"
1 +

⇣
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⌘�
#(↵2�↵1)/�
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For example, numerical simulations find the GW spectrum
due to the sound waves in the plasma [53]

h
2
⌦SW(f) = F (�, H⇤, sw, ↵, g⇤, vw)

(f/fsw)3

[1 + 0.75(f/fsw)2]7/2
,

(3)
where � is the transition strength, H⇤ is the Hubble con-
stant at the time of GW production, sw is the e�ciency
factor, ↵ is the ratio of latent heat released in the phase
transition to the heat of the radiation bath, g⇤ is the num-
ber of relativistic degrees of freedom, vw is the bubble
wall velocity, and fsw = fsw(�, H⇤) is the peak frequency.

If we use Eq. (2) to approximate Eq. (3), then we have
↵1 = 3, ↵2 = �4 and � = 2. Relating ⌦⇤ and f⇤ to the
long list of physical parameters that control the phase
transition is beyond the scope of this study.

III. MODEL SELECTION AND PARAMETER

ESTIMATION

We undertake a Bayesian parameter estimation and
model selection study. For a single GW detector pair, ij,
the log-likelihood is

log p(Ĉij(f)|✓GW) = � 1

2

X

f

h
Ĉij(f) � ⌦GW(f,✓GW)

i2

�
2
ij(f)

� 1

2

X

f

log
⇥
2⇡�

2
ij(f)

⇤
, (4)

where ⌦GW (f) is the model spectrum and ✓GW are the
parameters that define the model. The cross-correlation
estimator, Ĉij(f), is calculated from detector data and is
discussed in detail in [7, 20, 54]. We extend this analysis
to include three GW detectors by adding log-likelihoods
for the individual pairs to construct a multiple-baseline
log-likelihood.

To compare two models, M1 and M2, and make state-
ments about which is more favourable by the data, we
utilise Bayes factors,

BM1
M2

=

R
d✓ p(Ĉij(f)|✓, M1)p(✓|M1)R
d✓ p(Ĉij(f)|✓, M2)p(✓|M2)

(5)

where p(✓|·) is the prior probability of our parameters
given a choice of model. The integrand in Eq. (5) is
the joint posterior distribution of the model parameters,
which is evaluated as part of the evaluation of the Bayes
factors.

For large and positive values of lnBM1
M2

, there is strong
evidence for M1 over M2. Likewise, large and negative

values show preference for M2. Relating this quantity to
a frequentist SNR statistic [1], we have lnB / SNR2 [54].
We use the nested sampler dynesty through the front-end
package Bilby to evaluate Bayes factors for our models,
as well as posterior distributions on the parameters.

While the posterior distribution of ✓GW is evaluated in
conjunction with Bayes factors, we can also analytically
calculate a bound on covariance between model paramet-
ers using the information matrix. This is has been used
for estimating parameter covariance for SGWB models
in other studies as well [38, 55, 56]. For the case of a
Gaussian likelihood with uncorrelated measurements (fre-
quency bins) with an unbiased estimator, the information
matrix is given by

Iij(✓) =
X

f

�(f)�2

✓
@⌦GW(f, ✓)

@✓i

◆✓
@⌦GW(f, ✓)

@✓j

◆
.

(6)

The covariance between model parameters is theoretically
bounded below by the inverse of the information matrix

cov✓ (✓i, ✓j) �
⇥
I�1(✓)

⇤
ij

. (7)

This bound, known as the Cramér-Rao lower bound, can
be exceeded by including, e.g. informative prior informa-
tion. However, the structure of the information matrix can
still o↵er valuable insight into the degeneracy of certain
model parameters with one another and o↵er an intuitive
picture of the parameter estimation problem.

Injected Signal

We consider two types of injections: one containing
a CBC and a cosmic strings background, and another
one containing a CBC and a background due to phase
transitions, see Table I. The background labelled here as
CBC refers to what is left once we subtract the known
CBC contribution, i.e. it is the unresolved astrophysical
background. For the second injection, we choose a broken
power law with exponents ↵1 = 3, ↵2 = �4, and � = 2
which best describes ⌦SW, the sound wave contribution
to ⌦GW. In this case our Bayesian search estimates the
peak frequency, f⇤, as well as the amplitude of the smooth
broken power law, ⌦⇤.
The injection strengths we choose vary from one de-

tector network to another. The instrumental noise is
included at the level of the design sensitivity curves of
the detectors. We consider O4 sensitivity for Advanced
LIGO and Advanced Virgo [57], ET-D for the Einstein
Telescope [58] and CE Wideband for the Cosmic Ex-
plorer [59]. The same prior is used for the recovered
amplitudes, ⌦2/3, ⌦CS, ⌦⇤, all of them log uniformly dis-
tributed between 10�15 and 10�8. All results are presen-
ted for 1 year observation time.
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where ⌦GW (f) is the model spectrum and ✓GW are the
parameters that define the model. The cross-correlation
estimator, Ĉij(f), is calculated from detector data and is
discussed in detail in [7, 20, 54]. We extend this analysis
to include three GW detectors by adding log-likelihoods
for the individual pairs to construct a multiple-baseline
log-likelihood.

To compare two models, M1 and M2, and make state-
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where p(✓|·) is the prior probability of our parameters
given a choice of model. The integrand in Eq. (5) is
the joint posterior distribution of the model parameters,
which is evaluated as part of the evaluation of the Bayes
factors.

For large and positive values of lnBM1
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, there is strong
evidence for M1 over M2. Likewise, large and negative

values show preference for M2. Relating this quantity to
a frequentist SNR statistic [1], we have lnB / SNR2 [54].
We use the nested sampler dynesty through the front-end
package Bilby to evaluate Bayes factors for our models,
as well as posterior distributions on the parameters.

While the posterior distribution of ✓GW is evaluated in
conjunction with Bayes factors, we can also analytically
calculate a bound on covariance between model paramet-
ers using the information matrix. This is has been used
for estimating parameter covariance for SGWB models
in other studies as well [38, 55, 56]. For the case of a
Gaussian likelihood with uncorrelated measurements (fre-
quency bins) with an unbiased estimator, the information
matrix is given by
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The covariance between model parameters is theoretically
bounded below by the inverse of the information matrix
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This bound, known as the Cramér-Rao lower bound, can
be exceeded by including, e.g. informative prior informa-
tion. However, the structure of the information matrix can
still o↵er valuable insight into the degeneracy of certain
model parameters with one another and o↵er an intuitive
picture of the parameter estimation problem.

Injected Signal

We consider two types of injections: one containing
a CBC and a cosmic strings background, and another
one containing a CBC and a background due to phase
transitions, see Table I. The background labelled here as
CBC refers to what is left once we subtract the known
CBC contribution, i.e. it is the unresolved astrophysical
background. For the second injection, we choose a broken
power law with exponents ↵1 = 3, ↵2 = �4, and � = 2
which best describes ⌦SW, the sound wave contribution
to ⌦GW. In this case our Bayesian search estimates the
peak frequency, f⇤, as well as the amplitude of the smooth
broken power law, ⌦⇤.
The injection strengths we choose vary from one de-

tector network to another. The instrumental noise is
included at the level of the design sensitivity curves of
the detectors. We consider O4 sensitivity for Advanced
LIGO and Advanced Virgo [57], ET-D for the Einstein
Telescope [58] and CE Wideband for the Cosmic Ex-
plorer [59]. The same prior is used for the recovered
amplitudes, ⌦2/3, ⌦CS, ⌦⇤, all of them log uniformly dis-
tributed between 10�15 and 10�8. All results are presen-
ted for 1 year observation time.

log-likelihood 
for a single 
detector pair

Model selection To compare two models we use Bayes factors

Detector networks

Detector Networks

I Hanford, Livinston, Virgo, O4 sensitivity, 1 year of run time
I Cosmic Explorers (CE) at Hanford and Livingston locations,

Einstein Telescope (ET) at Virgo, 1 year of run time
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§ Current GW detectors are unable to separate astrophysical from cosmological sources
§ Future GW detectors (CE, ET) may dig out cosmological signals, if one can subtract the loud astrophysical foreground 

Martinovic, Meyers, MS, Christensen (2021)
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Measuring the propagation speed of GWs with LISA

Aim: Develop a general theoretical and numerical toolkit for quantifying the perspective of LISA to measure a    
frequency-dependent         only through its effects on GW waveforms from merging massive BH binaries 

therefore not a reliable indicator of causality. Remarkably, in the standard EFT treatment
of GR one finds that loop contributions from massive fields lead to a non-luminal speed of
GWs on cosmological backgrounds; positivity arguments suggest a super-luminal speed of
GWs at low energies [36, 37]. Such findings are not at all in conflict with causality, and have
in several examples been shown to be necessary precisely to guarantee causality. In [37], a
notion of causality2 more reminiscent of the standard lore has been shown to be more than
compatible with positivity bounds whenever a well-defined decoupling limit of the (helicity-2
modes of the) theory exists3.

A frequency-dependent propagation speed can also arise in any scenario of gravity where
the spectral dimension of spacetime changes with the probed scale. This scale-dependent
behaviour of geometry is typical of a broad class of theories of quantum gravity [39–44] and
is due to the presence of at least one fundamental scale in the texture of spacetime (see also
[5, 45–48]). The ensuing dispersion relation features a non-trivial mixing between time and
momentum and leads to a mixed redshift-frequency dependence of cT (z, f). Also, a frequency
dependent GW speed arises in brane-world models motivated by string theory [49].

Lastly, we should mention that a massive graviton (or the related bigravity) scenario
can lead to a frequency-dependent GW velocity, with interesting and testable consequences
for GW waveforms (as first pointed out in [50]). We refer the reader to the recent [51], and
references therein, for thorough analysis of this case.

Our aim in this work is to develop a general theoretical and numerical toolkit for quan-
tifying the perspective of LISA to measure a frequency-dependent cT only through its e↵ects
on GW waveforms from merging massive black hole (MBH) binaries, without relying on spe-
cific modified gravity scenarios4. We implement two representative Ansätze for a frequency-
dependent GW propagation velocity. The first Ansatz is motivated from a perturbative
expansion in powers of (f/f?), with f? a fiducial frequency controlling the onset of deviations
from GR. The second Ansatz describes scenarios with rapid changes in cT , which smoothly
change from cT 6= 1 at small frequencies to cT = 1 at larger frequencies. For both Ansätze
we derive how the GW waveforms are modified with respect to GR. The tools we develop,
although applied to two representative scenarios, are very flexible, and can be used in future
for testing any new theoretical models predicting transitory variations of cT as function of
frequency.

We will show that LISA can obtain good constraints on both the GR and new parameters
involved, even without electromagnetic (EM) counterparts. In fact, a major advantage of
our work is that it does not rely on detection of unique EM counterparts for LISA sources.
Whilst LISA standard sirens can serve as a further tool to test gravity (see e.g. [13, 56–61]),
the rate of EM counterparts adds a further layer of uncertainty to that already coming from
the massive black hole population models. Furthermore, constraints from standard sirens
can only be obtained very close to or after the merger, when the sky localisation is good
enough to narrow down candidate host galaxies. In principle, one can imagine the analysis
we present here being performed on-the-fly as a system inspirals, as done for regular GR

2See also [38] for a very recent work where the notion of “infrared causality” is introduced and studied in
detail vis-à-vis asymptotic causality.

3In this context, the allowed super-luminality is Planck-suppressed and one cannot resolve the deviation
from luminality. This result, however, hinges on there being a well-defined decoupling limit. This is not the
case in all frames and one must not therefore extrapolate it to EFTs of dark energy, modified gravity.

4We refer the reader to [52] for a review of modified gravity models, and [5, 53–55] for some studies on
how to constrain modified gravity with GW observations.
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our work is that it does not rely on detection of unique EM counterparts for LISA sources.
Whilst LISA standard sirens can serve as a further tool to test gravity (see e.g. [13, 56–61]),
the rate of EM counterparts adds a further layer of uncertainty to that already coming from
the massive black hole population models. Furthermore, constraints from standard sirens
can only be obtained very close to or after the merger, when the sky localisation is good
enough to narrow down candidate host galaxies. In principle, one can imagine the analysis
we present here being performed on-the-fly as a system inspirals, as done for regular GR

2See also [38] for a very recent work where the notion of “infrared causality” is introduced and studied in
detail vis-à-vis asymptotic causality.

3In this context, the allowed super-luminality is Planck-suppressed and one cannot resolve the deviation
from luminality. This result, however, hinges on there being a well-defined decoupling limit. This is not the
case in all frames and one must not therefore extrapolate it to EFTs of dark energy, modified gravity.

4We refer the reader to [52] for a review of modified gravity models, and [5, 53–55] for some studies on
how to constrain modified gravity with GW observations.
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regime significantly                  

sharp transitions for               are needed in the frequency band between LISA and LIGO frequencies, to ensure 
consistency with the results from GW170817

The picture for �2 is a little more mixed, with PopIII model performing well in the
positive-power case, and the Q3-nod model favouring the negative-power case. We see that
the PopIII model, which generally produces lighter MBHs, yields good constraints on the
positive-power model – this is precisely in line with the discussion of §5.1.

Of course, in reality we will have to work with whatever population of MBH mergers
Nature gives us. If it closely resembles the Q3-delay model, for example, we will be dependent
on a rare golden system to carry out the constraints forecast in this work. However, it
is reassuring to see that in most cases our method has some robustness against realistic
population models. Hence tests of gravity at low frequency can be carried out with LISA in
(almost) any scenario.

6 Conclusions

The development of cosmological modified gravity theories has shown that infrared departures
from GR are theoretically possible. The clearest demonstration of this is screening e↵ects,
where departures from GR manifest on large scales – a weak-field, low-density arena – whilst
being strongly suppressed in other regimes (see [65, 92, 93] for reviews). At the same time,
deviations of the propagation speed of gravitational waves are a common signature of new
gravitational physics. As such, it is clear that the value of cT should be probed at low energy
scales, independently of existing constraints at higher frequencies.

That said, the current tests of gravity from ground-based detectors are a force to be
reckoned with. We find it is not simple to construct a function for cT (f) which satisfies the
LIGO-Virgo bounds whilst modifying the millihertz regime significantly. Sharp transitions
for cT (f) are needed in the frequency band between LISA and LIGO frequencies, to ensure
consistency with the results from GW170817. Future theoretical work will be needed to
explore more sophisticated models for cT (f), built from first principles, that do not rely on
this workaround.

Nevertheless, our work has established a theoretical and numerical toolkit for exploring
the detectability of modified GW propagation with LISA. We implemented two Ansätze for
frequency-dependent GW propagation speed, and computed the resulting modifications to
the GW amplitude and (non-spinning) phase at 2.5PN order. The first Ansatz proposed
departures of the GW propagation speed as a polynomial series in frequency for cT , in which
the powers can be positive or negative. The second Ansatz represented a smooth transition
in cT from some lower value to c, taking place inside or close to the LISA band. We then
performed a Fisher matrix analysis to forecast the constraints on five GR parameters and
two modified gravity parameters. We compared the Fisher forecast with MCMC inference
and found good agreement between them for the forecast parameter bounds, even for signals
of comparatively low SNR.

Our use of inspiral-only and a full IMR waveform represent analyses with di↵erent
theoretical assumptions. If considering departures from GR, one may wish to allow for the
strong-field regime itself to be modified as well; then using a (modified) PhenomA waveform,
which derives from GR simulations, is not appropriate. Our inspiral-only (§5.1) results
represent this conservative case. However, if one is confident that the strong-field regime
is identical to GR (the screened case), then our approach allows the continuation of GW
propagation e↵ects into the merger and ringdown regime. Our results using the full waveform
in §5.2 represent this more optimistic case. We used here a simple IMR waveform (PhenomA);
this should be extended to more sophisticated, spinning waveforms for use with real data.
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performed a Fisher matrix analysis to forecast the constraints on five GR parameters and
two modified gravity parameters. We compared the Fisher forecast with MCMC inference
and found good agreement between them for the forecast parameter bounds, even for signals
of comparatively low SNR.

Our use of inspiral-only and a full IMR waveform represent analyses with di↵erent
theoretical assumptions. If considering departures from GR, one may wish to allow for the
strong-field regime itself to be modified as well; then using a (modified) PhenomA waveform,
which derives from GR simulations, is not appropriate. Our inspiral-only (§5.1) results
represent this conservative case. However, if one is confident that the strong-field regime
is identical to GR (the screened case), then our approach allows the continuation of GW
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aim of this work is to investigate what LISA can teach us about the speed of gravitational
waves, by means of analysis of GW waveforms only. Our goal is part of a wider search for
general, frequency-dependent modifications of GW propagation, which can be tested by the
next generation of GW experiments (see e.g. [7, 8]).

The propagation speed of GWs, cT , was most recently measured by the LIGO-Virgo
collaboration using observations of the binary neutron star merger GW170817 [9–12]. This
impressively precise bound1 of �3⇥10�15  cT �1  7⇥10�16 (in c = 1 units) was translated
into a constraint on the landscape of dark energy and extended gravity models in [13–18],
where it proved fatal for a handful of theories.

Indeed, the constraint from GW170817 is widely considered a major challenge to ex-
tended gravity theories predicting a non-standard GW propagation speed. However, it can
also inform discussions on properties required for these gravity models to possess a healthy
ultraviolet (UV) completion. This is the viewpoint of [19], which added a degree of subtlety
to the interpretation of the data that has not yet been considered widely in the literature
(though see e.g. [20] for further theoretical work on the topic). In [19], compelling arguments
and examples are presented suggesting that the speed of propagation of GWs may vary as
a function of the energy scale. The starting point is the observation that at low energies,
most theories spontaneously break Lorentz invariance through a time-dependent vacuum ex-
pectation value of an additional field(s). Such a time-dependent vacuum expectation value
is essential for driving cosmic acceleration, but it usually leads to a tensor speed cT < 1 due
to non-minimal couplings between extra fields and gravity. Explicit examples of this phe-
nomenon arise in the context of Horndeski theories and their extensions, Beyond Horndeski
or DHOST [21–27].

On the other hand, if the UV completion of an extended gravity theory is required to be
Lorentz invariant (as is usually the case), then necessarily the graviton speed becomes luminal
at high energies. The transition between non-luminal and luminal speed is likely to occur
well before (or at most, around) the strong-coupling scale of the theory, which for Horndeski-
like theories is typically ⇤ = (MPlH2

0
)1/3 ⇠ 260 Hz. This is within the frequency band

of ground-based GW detectors: as a consequence, ground measurements might correspond
to the frequency range for which the Lorentz invariance of the theory has already enforced
luminal propagation speed. At lower frequencies, for example in the LISA frequency band
(⇠ 10�5 � 0.1 Hz), the speed of GWs may instead be di↵erent from one.

In a broader context, an intriguing picture about sub- and super-luminality of GWs is
emerging from recent literature on so-called positivity bounds. Such a programme aims at
using criteria of unitarity, causality, locality (and Lorentz invariance) to ascertain whether
low-energy e↵ective theories admit a standard UV completion. In the cosmological context
or near black holes, it has often been assumed that the speed of GWs ought to be (sub- or
at the most) luminal, leading to theoretical constraints on several models beyond Einstein
gravity on a Friedmann–Robertson–Walker (FRW) background [28–33].

These criteria are an extension of, or rather an extrapolation from, seminal results on
causality bounds derived for flat spacetime. The issue is subtler in curved spacetimes (FRW
being the key example here), as the QED case studied in [34] demonstrates. Whenever
curvature becomes important, super-luminality of GWs does not imply a lack of causality.
In curved spacetime, the whole notion of low-energy super-luminality of an EFT may itself be
a frame-dependent statement (see, e.g., [35] for an example in the cosmological context) and

1The bound quoted here uses the minimum source distance of 26 Mpc, and allows up to 10 s delay before
the emission of photons from the associated gamma ray burst [12].
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therefore not a reliable indicator of causality. Remarkably, in the standard EFT treatment
of GR one finds that loop contributions from massive fields lead to a non-luminal speed of
GWs on cosmological backgrounds; positivity arguments suggest a super-luminal speed of
GWs at low energies [36, 37]. Such findings are not at all in conflict with causality, and have
in several examples been shown to be necessary precisely to guarantee causality. In [37], a
notion of causality2 more reminiscent of the standard lore has been shown to be more than
compatible with positivity bounds whenever a well-defined decoupling limit of the (helicity-2
modes of the) theory exists3.

A frequency-dependent propagation speed can also arise in any scenario of gravity where
the spectral dimension of spacetime changes with the probed scale. This scale-dependent
behaviour of geometry is typical of a broad class of theories of quantum gravity [39–44] and
is due to the presence of at least one fundamental scale in the texture of spacetime (see also
[5, 45–48]). The ensuing dispersion relation features a non-trivial mixing between time and
momentum and leads to a mixed redshift-frequency dependence of cT (z, f). Also, a frequency
dependent GW speed arises in brane-world models motivated by string theory [49].

Lastly, we should mention that a massive graviton (or the related bigravity) scenario
can lead to a frequency-dependent GW velocity, with interesting and testable consequences
for GW waveforms (as first pointed out in [50]). We refer the reader to the recent [51], and
references therein, for thorough analysis of this case.

Our aim in this work is to develop a general theoretical and numerical toolkit for quan-
tifying the perspective of LISA to measure a frequency-dependent cT only through its e↵ects
on GW waveforms from merging massive black hole (MBH) binaries, without relying on spe-
cific modified gravity scenarios4. We implement two representative Ansätze for a frequency-
dependent GW propagation velocity. The first Ansatz is motivated from a perturbative
expansion in powers of (f/f?), with f? a fiducial frequency controlling the onset of deviations
from GR. The second Ansatz describes scenarios with rapid changes in cT , which smoothly
change from cT 6= 1 at small frequencies to cT = 1 at larger frequencies. For both Ansätze
we derive how the GW waveforms are modified with respect to GR. The tools we develop,
although applied to two representative scenarios, are very flexible, and can be used in future
for testing any new theoretical models predicting transitory variations of cT as function of
frequency.

We will show that LISA can obtain good constraints on both the GR and new parameters
involved, even without electromagnetic (EM) counterparts. In fact, a major advantage of
our work is that it does not rely on detection of unique EM counterparts for LISA sources.
Whilst LISA standard sirens can serve as a further tool to test gravity (see e.g. [13, 56–61]),
the rate of EM counterparts adds a further layer of uncertainty to that already coming from
the massive black hole population models. Furthermore, constraints from standard sirens
can only be obtained very close to or after the merger, when the sky localisation is good
enough to narrow down candidate host galaxies. In principle, one can imagine the analysis
we present here being performed on-the-fly as a system inspirals, as done for regular GR

2See also [38] for a very recent work where the notion of “infrared causality” is introduced and studied in
detail vis-à-vis asymptotic causality.

3In this context, the allowed super-luminality is Planck-suppressed and one cannot resolve the deviation
from luminality. This result, however, hinges on there being a well-defined decoupling limit. This is not the
case in all frames and one must not therefore extrapolate it to EFTs of dark energy, modified gravity.

4We refer the reader to [52] for a review of modified gravity models, and [5, 53–55] for some studies on
how to constrain modified gravity with GW observations.
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One should construct a function for                which satisfies the LIGO-Virgo bounds whilst modifying the millihertz 
regime significantly                  

sharp transitions for               are needed in the frequency band between LISA and LIGO frequencies, to ensure 
consistency with the results from GW170817

The picture for �2 is a little more mixed, with PopIII model performing well in the
positive-power case, and the Q3-nod model favouring the negative-power case. We see that
the PopIII model, which generally produces lighter MBHs, yields good constraints on the
positive-power model – this is precisely in line with the discussion of §5.1.

Of course, in reality we will have to work with whatever population of MBH mergers
Nature gives us. If it closely resembles the Q3-delay model, for example, we will be dependent
on a rare golden system to carry out the constraints forecast in this work. However, it
is reassuring to see that in most cases our method has some robustness against realistic
population models. Hence tests of gravity at low frequency can be carried out with LISA in
(almost) any scenario.

6 Conclusions

The development of cosmological modified gravity theories has shown that infrared departures
from GR are theoretically possible. The clearest demonstration of this is screening e↵ects,
where departures from GR manifest on large scales – a weak-field, low-density arena – whilst
being strongly suppressed in other regimes (see [65, 92, 93] for reviews). At the same time,
deviations of the propagation speed of gravitational waves are a common signature of new
gravitational physics. As such, it is clear that the value of cT should be probed at low energy
scales, independently of existing constraints at higher frequencies.

That said, the current tests of gravity from ground-based detectors are a force to be
reckoned with. We find it is not simple to construct a function for cT (f) which satisfies the
LIGO-Virgo bounds whilst modifying the millihertz regime significantly. Sharp transitions
for cT (f) are needed in the frequency band between LISA and LIGO frequencies, to ensure
consistency with the results from GW170817. Future theoretical work will be needed to
explore more sophisticated models for cT (f), built from first principles, that do not rely on
this workaround.

Nevertheless, our work has established a theoretical and numerical toolkit for exploring
the detectability of modified GW propagation with LISA. We implemented two Ansätze for
frequency-dependent GW propagation speed, and computed the resulting modifications to
the GW amplitude and (non-spinning) phase at 2.5PN order. The first Ansatz proposed
departures of the GW propagation speed as a polynomial series in frequency for cT , in which
the powers can be positive or negative. The second Ansatz represented a smooth transition
in cT from some lower value to c, taking place inside or close to the LISA band. We then
performed a Fisher matrix analysis to forecast the constraints on five GR parameters and
two modified gravity parameters. We compared the Fisher forecast with MCMC inference
and found good agreement between them for the forecast parameter bounds, even for signals
of comparatively low SNR.

Our use of inspiral-only and a full IMR waveform represent analyses with di↵erent
theoretical assumptions. If considering departures from GR, one may wish to allow for the
strong-field regime itself to be modified as well; then using a (modified) PhenomA waveform,
which derives from GR simulations, is not appropriate. Our inspiral-only (§5.1) results
represent this conservative case. However, if one is confident that the strong-field regime
is identical to GR (the screened case), then our approach allows the continuation of GW
propagation e↵ects into the merger and ringdown regime. Our results using the full waveform
in §5.2 represent this more optimistic case. We used here a simple IMR waveform (PhenomA);
this should be extended to more sophisticated, spinning waveforms for use with real data.
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the detectability of modified GW propagation with LISA. We implemented two Ansätze for
frequency-dependent GW propagation speed, and computed the resulting modifications to
the GW amplitude and (non-spinning) phase at 2.5PN order. The first Ansatz proposed
departures of the GW propagation speed as a polynomial series in frequency for cT , in which
the powers can be positive or negative. The second Ansatz represented a smooth transition
in cT from some lower value to c, taking place inside or close to the LISA band. We then
performed a Fisher matrix analysis to forecast the constraints on five GR parameters and
two modified gravity parameters. We compared the Fisher forecast with MCMC inference
and found good agreement between them for the forecast parameter bounds, even for signals
of comparatively low SNR.

Our use of inspiral-only and a full IMR waveform represent analyses with di↵erent
theoretical assumptions. If considering departures from GR, one may wish to allow for the
strong-field regime itself to be modified as well; then using a (modified) PhenomA waveform,
which derives from GR simulations, is not appropriate. Our inspiral-only (§5.1) results
represent this conservative case. However, if one is confident that the strong-field regime
is identical to GR (the screened case), then our approach allows the continuation of GW
propagation e↵ects into the merger and ringdown regime. Our results using the full waveform
in §5.2 represent this more optimistic case. We used here a simple IMR waveform (PhenomA);
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Framework: 
Dynamics of GW at emission and detection is described by GR (possibly thanks to screening mechanisms)
Deviations from GR can occur during the propagation of GW through cosmological spacetime from source to observation

aim of this work is to investigate what LISA can teach us about the speed of gravitational
waves, by means of analysis of GW waveforms only. Our goal is part of a wider search for
general, frequency-dependent modifications of GW propagation, which can be tested by the
next generation of GW experiments (see e.g. [7, 8]).

The propagation speed of GWs, cT , was most recently measured by the LIGO-Virgo
collaboration using observations of the binary neutron star merger GW170817 [9–12]. This
impressively precise bound1 of �3⇥10�15  cT �1  7⇥10�16 (in c = 1 units) was translated
into a constraint on the landscape of dark energy and extended gravity models in [13–18],
where it proved fatal for a handful of theories.

Indeed, the constraint from GW170817 is widely considered a major challenge to ex-
tended gravity theories predicting a non-standard GW propagation speed. However, it can
also inform discussions on properties required for these gravity models to possess a healthy
ultraviolet (UV) completion. This is the viewpoint of [19], which added a degree of subtlety
to the interpretation of the data that has not yet been considered widely in the literature
(though see e.g. [20] for further theoretical work on the topic). In [19], compelling arguments
and examples are presented suggesting that the speed of propagation of GWs may vary as
a function of the energy scale. The starting point is the observation that at low energies,
most theories spontaneously break Lorentz invariance through a time-dependent vacuum ex-
pectation value of an additional field(s). Such a time-dependent vacuum expectation value
is essential for driving cosmic acceleration, but it usually leads to a tensor speed cT < 1 due
to non-minimal couplings between extra fields and gravity. Explicit examples of this phe-
nomenon arise in the context of Horndeski theories and their extensions, Beyond Horndeski
or DHOST [21–27].

On the other hand, if the UV completion of an extended gravity theory is required to be
Lorentz invariant (as is usually the case), then necessarily the graviton speed becomes luminal
at high energies. The transition between non-luminal and luminal speed is likely to occur
well before (or at most, around) the strong-coupling scale of the theory, which for Horndeski-
like theories is typically ⇤ = (MPlH2

0
)1/3 ⇠ 260 Hz. This is within the frequency band

of ground-based GW detectors: as a consequence, ground measurements might correspond
to the frequency range for which the Lorentz invariance of the theory has already enforced
luminal propagation speed. At lower frequencies, for example in the LISA frequency band
(⇠ 10�5 � 0.1 Hz), the speed of GWs may instead be di↵erent from one.

In a broader context, an intriguing picture about sub- and super-luminality of GWs is
emerging from recent literature on so-called positivity bounds. Such a programme aims at
using criteria of unitarity, causality, locality (and Lorentz invariance) to ascertain whether
low-energy e↵ective theories admit a standard UV completion. In the cosmological context
or near black holes, it has often been assumed that the speed of GWs ought to be (sub- or
at the most) luminal, leading to theoretical constraints on several models beyond Einstein
gravity on a Friedmann–Robertson–Walker (FRW) background [28–33].

These criteria are an extension of, or rather an extrapolation from, seminal results on
causality bounds derived for flat spacetime. The issue is subtler in curved spacetimes (FRW
being the key example here), as the QED case studied in [34] demonstrates. Whenever
curvature becomes important, super-luminality of GWs does not imply a lack of causality.
In curved spacetime, the whole notion of low-energy super-luminality of an EFT may itself be
a frame-dependent statement (see, e.g., [35] for an example in the cosmological context) and

1The bound quoted here uses the minimum source distance of 26 Mpc, and allows up to 10 s delay before
the emission of photons from the associated gamma ray burst [12].
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therefore not a reliable indicator of causality. Remarkably, in the standard EFT treatment
of GR one finds that loop contributions from massive fields lead to a non-luminal speed of
GWs on cosmological backgrounds; positivity arguments suggest a super-luminal speed of
GWs at low energies [36, 37]. Such findings are not at all in conflict with causality, and have
in several examples been shown to be necessary precisely to guarantee causality. In [37], a
notion of causality2 more reminiscent of the standard lore has been shown to be more than
compatible with positivity bounds whenever a well-defined decoupling limit of the (helicity-2
modes of the) theory exists3.

A frequency-dependent propagation speed can also arise in any scenario of gravity where
the spectral dimension of spacetime changes with the probed scale. This scale-dependent
behaviour of geometry is typical of a broad class of theories of quantum gravity [39–44] and
is due to the presence of at least one fundamental scale in the texture of spacetime (see also
[5, 45–48]). The ensuing dispersion relation features a non-trivial mixing between time and
momentum and leads to a mixed redshift-frequency dependence of cT (z, f). Also, a frequency
dependent GW speed arises in brane-world models motivated by string theory [49].

Lastly, we should mention that a massive graviton (or the related bigravity) scenario
can lead to a frequency-dependent GW velocity, with interesting and testable consequences
for GW waveforms (as first pointed out in [50]). We refer the reader to the recent [51], and
references therein, for thorough analysis of this case.

Our aim in this work is to develop a general theoretical and numerical toolkit for quan-
tifying the perspective of LISA to measure a frequency-dependent cT only through its e↵ects
on GW waveforms from merging massive black hole (MBH) binaries, without relying on spe-
cific modified gravity scenarios4. We implement two representative Ansätze for a frequency-
dependent GW propagation velocity. The first Ansatz is motivated from a perturbative
expansion in powers of (f/f?), with f? a fiducial frequency controlling the onset of deviations
from GR. The second Ansatz describes scenarios with rapid changes in cT , which smoothly
change from cT 6= 1 at small frequencies to cT = 1 at larger frequencies. For both Ansätze
we derive how the GW waveforms are modified with respect to GR. The tools we develop,
although applied to two representative scenarios, are very flexible, and can be used in future
for testing any new theoretical models predicting transitory variations of cT as function of
frequency.

We will show that LISA can obtain good constraints on both the GR and new parameters
involved, even without electromagnetic (EM) counterparts. In fact, a major advantage of
our work is that it does not rely on detection of unique EM counterparts for LISA sources.
Whilst LISA standard sirens can serve as a further tool to test gravity (see e.g. [13, 56–61]),
the rate of EM counterparts adds a further layer of uncertainty to that already coming from
the massive black hole population models. Furthermore, constraints from standard sirens
can only be obtained very close to or after the merger, when the sky localisation is good
enough to narrow down candidate host galaxies. In principle, one can imagine the analysis
we present here being performed on-the-fly as a system inspirals, as done for regular GR

2See also [38] for a very recent work where the notion of “infrared causality” is introduced and studied in
detail vis-à-vis asymptotic causality.

3In this context, the allowed super-luminality is Planck-suppressed and one cannot resolve the deviation
from luminality. This result, however, hinges on there being a well-defined decoupling limit. This is not the
case in all frames and one must not therefore extrapolate it to EFTs of dark energy, modified gravity.

4We refer the reader to [52] for a review of modified gravity models, and [5, 53–55] for some studies on
how to constrain modified gravity with GW observations.
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parameters in [62].

This work is organized as follows. §2 develops general theoretical considerations re-
garding the e↵ects of a frequency-dependent cT (f) on GW propagation and corresponding
observables, and presents the two Ansätze for cT (f) that will be used in our analysis. In
§3 we carefully derive the expressions for the GW waveforms in this context. We make use
of a Post Newtonian (PN) expansion for describing the inspiral phase, and we adapt the
PhenomA waveform [63] and ppE approach of [64] to describe the merger and ringdown
epochs. In §4 we discuss the GW data analysis tools we implement for our forecasts. We
compare Fisher forecast techniques with Monte Carlo Markov chains, showing that a Fisher
analysis is adequate in this context. §5 presents the Fisher forecasts: we derive the prospec-
tive constraints on GR parameters and our Ansätze parameters from GW detection of MBH
binaries. §6 contains our conclusions, and it is followed by five technical appendixes. Ap-
pendix A and B collect details on the Fisher forecast analysis; appendix C contains some
theoretical motivations on one of our Ansätze; appendix D is an analysis on the conditions
to meet for recovering a luminal cT at high frequencies. Finally, appendix E discusses future
directions for further extending and developing our results; moreover, it makes more explicit
the relation among our parametrizations and the ppE framework.

2 Theoretical framework

We assume that the dynamics of GW at emission and detection is described by GR – possibly
thanks to screening mechanisms, see. e.g. [65, 66] for reviews (but see also [67] for a di↵erent
point of view). Deviations from GR can occur during the propagation of GW through
cosmological space-time from source to observation. We focus on exploring consequences
of a frequency-dependent speed of GW propagation cT = cT (f). Except in appendix E,
this is the only modification that we will allow with respect to the standard propagation
equations of GR. In this paper, we will be agnostic with respect to the origin of these
deformations and will collectively refer to them as modified gravity. This term includes
any model where the gravitational sector is altered with respect to GR, from purely ad hoc

phenomenological models and EFT results to models embedded into, or at least motivated by,
a fundamental, self-consistent, predictive theory (e.g. UV completion of existing low-energy
scenarios, quantum gravity, emergent gravity).

We start in §2.1 with general kinematic considerations on the consequences of a cT (f)
for GW observables. We then present in §2.2 two Ansätze for cT (f) that will constitute
benchmark scenarios for our analysis 5.

2.1 Preliminary considerations

We assume that GW are massless, and propagate freely through a cosmological background
from their source – an inspiralling binary – to detection. We consider the following quadratic
action for the linearized transverse-traceless GW modes

ST =
M2

Pl

8

Z
dt d3x a3(t) ↵̄


ḣ2ij � c2T (f)

a2(t)
(~rhij)

2

�
, (2.1)

with MPl the reduced Planck mass, and ↵̄ a dimensionless normalization constant that we
will fix with appropriate physical considerations in what comes next. It is straightforward

5In appendix E, we will extend the formulation of this §2 to a more general case including GW friction,
thus linking the present discussion with scenarios studied in [60].
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Quadratic action for the linearised
transverse-traceless GW modes

dimensionless normalisation constant

Assumption: in proximity of the source,    
modified gravity effects have no time to develop

the frequency of GW as emitted 
by an inspiralling binary process

aim of this work is to investigate what LISA can teach us about the speed of gravitational
waves, by means of analysis of GW waveforms only. Our goal is part of a wider search for
general, frequency-dependent modifications of GW propagation, which can be tested by the
next generation of GW experiments (see e.g. [7, 8]).

The propagation speed of GWs, cT , was most recently measured by the LIGO-Virgo
collaboration using observations of the binary neutron star merger GW170817 [9–12]. This
impressively precise bound1 of �3⇥10�15  cT �1  7⇥10�16 (in c = 1 units) was translated
into a constraint on the landscape of dark energy and extended gravity models in [13–18],
where it proved fatal for a handful of theories.

Indeed, the constraint from GW170817 is widely considered a major challenge to ex-
tended gravity theories predicting a non-standard GW propagation speed. However, it can
also inform discussions on properties required for these gravity models to possess a healthy
ultraviolet (UV) completion. This is the viewpoint of [19], which added a degree of subtlety
to the interpretation of the data that has not yet been considered widely in the literature
(though see e.g. [20] for further theoretical work on the topic). In [19], compelling arguments
and examples are presented suggesting that the speed of propagation of GWs may vary as
a function of the energy scale. The starting point is the observation that at low energies,
most theories spontaneously break Lorentz invariance through a time-dependent vacuum ex-
pectation value of an additional field(s). Such a time-dependent vacuum expectation value
is essential for driving cosmic acceleration, but it usually leads to a tensor speed cT < 1 due
to non-minimal couplings between extra fields and gravity. Explicit examples of this phe-
nomenon arise in the context of Horndeski theories and their extensions, Beyond Horndeski
or DHOST [21–27].

On the other hand, if the UV completion of an extended gravity theory is required to be
Lorentz invariant (as is usually the case), then necessarily the graviton speed becomes luminal
at high energies. The transition between non-luminal and luminal speed is likely to occur
well before (or at most, around) the strong-coupling scale of the theory, which for Horndeski-
like theories is typically ⇤ = (MPlH2

0
)1/3 ⇠ 260 Hz. This is within the frequency band

of ground-based GW detectors: as a consequence, ground measurements might correspond
to the frequency range for which the Lorentz invariance of the theory has already enforced
luminal propagation speed. At lower frequencies, for example in the LISA frequency band
(⇠ 10�5 � 0.1 Hz), the speed of GWs may instead be di↵erent from one.

In a broader context, an intriguing picture about sub- and super-luminality of GWs is
emerging from recent literature on so-called positivity bounds. Such a programme aims at
using criteria of unitarity, causality, locality (and Lorentz invariance) to ascertain whether
low-energy e↵ective theories admit a standard UV completion. In the cosmological context
or near black holes, it has often been assumed that the speed of GWs ought to be (sub- or
at the most) luminal, leading to theoretical constraints on several models beyond Einstein
gravity on a Friedmann–Robertson–Walker (FRW) background [28–33].

These criteria are an extension of, or rather an extrapolation from, seminal results on
causality bounds derived for flat spacetime. The issue is subtler in curved spacetimes (FRW
being the key example here), as the QED case studied in [34] demonstrates. Whenever
curvature becomes important, super-luminality of GWs does not imply a lack of causality.
In curved spacetime, the whole notion of low-energy super-luminality of an EFT may itself be
a frame-dependent statement (see, e.g., [35] for an example in the cosmological context) and

1The bound quoted here uses the minimum source distance of 26 Mpc, and allows up to 10 s delay before
the emission of photons from the associated gamma ray burst [12].
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to prove that the linearized evolution equation obtained from eq. (2.1) describes a free GW,
propagating through a cosmological space-time with arbitrary speed cT (f). The frequency
dependence of cT (f) appearing in eq. (2.1) is physically interpreted as the frequency of GW
as emitted by an inspiralling binary process. We can then make the hypothesis that f = f(t)
with t related to the coalescence time (up to a constant shift). Hence all quantities in eq.
(2.1) depend on time only. We do not need to make any further assumptions about the
functional dependence of cT (f) in this subsection.

It is convenient to distinguish three notions of time for the system under consideration
(see e.g. [68]):

- Time to as measured by ticks of a distant observer’s clock

- Time ts as measured by clock ticks near the source region (local wave zone)

- Time te when the signal is emitted (a cosmological time scale).

The frequency of GW at emission, fs, can be di↵erent from the frequency at detection, fo,
due to both the expansion of the universe and to modified gravity e↵ects. Let us study this
phenomenon in the system at hand.

The action (2.1) describes a free GW travelling through a geodesics in a Friedmann-
Lemaitre-Robertson-Walker (FRW) metric, characterized by a line element

ds2 = cT (f) ↵̄
⇥
�c2T (f) dt2 + a2(t) d~x2

⇤
. (2.2)

This is an e↵ective metric which we use for describing the propagation of the GW [60]. In
fact, denoting the associated metric tensor g̃µ⌫ , the Lagrangian density for a free spin-2 field
propagating through it reads

LT =
p

�g̃ [g̃µ⌫@µhij@⌫hij ] (2.3)

= a3 ↵̄


ḣ2ij � c2T

a2

⇣
~rhij

⌘2
�
, (2.4)

corresponding to the Lagrangian density in the integrand of eq. (2.1). With the help of
eq. (2.2) we write comoving and physical distances as

rGW

com(t) =

Z r

0

dr0 =

Z t

te

cT [f(t0)]

a(t0)
dt0 (2.5)

and

rGW

phys(t) = a(t) c1/2T (f) ↵̄1/2 rGW

com(t) . (2.6)

We make the hypothesis that, in proximity of the source, modified gravity e↵ects have no
time to develop, i.e.

lim
t!ts

rGW

phys
(t)

rGW
com(t)

= a(ts) . (2.7)

This fixes ↵̄ = c�1

T (fs) hence we conclude that

rGW

phys(t) = a(t)


cT (f(t))

cT (fs)

� 1
2

rGW

com(t) . (2.8)
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parameters in [62].

This work is organized as follows. §2 develops general theoretical considerations re-
garding the e↵ects of a frequency-dependent cT (f) on GW propagation and corresponding
observables, and presents the two Ansätze for cT (f) that will be used in our analysis. In
§3 we carefully derive the expressions for the GW waveforms in this context. We make use
of a Post Newtonian (PN) expansion for describing the inspiral phase, and we adapt the
PhenomA waveform [63] and ppE approach of [64] to describe the merger and ringdown
epochs. In §4 we discuss the GW data analysis tools we implement for our forecasts. We
compare Fisher forecast techniques with Monte Carlo Markov chains, showing that a Fisher
analysis is adequate in this context. §5 presents the Fisher forecasts: we derive the prospec-
tive constraints on GR parameters and our Ansätze parameters from GW detection of MBH
binaries. §6 contains our conclusions, and it is followed by five technical appendixes. Ap-
pendix A and B collect details on the Fisher forecast analysis; appendix C contains some
theoretical motivations on one of our Ansätze; appendix D is an analysis on the conditions
to meet for recovering a luminal cT at high frequencies. Finally, appendix E discusses future
directions for further extending and developing our results; moreover, it makes more explicit
the relation among our parametrizations and the ppE framework.

2 Theoretical framework

We assume that the dynamics of GW at emission and detection is described by GR – possibly
thanks to screening mechanisms, see. e.g. [65, 66] for reviews (but see also [67] for a di↵erent
point of view). Deviations from GR can occur during the propagation of GW through
cosmological space-time from source to observation. We focus on exploring consequences
of a frequency-dependent speed of GW propagation cT = cT (f). Except in appendix E,
this is the only modification that we will allow with respect to the standard propagation
equations of GR. In this paper, we will be agnostic with respect to the origin of these
deformations and will collectively refer to them as modified gravity. This term includes
any model where the gravitational sector is altered with respect to GR, from purely ad hoc

phenomenological models and EFT results to models embedded into, or at least motivated by,
a fundamental, self-consistent, predictive theory (e.g. UV completion of existing low-energy
scenarios, quantum gravity, emergent gravity).

We start in §2.1 with general kinematic considerations on the consequences of a cT (f)
for GW observables. We then present in §2.2 two Ansätze for cT (f) that will constitute
benchmark scenarios for our analysis 5.

2.1 Preliminary considerations

We assume that GW are massless, and propagate freely through a cosmological background
from their source – an inspiralling binary – to detection. We consider the following quadratic
action for the linearized transverse-traceless GW modes

ST =
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dt d3x a3(t) ↵̄


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with MPl the reduced Planck mass, and ↵̄ a dimensionless normalization constant that we
will fix with appropriate physical considerations in what comes next. It is straightforward

5In appendix E, we will extend the formulation of this §2 to a more general case including GW friction,
thus linking the present discussion with scenarios studied in [60].
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Lineralised evolution equation describing a free GW propagating through a cosmological spacetime with arbitrary speed
to prove that the linearized evolution equation obtained from eq. (2.1) describes a free GW,
propagating through a cosmological space-time with arbitrary speed cT (f). The frequency
dependence of cT (f) appearing in eq. (2.1) is physically interpreted as the frequency of GW
as emitted by an inspiralling binary process. We can then make the hypothesis that f = f(t)
with t related to the coalescence time (up to a constant shift). Hence all quantities in eq.
(2.1) depend on time only. We do not need to make any further assumptions about the
functional dependence of cT (f) in this subsection.

It is convenient to distinguish three notions of time for the system under consideration
(see e.g. [68]):

- Time to as measured by ticks of a distant observer’s clock

- Time ts as measured by clock ticks near the source region (local wave zone)

- Time te when the signal is emitted (a cosmological time scale).

The frequency of GW at emission, fs, can be di↵erent from the frequency at detection, fo,
due to both the expansion of the universe and to modified gravity e↵ects. Let us study this
phenomenon in the system at hand.

The action (2.1) describes a free GW travelling through a geodesics in a Friedmann-
Lemaitre-Robertson-Walker (FRW) metric, characterized by a line element

ds2 = cT (f) ↵̄
⇥
�c2T (f) dt2 + a2(t) d~x2

⇤
. (2.2)

This is an e↵ective metric which we use for describing the propagation of the GW [60]. In
fact, denoting the associated metric tensor g̃µ⌫ , the Lagrangian density for a free spin-2 field
propagating through it reads

LT =
p

�g̃ [g̃µ⌫@µhij@⌫hij ] (2.3)

= a3 ↵̄


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corresponding to the Lagrangian density in the integrand of eq. (2.1). With the help of
eq. (2.2) we write comoving and physical distances as
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to prove that the linearized evolution equation obtained from eq. (2.1) describes a free GW,
propagating through a cosmological space-time with arbitrary speed cT (f). The frequency
dependence of cT (f) appearing in eq. (2.1) is physically interpreted as the frequency of GW
as emitted by an inspiralling binary process. We can then make the hypothesis that f = f(t)
with t related to the coalescence time (up to a constant shift). Hence all quantities in eq.
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The frequency of GW at emission, fs, can be di↵erent from the frequency at detection, fo,
due to both the expansion of the universe and to modified gravity e↵ects. Let us study this
phenomenon in the system at hand.

The action (2.1) describes a free GW travelling through a geodesics in a Friedmann-
Lemaitre-Robertson-Walker (FRW) metric, characterized by a line element

ds2 = cT (f) ↵̄
⇥
�c2T (f) dt2 + a2(t) d~x2

⇤
. (2.2)

This is an e↵ective metric which we use for describing the propagation of the GW [60]. In
fact, denoting the associated metric tensor g̃µ⌫ , the Lagrangian density for a free spin-2 field
propagating through it reads

LT =
p

�g̃ [g̃µ⌫@µhij@⌫hij ] (2.3)

= a3 ↵̄


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Assume GW are massless and propagate freely through cosmological background from their source (inspiralling binary) to detection

aim of this work is to investigate what LISA can teach us about the speed of gravitational
waves, by means of analysis of GW waveforms only. Our goal is part of a wider search for
general, frequency-dependent modifications of GW propagation, which can be tested by the
next generation of GW experiments (see e.g. [7, 8]).

The propagation speed of GWs, cT , was most recently measured by the LIGO-Virgo
collaboration using observations of the binary neutron star merger GW170817 [9–12]. This
impressively precise bound1 of �3⇥10�15  cT �1  7⇥10�16 (in c = 1 units) was translated
into a constraint on the landscape of dark energy and extended gravity models in [13–18],
where it proved fatal for a handful of theories.

Indeed, the constraint from GW170817 is widely considered a major challenge to ex-
tended gravity theories predicting a non-standard GW propagation speed. However, it can
also inform discussions on properties required for these gravity models to possess a healthy
ultraviolet (UV) completion. This is the viewpoint of [19], which added a degree of subtlety
to the interpretation of the data that has not yet been considered widely in the literature
(though see e.g. [20] for further theoretical work on the topic). In [19], compelling arguments
and examples are presented suggesting that the speed of propagation of GWs may vary as
a function of the energy scale. The starting point is the observation that at low energies,
most theories spontaneously break Lorentz invariance through a time-dependent vacuum ex-
pectation value of an additional field(s). Such a time-dependent vacuum expectation value
is essential for driving cosmic acceleration, but it usually leads to a tensor speed cT < 1 due
to non-minimal couplings between extra fields and gravity. Explicit examples of this phe-
nomenon arise in the context of Horndeski theories and their extensions, Beyond Horndeski
or DHOST [21–27].

On the other hand, if the UV completion of an extended gravity theory is required to be
Lorentz invariant (as is usually the case), then necessarily the graviton speed becomes luminal
at high energies. The transition between non-luminal and luminal speed is likely to occur
well before (or at most, around) the strong-coupling scale of the theory, which for Horndeski-
like theories is typically ⇤ = (MPlH2

0
)1/3 ⇠ 260 Hz. This is within the frequency band

of ground-based GW detectors: as a consequence, ground measurements might correspond
to the frequency range for which the Lorentz invariance of the theory has already enforced
luminal propagation speed. At lower frequencies, for example in the LISA frequency band
(⇠ 10�5 � 0.1 Hz), the speed of GWs may instead be di↵erent from one.

In a broader context, an intriguing picture about sub- and super-luminality of GWs is
emerging from recent literature on so-called positivity bounds. Such a programme aims at
using criteria of unitarity, causality, locality (and Lorentz invariance) to ascertain whether
low-energy e↵ective theories admit a standard UV completion. In the cosmological context
or near black holes, it has often been assumed that the speed of GWs ought to be (sub- or
at the most) luminal, leading to theoretical constraints on several models beyond Einstein
gravity on a Friedmann–Robertson–Walker (FRW) background [28–33].

These criteria are an extension of, or rather an extrapolation from, seminal results on
causality bounds derived for flat spacetime. The issue is subtler in curved spacetimes (FRW
being the key example here), as the QED case studied in [34] demonstrates. Whenever
curvature becomes important, super-luminality of GWs does not imply a lack of causality.
In curved spacetime, the whole notion of low-energy super-luminality of an EFT may itself be
a frame-dependent statement (see, e.g., [35] for an example in the cosmological context) and

1The bound quoted here uses the minimum source distance of 26 Mpc, and allows up to 10 s delay before
the emission of photons from the associated gamma ray burst [12].
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effective metric to describe propagation of GW

therefore not a reliable indicator of causality. Remarkably, in the standard EFT treatment
of GR one finds that loop contributions from massive fields lead to a non-luminal speed of
GWs on cosmological backgrounds; positivity arguments suggest a super-luminal speed of
GWs at low energies [36, 37]. Such findings are not at all in conflict with causality, and have
in several examples been shown to be necessary precisely to guarantee causality. In [37], a
notion of causality2 more reminiscent of the standard lore has been shown to be more than
compatible with positivity bounds whenever a well-defined decoupling limit of the (helicity-2
modes of the) theory exists3.

A frequency-dependent propagation speed can also arise in any scenario of gravity where
the spectral dimension of spacetime changes with the probed scale. This scale-dependent
behaviour of geometry is typical of a broad class of theories of quantum gravity [39–44] and
is due to the presence of at least one fundamental scale in the texture of spacetime (see also
[5, 45–48]). The ensuing dispersion relation features a non-trivial mixing between time and
momentum and leads to a mixed redshift-frequency dependence of cT (z, f). Also, a frequency
dependent GW speed arises in brane-world models motivated by string theory [49].

Lastly, we should mention that a massive graviton (or the related bigravity) scenario
can lead to a frequency-dependent GW velocity, with interesting and testable consequences
for GW waveforms (as first pointed out in [50]). We refer the reader to the recent [51], and
references therein, for thorough analysis of this case.

Our aim in this work is to develop a general theoretical and numerical toolkit for quan-
tifying the perspective of LISA to measure a frequency-dependent cT only through its e↵ects
on GW waveforms from merging massive black hole (MBH) binaries, without relying on spe-
cific modified gravity scenarios4. We implement two representative Ansätze for a frequency-
dependent GW propagation velocity. The first Ansatz is motivated from a perturbative
expansion in powers of (f/f?), with f? a fiducial frequency controlling the onset of deviations
from GR. The second Ansatz describes scenarios with rapid changes in cT , which smoothly
change from cT 6= 1 at small frequencies to cT = 1 at larger frequencies. For both Ansätze
we derive how the GW waveforms are modified with respect to GR. The tools we develop,
although applied to two representative scenarios, are very flexible, and can be used in future
for testing any new theoretical models predicting transitory variations of cT as function of
frequency.

We will show that LISA can obtain good constraints on both the GR and new parameters
involved, even without electromagnetic (EM) counterparts. In fact, a major advantage of
our work is that it does not rely on detection of unique EM counterparts for LISA sources.
Whilst LISA standard sirens can serve as a further tool to test gravity (see e.g. [13, 56–61]),
the rate of EM counterparts adds a further layer of uncertainty to that already coming from
the massive black hole population models. Furthermore, constraints from standard sirens
can only be obtained very close to or after the merger, when the sky localisation is good
enough to narrow down candidate host galaxies. In principle, one can imagine the analysis
we present here being performed on-the-fly as a system inspirals, as done for regular GR

2See also [38] for a very recent work where the notion of “infrared causality” is introduced and studied in
detail vis-à-vis asymptotic causality.

3In this context, the allowed super-luminality is Planck-suppressed and one cannot resolve the deviation
from luminality. This result, however, hinges on there being a well-defined decoupling limit. This is not the
case in all frames and one must not therefore extrapolate it to EFTs of dark energy, modified gravity.

4We refer the reader to [52] for a review of modified gravity models, and [5, 53–55] for some studies on
how to constrain modified gravity with GW observations.
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As an immediate, general application of the formulas we derived, we conclude this
subsection by deriving an expression for the GW luminosity distance in scenarios with � 6= 0,
following the arguments of [60]. We call F the energy flux at observer position:

F =
dEo/dto

Area
(2.19)

where Area= 4⇡(rGW

phys
)2. Then we introduce the luminosity at the source position, L:

L =
dEs

dts
=

(1 + ze)2

(1 � �)2
dEo

dto
, (2.20)

where (2.15) has been used. The luminosity distance dGW

L is defined in terms of the following
relation

F ⌘ L
4⇡ (dGW

L )2
. (2.21)

Using these formulas, as well as relation (2.8) to connect comoving and physical distance, we
obtain

dGW

L = (1 + ze) (1 � �)�
1
2 rGW

com , (2.22)

so the e↵ects of a cT varying with frequency are contained in the dependence on � as defined
in (2.12). As we will learn in §3, the luminosity distance dGW

L and other relations we derived
here play an important role for characterizing the properties of the GW waveforms.

2.2 Two Ansätze for cT (f)

After the previous considerations, in this subsection we discuss two representative Ansätze
for cT . They will represent our benchmark scenarios for the LISA forecasts developed in the
next sections. In fact, after discussing the Ansatz functional forms, we briefly anticipate the
level of constraints we will be able to obtain with LISA on the parameters characterizing
them. Importantly, these Ansätze aim to discuss possible ways to parametrize deviations
from cT = 1 around LISA frequencies, and are not built for automatically satisfying at
the same time constraints on cT within ground-based frequency ranges. To do so, further
corrections to their frequency dependence might be needed in the intermediate frequency
band between LISA and ground-based experiments. We will comment on this point through
the text, and above all in Appendix D.

Polynomial Ansatz

Inspired by the scale-dependent choice originally put forward in [69], our first model param-
etrizes cT (f) as a polynomial in frequency:

cT (f) = 1 +
X

n

�n

✓
f

f⇤

◆n

. (2.23)

Here n can be a positive or negative integer, �n is a set of parameters controlling deviations
from GR, and f⇤ is a fixed frequency scale controlling the onset of the deviations. In what
follows we study both positive and negative values of n as separate cases. Note that, for
simplicity, we do not allow �n to be function of time; this possibility will nevertheless be
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Here n can be a positive or negative integer, �n is a set of parameters controlling deviations
from GR, and f⇤ is a fixed frequency scale controlling the onset of the deviations. In what
follows we study both positive and negative values of n as separate cases. Note that, for
simplicity, we do not allow �n to be function of time; this possibility will nevertheless be
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therefore not a reliable indicator of causality. Remarkably, in the standard EFT treatment
of GR one finds that loop contributions from massive fields lead to a non-luminal speed of
GWs on cosmological backgrounds; positivity arguments suggest a super-luminal speed of
GWs at low energies [36, 37]. Such findings are not at all in conflict with causality, and have
in several examples been shown to be necessary precisely to guarantee causality. In [37], a
notion of causality2 more reminiscent of the standard lore has been shown to be more than
compatible with positivity bounds whenever a well-defined decoupling limit of the (helicity-2
modes of the) theory exists3.

A frequency-dependent propagation speed can also arise in any scenario of gravity where
the spectral dimension of spacetime changes with the probed scale. This scale-dependent
behaviour of geometry is typical of a broad class of theories of quantum gravity [39–44] and
is due to the presence of at least one fundamental scale in the texture of spacetime (see also
[5, 45–48]). The ensuing dispersion relation features a non-trivial mixing between time and
momentum and leads to a mixed redshift-frequency dependence of cT (z, f). Also, a frequency
dependent GW speed arises in brane-world models motivated by string theory [49].

Lastly, we should mention that a massive graviton (or the related bigravity) scenario
can lead to a frequency-dependent GW velocity, with interesting and testable consequences
for GW waveforms (as first pointed out in [50]). We refer the reader to the recent [51], and
references therein, for thorough analysis of this case.

Our aim in this work is to develop a general theoretical and numerical toolkit for quan-
tifying the perspective of LISA to measure a frequency-dependent cT only through its e↵ects
on GW waveforms from merging massive black hole (MBH) binaries, without relying on spe-
cific modified gravity scenarios4. We implement two representative Ansätze for a frequency-
dependent GW propagation velocity. The first Ansatz is motivated from a perturbative
expansion in powers of (f/f?), with f? a fiducial frequency controlling the onset of deviations
from GR. The second Ansatz describes scenarios with rapid changes in cT , which smoothly
change from cT 6= 1 at small frequencies to cT = 1 at larger frequencies. For both Ansätze
we derive how the GW waveforms are modified with respect to GR. The tools we develop,
although applied to two representative scenarios, are very flexible, and can be used in future
for testing any new theoretical models predicting transitory variations of cT as function of
frequency.

We will show that LISA can obtain good constraints on both the GR and new parameters
involved, even without electromagnetic (EM) counterparts. In fact, a major advantage of
our work is that it does not rely on detection of unique EM counterparts for LISA sources.
Whilst LISA standard sirens can serve as a further tool to test gravity (see e.g. [13, 56–61]),
the rate of EM counterparts adds a further layer of uncertainty to that already coming from
the massive black hole population models. Furthermore, constraints from standard sirens
can only be obtained very close to or after the merger, when the sky localisation is good
enough to narrow down candidate host galaxies. In principle, one can imagine the analysis
we present here being performed on-the-fly as a system inspirals, as done for regular GR

2See also [38] for a very recent work where the notion of “infrared causality” is introduced and studied in
detail vis-à-vis asymptotic causality.

3In this context, the allowed super-luminality is Planck-suppressed and one cannot resolve the deviation
from luminality. This result, however, hinges on there being a well-defined decoupling limit. This is not the
case in all frames and one must not therefore extrapolate it to EFTs of dark energy, modified gravity.

4We refer the reader to [52] for a review of modified gravity models, and [5, 53–55] for some studies on
how to constrain modified gravity with GW observations.
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As an immediate, general application of the formulas we derived, we conclude this
subsection by deriving an expression for the GW luminosity distance in scenarios with � 6= 0,
following the arguments of [60]. We call F the energy flux at observer position:

F =
dEo/dto

Area
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where (2.15) has been used. The luminosity distance dGW

L is defined in terms of the following
relation

F ⌘ L
4⇡ (dGW

L )2
. (2.21)

Using these formulas, as well as relation (2.8) to connect comoving and physical distance, we
obtain

dGW

L = (1 + ze) (1 � �)�
1
2 rGW

com , (2.22)

so the e↵ects of a cT varying with frequency are contained in the dependence on � as defined
in (2.12). As we will learn in §3, the luminosity distance dGW

L and other relations we derived
here play an important role for characterizing the properties of the GW waveforms.

2.2 Two Ansätze for cT (f)

After the previous considerations, in this subsection we discuss two representative Ansätze
for cT . They will represent our benchmark scenarios for the LISA forecasts developed in the
next sections. In fact, after discussing the Ansatz functional forms, we briefly anticipate the
level of constraints we will be able to obtain with LISA on the parameters characterizing
them. Importantly, these Ansätze aim to discuss possible ways to parametrize deviations
from cT = 1 around LISA frequencies, and are not built for automatically satisfying at
the same time constraints on cT within ground-based frequency ranges. To do so, further
corrections to their frequency dependence might be needed in the intermediate frequency
band between LISA and ground-based experiments. We will comment on this point through
the text, and above all in Appendix D.

Polynomial Ansatz

Inspired by the scale-dependent choice originally put forward in [69], our first model param-
etrizes cT (f) as a polynomial in frequency:

cT (f) = 1 +
X

n

�n

✓
f

f⇤

◆n

. (2.23)

Here n can be a positive or negative integer, �n is a set of parameters controlling deviations
from GR, and f⇤ is a fixed frequency scale controlling the onset of the deviations. In what
follows we study both positive and negative values of n as separate cases. Note that, for
simplicity, we do not allow �n to be function of time; this possibility will nevertheless be
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Here n can be a positive or negative integer, �n is a set of parameters controlling deviations
from GR, and f⇤ is a fixed frequency scale controlling the onset of the deviations. In what
follows we study both positive and negative values of n as separate cases. Note that, for
simplicity, we do not allow �n to be function of time; this possibility will nevertheless be
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Figure 22: A deviation of (c�c0)/c = 10�4 in the EFT-inspired Ansatz (2.24) (black curve)
with f⇤ = 3 ⇥ 10�4 Hz, motivated by our forecasts in §5 and observable with LISA, can be
e�ciently suppressed with a power-law (blue) or exponential (red) suppression, eqs. (D.5)
and (D.6), from higher-order corrections to satisfy the GW170817 bound (gray dotted) while
remaining an accurate description in the LISA band. The parameters are chosen as f̃⇤ =
0.2 Hz, p = 2 and f̃⇤ = 1 Hz and p = 1/2 for the power-law and exponential suppressions,
respectively.

purpose we shall consider a power-law and exponential suppression of the tensor sound speed
of the forms

c̃T (f) =
cT (f) + (f/f̃⇤)2p

1 + (f/f̃⇤)2p
, (D.5)

c̃T (f) = 1 � [1 � cT (f)] e�(f/f̃⇤)2p , (D.6)

respectively. The parameters f̃⇤ and p shall be chosen such that cT (f), given by eqs. (2.23)
or (2.24), is valid in the LISA band and (c � cT )/c < 10�15 for LIGO. For simplicity, we
shall focus only on the EFT Ansatz, which in the high-frequency limit can however also be
interpreted in terms of a n = �1 power-law Ansatz. Figure 22 shows how a deviation of
(c � c0)/c = 10�4 in eq. (2.24) with f⇤ = 3 ⇥ 10�4 Hz, motivated by our forecasts in §5, can
be e�ciently suppressed with eqs. (D.5) or (D.6) in the LIGO band. Particularly, we find
that for an exponential or power-law suppression with p & 1/2 or p & 2, our forecasts remain
valid for a potential signature detectable in the LISA band that is hidden to LIGO.

E Future directions: general parametrization of GW propagation

In §2.2, we motivated a frequency-dependent group velocity cT (f) from the fact that, in many
models of modified gravity (including quantum gravity), the modification of the dispersion
relation can be written as a modified dispersion relation !2 � k2 ! F (!, k) = 0. There, we
assumed that all the time- or redshift-dependence of cT was implicit in the frequency f . Now
we relax that assumption and consider a non-trivial function cT (z, f) of the redshift and the
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therefore not a reliable indicator of causality. Remarkably, in the standard EFT treatment
of GR one finds that loop contributions from massive fields lead to a non-luminal speed of
GWs on cosmological backgrounds; positivity arguments suggest a super-luminal speed of
GWs at low energies [36, 37]. Such findings are not at all in conflict with causality, and have
in several examples been shown to be necessary precisely to guarantee causality. In [37], a
notion of causality2 more reminiscent of the standard lore has been shown to be more than
compatible with positivity bounds whenever a well-defined decoupling limit of the (helicity-2
modes of the) theory exists3.

A frequency-dependent propagation speed can also arise in any scenario of gravity where
the spectral dimension of spacetime changes with the probed scale. This scale-dependent
behaviour of geometry is typical of a broad class of theories of quantum gravity [39–44] and
is due to the presence of at least one fundamental scale in the texture of spacetime (see also
[5, 45–48]). The ensuing dispersion relation features a non-trivial mixing between time and
momentum and leads to a mixed redshift-frequency dependence of cT (z, f). Also, a frequency
dependent GW speed arises in brane-world models motivated by string theory [49].

Lastly, we should mention that a massive graviton (or the related bigravity) scenario
can lead to a frequency-dependent GW velocity, with interesting and testable consequences
for GW waveforms (as first pointed out in [50]). We refer the reader to the recent [51], and
references therein, for thorough analysis of this case.

Our aim in this work is to develop a general theoretical and numerical toolkit for quan-
tifying the perspective of LISA to measure a frequency-dependent cT only through its e↵ects
on GW waveforms from merging massive black hole (MBH) binaries, without relying on spe-
cific modified gravity scenarios4. We implement two representative Ansätze for a frequency-
dependent GW propagation velocity. The first Ansatz is motivated from a perturbative
expansion in powers of (f/f?), with f? a fiducial frequency controlling the onset of deviations
from GR. The second Ansatz describes scenarios with rapid changes in cT , which smoothly
change from cT 6= 1 at small frequencies to cT = 1 at larger frequencies. For both Ansätze
we derive how the GW waveforms are modified with respect to GR. The tools we develop,
although applied to two representative scenarios, are very flexible, and can be used in future
for testing any new theoretical models predicting transitory variations of cT as function of
frequency.

We will show that LISA can obtain good constraints on both the GR and new parameters
involved, even without electromagnetic (EM) counterparts. In fact, a major advantage of
our work is that it does not rely on detection of unique EM counterparts for LISA sources.
Whilst LISA standard sirens can serve as a further tool to test gravity (see e.g. [13, 56–61]),
the rate of EM counterparts adds a further layer of uncertainty to that already coming from
the massive black hole population models. Furthermore, constraints from standard sirens
can only be obtained very close to or after the merger, when the sky localisation is good
enough to narrow down candidate host galaxies. In principle, one can imagine the analysis
we present here being performed on-the-fly as a system inspirals, as done for regular GR

2See also [38] for a very recent work where the notion of “infrared causality” is introduced and studied in
detail vis-à-vis asymptotic causality.

3In this context, the allowed super-luminality is Planck-suppressed and one cannot resolve the deviation
from luminality. This result, however, hinges on there being a well-defined decoupling limit. This is not the
case in all frames and one must not therefore extrapolate it to EFTs of dark energy, modified gravity.

4We refer the reader to [52] for a review of modified gravity models, and [5, 53–55] for some studies on
how to constrain modified gravity with GW observations.
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which is an increasing function of c0. At the inflection point the slope of cT (f) is maximal,
resulting

nmax

T (fin) =
(1 � c2

0
)

�
1 +

p
2 c0

�2 (C.10)

which is a decreasing function of c0. To investigate deviations from GR with the above
speed profile, we compute the dimensionless quantity � defined in (2.13). For a given c0, the
maximum GR deviation depends on redshift

�max(c0, z) = A(c0)

✓
1 � 1

(1 + z)n(c0)

◆
. (C.11)

We find that parameters A and n both decrease linearly with c0. We perform least squares
polynomial fits to obtain the expression in (2.25). These results hint at possible independent
redshift mapping of GW sources, provided we can accurately estimate �max.

D Recovering a luminal cT at high frequencies

As discussed in §2.2, for any viable deviation in the tensor sound speed cT from the luminal
speed c to be observable in the LISA frequency band, the more complete gravitational theory,
valid beyond its EFT description, must e�ciently suppress this deviation to within a relative
deviation of O(10�15) in the LIGO band. For a simple quantitative comparison of the
constraints, let us consider the LIGO bound |1 � cT (f ⇠ 10 Hz)/c| . 10�15, which for the
power-law parametrisation (2.23) approximately implies that

|�n| . 10�15�n(f⇤/Hz)n . (D.1)

In comparison, in §5, we found for the positive and negative powers that

|�1| . 0.065(f⇤/Hz) , |�2| . 2.5(f⇤/Hz)2 , (D.2)

|�1| . 1.4 ⇥ 10�8(f⇤/Hz)�1 , |�2| . 2.6 ⇥ 10�12(f⇤/Hz)�2 , (D.3)

for the PopIII and Q3-nod cases, respectively. Hence, if the functional forms are maintained
to LIGO scales, these constraints are weaker than that of GW170817. In the case of the
EFT-inspired cT (f) function (2.24), we note that for f⇤ ⌧ 10 Hz, cT (f) reduces in the LIGO
band to a negative power law with n = �1 and �1 =

p
2(1 � c2

0
)/2 ⇡

p
1 � c0 for c0 ⇡ 1.

Thus, in the LIGO band, our constraint from §5 can roughly be interpreted as

|�1| . 3 ⇥ 10�6(f⇤/Hz)�1 , (D.4)

which is also weaker than eq. (D.1).
Observable modifications introduced with the functional forms of cT (f) in eqs. (2.23)

and (2.24) can thus not be suppressed e�ciently enough to satisfy the GW170817 bound.
However, higher-order corrections may in principle kick in to suppress the remaining devia-
tions in the LIGO band. We shall briefly inspect here some requirements on the functional
forms of cT (f) that a more complete UV description of a theory should satisfy to remain
observable in the LISA band while remaining compatible with the LIGO constraint. For this

– 43 –

LIGO bound implies:

Expanding             up to quadratic order will prove sufficient to study the dominant corrections to the waveform 
detectable with LISA

explored in appendix E. Notice that our Ansatz (2.23) includes more than one free parameter,
hence it goes beyond the one-parameter parametrization proposed in [45].

In the positive-power (n > 0) and negative-power (n < 0) cases alike, we assume
(f/f⇤)sgn(n) to be a small quantity, allowing us to Taylor expand cT (f) (assuming that the
�n are not large enough to violate the validity of the expansion). We will learn that expanding
cT (f) up to quadratic order will prove su�cient to study the dominant corrections to the
waveform that may be detectable with LISA. We do not include the n = 0 term in either
power-law model, since this represents a frequency-independent correction to cT that has
already been constrained to be very small at z ⌧ 1 by GW170817.

For the positive-power case, we require f⇤ > f everywhere in the LISA band, meaning
that the deviation cT /c � 1 will grow as the inspiral evolves (here we temporarily restore
speed-of-light units). This case turns out to be the mathematically simplest model we study;
however, it implicitly requires that some termination mechanism switches o↵ the deviations
between the LISA band and the band of ground-based detectors, again to maintain consis-
tency with current results bounds on cT (see Appendix D).

Similarly, for the negative-power model f⇤ should be outside the LISA frequency interval,
so that (f/f⇤)�1 stays small in the LISA band. The negative-power case is arguably a more
natural prescription of low-energy deviations from GR, because at high frequencies cT /c ! 1.
However, the bounds on |cT /c � 1| from GW170817 are so impressively tight that they are
hard to satisfy even in this model. Using the values of f⇤ we discuss in the next paragraph,
and assuming no finely-tuned cancellations between the n = �1 and n = �2 terms, formally
we need |�1| . 10�4 to satisfy the existing bounds (�2 remains virtually unconstrained).
However, recognising that our power-law models would at best be only crude representations
of the underlying physics, we do not apply the latter prior on �1 in most of this work. In
§5.2 we present results with only �2 allowed to vary, which require no further assumptions
to be consistent with GW170817.

In our forecast in §5, we mainly consider MBH binaries with total masses between 104

and 107M�, as these generally give signal-to-noise ratio (SNR) > 10 in LISA (see Figure 11).
The frequency range for these waveforms is between ⇠ 10�5 and ⇠ 10�1 Hz, so f⇤ is required
to stay outside this range. In addition, f⇤ should be lower than the LIGO lower sensitivity
bound of ⇠ 10 Hz. Therefore the typical ‘safe’ values of f⇤ we use in the positive- and
negative-power cases are 2 Hz and 2⇥ 10�7 Hz, respectively; in this context, safe means that
the deviations from GR will remain small for any astrophysical system detectable by LISA.
Values of f⇤ within the LISA band can be considered, and will result in tighter parameter
constraints, but also imply that some LISA systems could show non-perturbative departures
from GR. Such non-perturbative e↵ects lie beyond the scope of the current work. Finally, it
is worth noting that constraints on eq. (2.23) are degenerate in �n/fn

⇤ and so constraints on
�n can be translated from one f⇤ to another (Appendix. D).

An EFT-inspired Ansatz

The second parametrization we consider has the property of rapidly changing from a value
of cT smaller than one at small frequencies to cT = 1 at high frequencies (see Figure 1):

cT (f) =

"
1 +

f2
?

f2
� f2

?

f2

s

1 + 2
�
1 � c2

0

� f2

f2
?

#1/2

. (2.24)
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As an immediate, general application of the formulas we derived, we conclude this
subsection by deriving an expression for the GW luminosity distance in scenarios with � 6= 0,
following the arguments of [60]. We call F the energy flux at observer position:

F =
dEo/dto

Area
(2.19)

where Area= 4⇡(rGW

phys
)2. Then we introduce the luminosity at the source position, L:

L =
dEs

dts
=

(1 + ze)2

(1 � �)2
dEo

dto
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where (2.15) has been used. The luminosity distance dGW

L is defined in terms of the following
relation

F ⌘ L
4⇡ (dGW

L )2
. (2.21)

Using these formulas, as well as relation (2.8) to connect comoving and physical distance, we
obtain

dGW

L = (1 + ze) (1 � �)�
1
2 rGW

com , (2.22)

so the e↵ects of a cT varying with frequency are contained in the dependence on � as defined
in (2.12). As we will learn in §3, the luminosity distance dGW

L and other relations we derived
here play an important role for characterizing the properties of the GW waveforms.

2.2 Two Ansätze for cT (f)

After the previous considerations, in this subsection we discuss two representative Ansätze
for cT . They will represent our benchmark scenarios for the LISA forecasts developed in the
next sections. In fact, after discussing the Ansatz functional forms, we briefly anticipate the
level of constraints we will be able to obtain with LISA on the parameters characterizing
them. Importantly, these Ansätze aim to discuss possible ways to parametrize deviations
from cT = 1 around LISA frequencies, and are not built for automatically satisfying at
the same time constraints on cT within ground-based frequency ranges. To do so, further
corrections to their frequency dependence might be needed in the intermediate frequency
band between LISA and ground-based experiments. We will comment on this point through
the text, and above all in Appendix D.

Polynomial Ansatz

Inspired by the scale-dependent choice originally put forward in [69], our first model param-
etrizes cT (f) as a polynomial in frequency:

cT (f) = 1 +
X

n

�n

✓
f

f⇤

◆n

. (2.23)

Here n can be a positive or negative integer, �n is a set of parameters controlling deviations
from GR, and f⇤ is a fixed frequency scale controlling the onset of the deviations. In what
follows we study both positive and negative values of n as separate cases. Note that, for
simplicity, we do not allow �n to be function of time; this possibility will nevertheless be
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As an immediate, general application of the formulas we derived, we conclude this
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dto
, (2.20)
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. (2.21)

Using these formulas, as well as relation (2.8) to connect comoving and physical distance, we
obtain

dGW

L = (1 + ze) (1 � �)�
1
2 rGW

com , (2.22)

so the e↵ects of a cT varying with frequency are contained in the dependence on � as defined
in (2.12). As we will learn in §3, the luminosity distance dGW

L and other relations we derived
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After the previous considerations, in this subsection we discuss two representative Ansätze
for cT . They will represent our benchmark scenarios for the LISA forecasts developed in the
next sections. In fact, after discussing the Ansatz functional forms, we briefly anticipate the
level of constraints we will be able to obtain with LISA on the parameters characterizing
them. Importantly, these Ansätze aim to discuss possible ways to parametrize deviations
from cT = 1 around LISA frequencies, and are not built for automatically satisfying at
the same time constraints on cT within ground-based frequency ranges. To do so, further
corrections to their frequency dependence might be needed in the intermediate frequency
band between LISA and ground-based experiments. We will comment on this point through
the text, and above all in Appendix D.
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Inspired by the scale-dependent choice originally put forward in [69], our first model param-
etrizes cT (f) as a polynomial in frequency:
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Here n can be a positive or negative integer, �n is a set of parameters controlling deviations
from GR, and f⇤ is a fixed frequency scale controlling the onset of the deviations. In what
follows we study both positive and negative values of n as separate cases. Note that, for
simplicity, we do not allow �n to be function of time; this possibility will nevertheless be
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Figure 22: A deviation of (c�c0)/c = 10�4 in the EFT-inspired Ansatz (2.24) (black curve)
with f⇤ = 3 ⇥ 10�4 Hz, motivated by our forecasts in §5 and observable with LISA, can be
e�ciently suppressed with a power-law (blue) or exponential (red) suppression, eqs. (D.5)
and (D.6), from higher-order corrections to satisfy the GW170817 bound (gray dotted) while
remaining an accurate description in the LISA band. The parameters are chosen as f̃⇤ =
0.2 Hz, p = 2 and f̃⇤ = 1 Hz and p = 1/2 for the power-law and exponential suppressions,
respectively.

purpose we shall consider a power-law and exponential suppression of the tensor sound speed
of the forms

c̃T (f) =
cT (f) + (f/f̃⇤)2p

1 + (f/f̃⇤)2p
, (D.5)

c̃T (f) = 1 � [1 � cT (f)] e�(f/f̃⇤)2p , (D.6)

respectively. The parameters f̃⇤ and p shall be chosen such that cT (f), given by eqs. (2.23)
or (2.24), is valid in the LISA band and (c � cT )/c < 10�15 for LIGO. For simplicity, we
shall focus only on the EFT Ansatz, which in the high-frequency limit can however also be
interpreted in terms of a n = �1 power-law Ansatz. Figure 22 shows how a deviation of
(c � c0)/c = 10�4 in eq. (2.24) with f⇤ = 3 ⇥ 10�4 Hz, motivated by our forecasts in §5, can
be e�ciently suppressed with eqs. (D.5) or (D.6) in the LIGO band. Particularly, we find
that for an exponential or power-law suppression with p & 1/2 or p & 2, our forecasts remain
valid for a potential signature detectable in the LISA band that is hidden to LIGO.

E Future directions: general parametrization of GW propagation

In §2.2, we motivated a frequency-dependent group velocity cT (f) from the fact that, in many
models of modified gravity (including quantum gravity), the modification of the dispersion
relation can be written as a modified dispersion relation !2 � k2 ! F (!, k) = 0. There, we
assumed that all the time- or redshift-dependence of cT was implicit in the frequency f . Now
we relax that assumption and consider a non-trivial function cT (z, f) of the redshift and the
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therefore not a reliable indicator of causality. Remarkably, in the standard EFT treatment
of GR one finds that loop contributions from massive fields lead to a non-luminal speed of
GWs on cosmological backgrounds; positivity arguments suggest a super-luminal speed of
GWs at low energies [36, 37]. Such findings are not at all in conflict with causality, and have
in several examples been shown to be necessary precisely to guarantee causality. In [37], a
notion of causality2 more reminiscent of the standard lore has been shown to be more than
compatible with positivity bounds whenever a well-defined decoupling limit of the (helicity-2
modes of the) theory exists3.

A frequency-dependent propagation speed can also arise in any scenario of gravity where
the spectral dimension of spacetime changes with the probed scale. This scale-dependent
behaviour of geometry is typical of a broad class of theories of quantum gravity [39–44] and
is due to the presence of at least one fundamental scale in the texture of spacetime (see also
[5, 45–48]). The ensuing dispersion relation features a non-trivial mixing between time and
momentum and leads to a mixed redshift-frequency dependence of cT (z, f). Also, a frequency
dependent GW speed arises in brane-world models motivated by string theory [49].

Lastly, we should mention that a massive graviton (or the related bigravity) scenario
can lead to a frequency-dependent GW velocity, with interesting and testable consequences
for GW waveforms (as first pointed out in [50]). We refer the reader to the recent [51], and
references therein, for thorough analysis of this case.

Our aim in this work is to develop a general theoretical and numerical toolkit for quan-
tifying the perspective of LISA to measure a frequency-dependent cT only through its e↵ects
on GW waveforms from merging massive black hole (MBH) binaries, without relying on spe-
cific modified gravity scenarios4. We implement two representative Ansätze for a frequency-
dependent GW propagation velocity. The first Ansatz is motivated from a perturbative
expansion in powers of (f/f?), with f? a fiducial frequency controlling the onset of deviations
from GR. The second Ansatz describes scenarios with rapid changes in cT , which smoothly
change from cT 6= 1 at small frequencies to cT = 1 at larger frequencies. For both Ansätze
we derive how the GW waveforms are modified with respect to GR. The tools we develop,
although applied to two representative scenarios, are very flexible, and can be used in future
for testing any new theoretical models predicting transitory variations of cT as function of
frequency.

We will show that LISA can obtain good constraints on both the GR and new parameters
involved, even without electromagnetic (EM) counterparts. In fact, a major advantage of
our work is that it does not rely on detection of unique EM counterparts for LISA sources.
Whilst LISA standard sirens can serve as a further tool to test gravity (see e.g. [13, 56–61]),
the rate of EM counterparts adds a further layer of uncertainty to that already coming from
the massive black hole population models. Furthermore, constraints from standard sirens
can only be obtained very close to or after the merger, when the sky localisation is good
enough to narrow down candidate host galaxies. In principle, one can imagine the analysis
we present here being performed on-the-fly as a system inspirals, as done for regular GR

2See also [38] for a very recent work where the notion of “infrared causality” is introduced and studied in
detail vis-à-vis asymptotic causality.

3In this context, the allowed super-luminality is Planck-suppressed and one cannot resolve the deviation
from luminality. This result, however, hinges on there being a well-defined decoupling limit. This is not the
case in all frames and one must not therefore extrapolate it to EFTs of dark energy, modified gravity.

4We refer the reader to [52] for a review of modified gravity models, and [5, 53–55] for some studies on
how to constrain modified gravity with GW observations.
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Expanding             up to quadratic order will prove sufficient to study the dominant corrections to the waveform 
detectable with LISA

Positive power case: require              everywhere in the LISA band, meaning that the deviation                    will grow as 
the inspiral evolves (it implicitly requires that some termination mechanism switches off the deviations between the LISA band 
and the band of ground-based detectors, to maintain consistency with current bounds on       ) 

Negative power case:        should be outside the LISA frequency interval, so that                  stays small in the LISA band

small quantity

explored in appendix E. Notice that our Ansatz (2.23) includes more than one free parameter,
hence it goes beyond the one-parameter parametrization proposed in [45].

In the positive-power (n > 0) and negative-power (n < 0) cases alike, we assume
(f/f⇤)sgn(n) to be a small quantity, allowing us to Taylor expand cT (f) (assuming that the
�n are not large enough to violate the validity of the expansion). We will learn that expanding
cT (f) up to quadratic order will prove su�cient to study the dominant corrections to the
waveform that may be detectable with LISA. We do not include the n = 0 term in either
power-law model, since this represents a frequency-independent correction to cT that has
already been constrained to be very small at z ⌧ 1 by GW170817.

For the positive-power case, we require f⇤ > f everywhere in the LISA band, meaning
that the deviation cT /c � 1 will grow as the inspiral evolves (here we temporarily restore
speed-of-light units). This case turns out to be the mathematically simplest model we study;
however, it implicitly requires that some termination mechanism switches o↵ the deviations
between the LISA band and the band of ground-based detectors, again to maintain consis-
tency with current results bounds on cT (see Appendix D).

Similarly, for the negative-power model f⇤ should be outside the LISA frequency interval,
so that (f/f⇤)�1 stays small in the LISA band. The negative-power case is arguably a more
natural prescription of low-energy deviations from GR, because at high frequencies cT /c ! 1.
However, the bounds on |cT /c � 1| from GW170817 are so impressively tight that they are
hard to satisfy even in this model. Using the values of f⇤ we discuss in the next paragraph,
and assuming no finely-tuned cancellations between the n = �1 and n = �2 terms, formally
we need |�1| . 10�4 to satisfy the existing bounds (�2 remains virtually unconstrained).
However, recognising that our power-law models would at best be only crude representations
of the underlying physics, we do not apply the latter prior on �1 in most of this work. In
§5.2 we present results with only �2 allowed to vary, which require no further assumptions
to be consistent with GW170817.

In our forecast in §5, we mainly consider MBH binaries with total masses between 104

and 107M�, as these generally give signal-to-noise ratio (SNR) > 10 in LISA (see Figure 11).
The frequency range for these waveforms is between ⇠ 10�5 and ⇠ 10�1 Hz, so f⇤ is required
to stay outside this range. In addition, f⇤ should be lower than the LIGO lower sensitivity
bound of ⇠ 10 Hz. Therefore the typical ‘safe’ values of f⇤ we use in the positive- and
negative-power cases are 2 Hz and 2⇥ 10�7 Hz, respectively; in this context, safe means that
the deviations from GR will remain small for any astrophysical system detectable by LISA.
Values of f⇤ within the LISA band can be considered, and will result in tighter parameter
constraints, but also imply that some LISA systems could show non-perturbative departures
from GR. Such non-perturbative e↵ects lie beyond the scope of the current work. Finally, it
is worth noting that constraints on eq. (2.23) are degenerate in �n/fn

⇤ and so constraints on
�n can be translated from one f⇤ to another (Appendix. D).

An EFT-inspired Ansatz

The second parametrization we consider has the property of rapidly changing from a value
of cT smaller than one at small frequencies to cT = 1 at high frequencies (see Figure 1):

cT (f) =

"
1 +
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explored in appendix E. Notice that our Ansatz (2.23) includes more than one free parameter,
hence it goes beyond the one-parameter parametrization proposed in [45].

In the positive-power (n > 0) and negative-power (n < 0) cases alike, we assume
(f/f⇤)sgn(n) to be a small quantity, allowing us to Taylor expand cT (f) (assuming that the
�n are not large enough to violate the validity of the expansion). We will learn that expanding
cT (f) up to quadratic order will prove su�cient to study the dominant corrections to the
waveform that may be detectable with LISA. We do not include the n = 0 term in either
power-law model, since this represents a frequency-independent correction to cT that has
already been constrained to be very small at z ⌧ 1 by GW170817.

For the positive-power case, we require f⇤ > f everywhere in the LISA band, meaning
that the deviation cT /c � 1 will grow as the inspiral evolves (here we temporarily restore
speed-of-light units). This case turns out to be the mathematically simplest model we study;
however, it implicitly requires that some termination mechanism switches o↵ the deviations
between the LISA band and the band of ground-based detectors, again to maintain consis-
tency with current results bounds on cT (see Appendix D).

Similarly, for the negative-power model f⇤ should be outside the LISA frequency interval,
so that (f/f⇤)�1 stays small in the LISA band. The negative-power case is arguably a more
natural prescription of low-energy deviations from GR, because at high frequencies cT /c ! 1.
However, the bounds on |cT /c � 1| from GW170817 are so impressively tight that they are
hard to satisfy even in this model. Using the values of f⇤ we discuss in the next paragraph,
and assuming no finely-tuned cancellations between the n = �1 and n = �2 terms, formally
we need |�1| . 10�4 to satisfy the existing bounds (�2 remains virtually unconstrained).
However, recognising that our power-law models would at best be only crude representations
of the underlying physics, we do not apply the latter prior on �1 in most of this work. In
§5.2 we present results with only �2 allowed to vary, which require no further assumptions
to be consistent with GW170817.

In our forecast in §5, we mainly consider MBH binaries with total masses between 104

and 107M�, as these generally give signal-to-noise ratio (SNR) > 10 in LISA (see Figure 11).
The frequency range for these waveforms is between ⇠ 10�5 and ⇠ 10�1 Hz, so f⇤ is required
to stay outside this range. In addition, f⇤ should be lower than the LIGO lower sensitivity
bound of ⇠ 10 Hz. Therefore the typical ‘safe’ values of f⇤ we use in the positive- and
negative-power cases are 2 Hz and 2⇥ 10�7 Hz, respectively; in this context, safe means that
the deviations from GR will remain small for any astrophysical system detectable by LISA.
Values of f⇤ within the LISA band can be considered, and will result in tighter parameter
constraints, but also imply that some LISA systems could show non-perturbative departures
from GR. Such non-perturbative e↵ects lie beyond the scope of the current work. Finally, it
is worth noting that constraints on eq. (2.23) are degenerate in �n/fn

⇤ and so constraints on
�n can be translated from one f⇤ to another (Appendix. D).

An EFT-inspired Ansatz

The second parametrization we consider has the property of rapidly changing from a value
of cT smaller than one at small frequencies to cT = 1 at high frequencies (see Figure 1):

cT (f) =

"
1 +

f2
?

f2
� f2

?

f2

s

1 + 2
�
1 � c2

0

� f2

f2
?

#1/2

. (2.24)

– 8 –

explored in appendix E. Notice that our Ansatz (2.23) includes more than one free parameter,
hence it goes beyond the one-parameter parametrization proposed in [45].

In the positive-power (n > 0) and negative-power (n < 0) cases alike, we assume
(f/f⇤)sgn(n) to be a small quantity, allowing us to Taylor expand cT (f) (assuming that the
�n are not large enough to violate the validity of the expansion). We will learn that expanding
cT (f) up to quadratic order will prove su�cient to study the dominant corrections to the
waveform that may be detectable with LISA. We do not include the n = 0 term in either
power-law model, since this represents a frequency-independent correction to cT that has
already been constrained to be very small at z ⌧ 1 by GW170817.

For the positive-power case, we require f⇤ > f everywhere in the LISA band, meaning
that the deviation cT /c � 1 will grow as the inspiral evolves (here we temporarily restore
speed-of-light units). This case turns out to be the mathematically simplest model we study;
however, it implicitly requires that some termination mechanism switches o↵ the deviations
between the LISA band and the band of ground-based detectors, again to maintain consis-
tency with current results bounds on cT (see Appendix D).

Similarly, for the negative-power model f⇤ should be outside the LISA frequency interval,
so that (f/f⇤)�1 stays small in the LISA band. The negative-power case is arguably a more
natural prescription of low-energy deviations from GR, because at high frequencies cT /c ! 1.
However, the bounds on |cT /c � 1| from GW170817 are so impressively tight that they are
hard to satisfy even in this model. Using the values of f⇤ we discuss in the next paragraph,
and assuming no finely-tuned cancellations between the n = �1 and n = �2 terms, formally
we need |�1| . 10�4 to satisfy the existing bounds (�2 remains virtually unconstrained).
However, recognising that our power-law models would at best be only crude representations
of the underlying physics, we do not apply the latter prior on �1 in most of this work. In
§5.2 we present results with only �2 allowed to vary, which require no further assumptions
to be consistent with GW170817.

In our forecast in §5, we mainly consider MBH binaries with total masses between 104

and 107M�, as these generally give signal-to-noise ratio (SNR) > 10 in LISA (see Figure 11).
The frequency range for these waveforms is between ⇠ 10�5 and ⇠ 10�1 Hz, so f⇤ is required
to stay outside this range. In addition, f⇤ should be lower than the LIGO lower sensitivity
bound of ⇠ 10 Hz. Therefore the typical ‘safe’ values of f⇤ we use in the positive- and
negative-power cases are 2 Hz and 2⇥ 10�7 Hz, respectively; in this context, safe means that
the deviations from GR will remain small for any astrophysical system detectable by LISA.
Values of f⇤ within the LISA band can be considered, and will result in tighter parameter
constraints, but also imply that some LISA systems could show non-perturbative departures
from GR. Such non-perturbative e↵ects lie beyond the scope of the current work. Finally, it
is worth noting that constraints on eq. (2.23) are degenerate in �n/fn

⇤ and so constraints on
�n can be translated from one f⇤ to another (Appendix. D).

An EFT-inspired Ansatz

The second parametrization we consider has the property of rapidly changing from a value
of cT smaller than one at small frequencies to cT = 1 at high frequencies (see Figure 1):
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explored in appendix E. Notice that our Ansatz (2.23) includes more than one free parameter,
hence it goes beyond the one-parameter parametrization proposed in [45].

In the positive-power (n > 0) and negative-power (n < 0) cases alike, we assume
(f/f⇤)sgn(n) to be a small quantity, allowing us to Taylor expand cT (f) (assuming that the
�n are not large enough to violate the validity of the expansion). We will learn that expanding
cT (f) up to quadratic order will prove su�cient to study the dominant corrections to the
waveform that may be detectable with LISA. We do not include the n = 0 term in either
power-law model, since this represents a frequency-independent correction to cT that has
already been constrained to be very small at z ⌧ 1 by GW170817.

For the positive-power case, we require f⇤ > f everywhere in the LISA band, meaning
that the deviation cT /c � 1 will grow as the inspiral evolves (here we temporarily restore
speed-of-light units). This case turns out to be the mathematically simplest model we study;
however, it implicitly requires that some termination mechanism switches o↵ the deviations
between the LISA band and the band of ground-based detectors, again to maintain consis-
tency with current results bounds on cT (see Appendix D).

Similarly, for the negative-power model f⇤ should be outside the LISA frequency interval,
so that (f/f⇤)�1 stays small in the LISA band. The negative-power case is arguably a more
natural prescription of low-energy deviations from GR, because at high frequencies cT /c ! 1.
However, the bounds on |cT /c � 1| from GW170817 are so impressively tight that they are
hard to satisfy even in this model. Using the values of f⇤ we discuss in the next paragraph,
and assuming no finely-tuned cancellations between the n = �1 and n = �2 terms, formally
we need |�1| . 10�4 to satisfy the existing bounds (�2 remains virtually unconstrained).
However, recognising that our power-law models would at best be only crude representations
of the underlying physics, we do not apply the latter prior on �1 in most of this work. In
§5.2 we present results with only �2 allowed to vary, which require no further assumptions
to be consistent with GW170817.

In our forecast in §5, we mainly consider MBH binaries with total masses between 104

and 107M�, as these generally give signal-to-noise ratio (SNR) > 10 in LISA (see Figure 11).
The frequency range for these waveforms is between ⇠ 10�5 and ⇠ 10�1 Hz, so f⇤ is required
to stay outside this range. In addition, f⇤ should be lower than the LIGO lower sensitivity
bound of ⇠ 10 Hz. Therefore the typical ‘safe’ values of f⇤ we use in the positive- and
negative-power cases are 2 Hz and 2⇥ 10�7 Hz, respectively; in this context, safe means that
the deviations from GR will remain small for any astrophysical system detectable by LISA.
Values of f⇤ within the LISA band can be considered, and will result in tighter parameter
constraints, but also imply that some LISA systems could show non-perturbative departures
from GR. Such non-perturbative e↵ects lie beyond the scope of the current work. Finally, it
is worth noting that constraints on eq. (2.23) are degenerate in �n/fn

⇤ and so constraints on
�n can be translated from one f⇤ to another (Appendix. D).

An EFT-inspired Ansatz

The second parametrization we consider has the property of rapidly changing from a value
of cT smaller than one at small frequencies to cT = 1 at high frequencies (see Figure 1):
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explored in appendix E. Notice that our Ansatz (2.23) includes more than one free parameter,
hence it goes beyond the one-parameter parametrization proposed in [45].

In the positive-power (n > 0) and negative-power (n < 0) cases alike, we assume
(f/f⇤)sgn(n) to be a small quantity, allowing us to Taylor expand cT (f) (assuming that the
�n are not large enough to violate the validity of the expansion). We will learn that expanding
cT (f) up to quadratic order will prove su�cient to study the dominant corrections to the
waveform that may be detectable with LISA. We do not include the n = 0 term in either
power-law model, since this represents a frequency-independent correction to cT that has
already been constrained to be very small at z ⌧ 1 by GW170817.

For the positive-power case, we require f⇤ > f everywhere in the LISA band, meaning
that the deviation cT /c � 1 will grow as the inspiral evolves (here we temporarily restore
speed-of-light units). This case turns out to be the mathematically simplest model we study;
however, it implicitly requires that some termination mechanism switches o↵ the deviations
between the LISA band and the band of ground-based detectors, again to maintain consis-
tency with current results bounds on cT (see Appendix D).

Similarly, for the negative-power model f⇤ should be outside the LISA frequency interval,
so that (f/f⇤)�1 stays small in the LISA band. The negative-power case is arguably a more
natural prescription of low-energy deviations from GR, because at high frequencies cT /c ! 1.
However, the bounds on |cT /c � 1| from GW170817 are so impressively tight that they are
hard to satisfy even in this model. Using the values of f⇤ we discuss in the next paragraph,
and assuming no finely-tuned cancellations between the n = �1 and n = �2 terms, formally
we need |�1| . 10�4 to satisfy the existing bounds (�2 remains virtually unconstrained).
However, recognising that our power-law models would at best be only crude representations
of the underlying physics, we do not apply the latter prior on �1 in most of this work. In
§5.2 we present results with only �2 allowed to vary, which require no further assumptions
to be consistent with GW170817.

In our forecast in §5, we mainly consider MBH binaries with total masses between 104

and 107M�, as these generally give signal-to-noise ratio (SNR) > 10 in LISA (see Figure 11).
The frequency range for these waveforms is between ⇠ 10�5 and ⇠ 10�1 Hz, so f⇤ is required
to stay outside this range. In addition, f⇤ should be lower than the LIGO lower sensitivity
bound of ⇠ 10 Hz. Therefore the typical ‘safe’ values of f⇤ we use in the positive- and
negative-power cases are 2 Hz and 2⇥ 10�7 Hz, respectively; in this context, safe means that
the deviations from GR will remain small for any astrophysical system detectable by LISA.
Values of f⇤ within the LISA band can be considered, and will result in tighter parameter
constraints, but also imply that some LISA systems could show non-perturbative departures
from GR. Such non-perturbative e↵ects lie beyond the scope of the current work. Finally, it
is worth noting that constraints on eq. (2.23) are degenerate in �n/fn

⇤ and so constraints on
�n can be translated from one f⇤ to another (Appendix. D).

An EFT-inspired Ansatz

The second parametrization we consider has the property of rapidly changing from a value
of cT smaller than one at small frequencies to cT = 1 at high frequencies (see Figure 1):
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therefore not a reliable indicator of causality. Remarkably, in the standard EFT treatment
of GR one finds that loop contributions from massive fields lead to a non-luminal speed of
GWs on cosmological backgrounds; positivity arguments suggest a super-luminal speed of
GWs at low energies [36, 37]. Such findings are not at all in conflict with causality, and have
in several examples been shown to be necessary precisely to guarantee causality. In [37], a
notion of causality2 more reminiscent of the standard lore has been shown to be more than
compatible with positivity bounds whenever a well-defined decoupling limit of the (helicity-2
modes of the) theory exists3.

A frequency-dependent propagation speed can also arise in any scenario of gravity where
the spectral dimension of spacetime changes with the probed scale. This scale-dependent
behaviour of geometry is typical of a broad class of theories of quantum gravity [39–44] and
is due to the presence of at least one fundamental scale in the texture of spacetime (see also
[5, 45–48]). The ensuing dispersion relation features a non-trivial mixing between time and
momentum and leads to a mixed redshift-frequency dependence of cT (z, f). Also, a frequency
dependent GW speed arises in brane-world models motivated by string theory [49].

Lastly, we should mention that a massive graviton (or the related bigravity) scenario
can lead to a frequency-dependent GW velocity, with interesting and testable consequences
for GW waveforms (as first pointed out in [50]). We refer the reader to the recent [51], and
references therein, for thorough analysis of this case.

Our aim in this work is to develop a general theoretical and numerical toolkit for quan-
tifying the perspective of LISA to measure a frequency-dependent cT only through its e↵ects
on GW waveforms from merging massive black hole (MBH) binaries, without relying on spe-
cific modified gravity scenarios4. We implement two representative Ansätze for a frequency-
dependent GW propagation velocity. The first Ansatz is motivated from a perturbative
expansion in powers of (f/f?), with f? a fiducial frequency controlling the onset of deviations
from GR. The second Ansatz describes scenarios with rapid changes in cT , which smoothly
change from cT 6= 1 at small frequencies to cT = 1 at larger frequencies. For both Ansätze
we derive how the GW waveforms are modified with respect to GR. The tools we develop,
although applied to two representative scenarios, are very flexible, and can be used in future
for testing any new theoretical models predicting transitory variations of cT as function of
frequency.

We will show that LISA can obtain good constraints on both the GR and new parameters
involved, even without electromagnetic (EM) counterparts. In fact, a major advantage of
our work is that it does not rely on detection of unique EM counterparts for LISA sources.
Whilst LISA standard sirens can serve as a further tool to test gravity (see e.g. [13, 56–61]),
the rate of EM counterparts adds a further layer of uncertainty to that already coming from
the massive black hole population models. Furthermore, constraints from standard sirens
can only be obtained very close to or after the merger, when the sky localisation is good
enough to narrow down candidate host galaxies. In principle, one can imagine the analysis
we present here being performed on-the-fly as a system inspirals, as done for regular GR

2See also [38] for a very recent work where the notion of “infrared causality” is introduced and studied in
detail vis-à-vis asymptotic causality.

3In this context, the allowed super-luminality is Planck-suppressed and one cannot resolve the deviation
from luminality. This result, however, hinges on there being a well-defined decoupling limit. This is not the
case in all frames and one must not therefore extrapolate it to EFTs of dark energy, modified gravity.

4We refer the reader to [52] for a review of modified gravity models, and [5, 53–55] for some studies on
how to constrain modified gravity with GW observations.
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which is an increasing function of c0. At the inflection point the slope of cT (f) is maximal,
resulting

nmax

T (fin) =
(1 � c2

0
)

�
1 +

p
2 c0

�2 (C.10)

which is a decreasing function of c0. To investigate deviations from GR with the above
speed profile, we compute the dimensionless quantity � defined in (2.13). For a given c0, the
maximum GR deviation depends on redshift

�max(c0, z) = A(c0)

✓
1 � 1

(1 + z)n(c0)

◆
. (C.11)

We find that parameters A and n both decrease linearly with c0. We perform least squares
polynomial fits to obtain the expression in (2.25). These results hint at possible independent
redshift mapping of GW sources, provided we can accurately estimate �max.

D Recovering a luminal cT at high frequencies

As discussed in §2.2, for any viable deviation in the tensor sound speed cT from the luminal
speed c to be observable in the LISA frequency band, the more complete gravitational theory,
valid beyond its EFT description, must e�ciently suppress this deviation to within a relative
deviation of O(10�15) in the LIGO band. For a simple quantitative comparison of the
constraints, let us consider the LIGO bound |1 � cT (f ⇠ 10 Hz)/c| . 10�15, which for the
power-law parametrisation (2.23) approximately implies that

|�n| . 10�15�n(f⇤/Hz)n . (D.1)

In comparison, in §5, we found for the positive and negative powers that

|�1| . 0.065(f⇤/Hz) , |�2| . 2.5(f⇤/Hz)2 , (D.2)

|�1| . 1.4 ⇥ 10�8(f⇤/Hz)�1 , |�2| . 2.6 ⇥ 10�12(f⇤/Hz)�2 , (D.3)

for the PopIII and Q3-nod cases, respectively. Hence, if the functional forms are maintained
to LIGO scales, these constraints are weaker than that of GW170817. In the case of the
EFT-inspired cT (f) function (2.24), we note that for f⇤ ⌧ 10 Hz, cT (f) reduces in the LIGO
band to a negative power law with n = �1 and �1 =

p
2(1 � c2

0
)/2 ⇡

p
1 � c0 for c0 ⇡ 1.

Thus, in the LIGO band, our constraint from §5 can roughly be interpreted as

|�1| . 3 ⇥ 10�6(f⇤/Hz)�1 , (D.4)

which is also weaker than eq. (D.1).
Observable modifications introduced with the functional forms of cT (f) in eqs. (2.23)

and (2.24) can thus not be suppressed e�ciently enough to satisfy the GW170817 bound.
However, higher-order corrections may in principle kick in to suppress the remaining devia-
tions in the LIGO band. We shall briefly inspect here some requirements on the functional
forms of cT (f) that a more complete UV description of a theory should satisfy to remain
observable in the LISA band while remaining compatible with the LIGO constraint. For this
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LIGO bound implies:
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As an immediate, general application of the formulas we derived, we conclude this
subsection by deriving an expression for the GW luminosity distance in scenarios with � 6= 0,
following the arguments of [60]. We call F the energy flux at observer position:

F =
dEo/dto

Area
(2.19)

where Area= 4⇡(rGW

phys
)2. Then we introduce the luminosity at the source position, L:

L =
dEs

dts
=

(1 + ze)2

(1 � �)2
dEo

dto
, (2.20)

where (2.15) has been used. The luminosity distance dGW

L is defined in terms of the following
relation

F ⌘ L
4⇡ (dGW

L )2
. (2.21)

Using these formulas, as well as relation (2.8) to connect comoving and physical distance, we
obtain

dGW

L = (1 + ze) (1 � �)�
1
2 rGW

com , (2.22)

so the e↵ects of a cT varying with frequency are contained in the dependence on � as defined
in (2.12). As we will learn in §3, the luminosity distance dGW

L and other relations we derived
here play an important role for characterizing the properties of the GW waveforms.

2.2 Two Ansätze for cT (f)

After the previous considerations, in this subsection we discuss two representative Ansätze
for cT . They will represent our benchmark scenarios for the LISA forecasts developed in the
next sections. In fact, after discussing the Ansatz functional forms, we briefly anticipate the
level of constraints we will be able to obtain with LISA on the parameters characterizing
them. Importantly, these Ansätze aim to discuss possible ways to parametrize deviations
from cT = 1 around LISA frequencies, and are not built for automatically satisfying at
the same time constraints on cT within ground-based frequency ranges. To do so, further
corrections to their frequency dependence might be needed in the intermediate frequency
band between LISA and ground-based experiments. We will comment on this point through
the text, and above all in Appendix D.

Polynomial Ansatz

Inspired by the scale-dependent choice originally put forward in [69], our first model param-
etrizes cT (f) as a polynomial in frequency:

cT (f) = 1 +
X

n

�n

✓
f

f⇤

◆n

. (2.23)

Here n can be a positive or negative integer, �n is a set of parameters controlling deviations
from GR, and f⇤ is a fixed frequency scale controlling the onset of the deviations. In what
follows we study both positive and negative values of n as separate cases. Note that, for
simplicity, we do not allow �n to be function of time; this possibility will nevertheless be
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Here n can be a positive or negative integer, �n is a set of parameters controlling deviations
from GR, and f⇤ is a fixed frequency scale controlling the onset of the deviations. In what
follows we study both positive and negative values of n as separate cases. Note that, for
simplicity, we do not allow �n to be function of time; this possibility will nevertheless be
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set of parameters controlling deviations from GR

positive or negative integer

explored in appendix E. Notice that our Ansatz (2.23) includes more than one free parameter,
hence it goes beyond the one-parameter parametrization proposed in [45].

In the positive-power (n > 0) and negative-power (n < 0) cases alike, we assume
(f/f⇤)sgn(n) to be a small quantity, allowing us to Taylor expand cT (f) (assuming that the
�n are not large enough to violate the validity of the expansion). We will learn that expanding
cT (f) up to quadratic order will prove su�cient to study the dominant corrections to the
waveform that may be detectable with LISA. We do not include the n = 0 term in either
power-law model, since this represents a frequency-independent correction to cT that has
already been constrained to be very small at z ⌧ 1 by GW170817.

For the positive-power case, we require f⇤ > f everywhere in the LISA band, meaning
that the deviation cT /c � 1 will grow as the inspiral evolves (here we temporarily restore
speed-of-light units). This case turns out to be the mathematically simplest model we study;
however, it implicitly requires that some termination mechanism switches o↵ the deviations
between the LISA band and the band of ground-based detectors, again to maintain consis-
tency with current results bounds on cT (see Appendix D).

Similarly, for the negative-power model f⇤ should be outside the LISA frequency interval,
so that (f/f⇤)�1 stays small in the LISA band. The negative-power case is arguably a more
natural prescription of low-energy deviations from GR, because at high frequencies cT /c ! 1.
However, the bounds on |cT /c � 1| from GW170817 are so impressively tight that they are
hard to satisfy even in this model. Using the values of f⇤ we discuss in the next paragraph,
and assuming no finely-tuned cancellations between the n = �1 and n = �2 terms, formally
we need |�1| . 10�4 to satisfy the existing bounds (�2 remains virtually unconstrained).
However, recognising that our power-law models would at best be only crude representations
of the underlying physics, we do not apply the latter prior on �1 in most of this work. In
§5.2 we present results with only �2 allowed to vary, which require no further assumptions
to be consistent with GW170817.

In our forecast in §5, we mainly consider MBH binaries with total masses between 104

and 107M�, as these generally give signal-to-noise ratio (SNR) > 10 in LISA (see Figure 11).
The frequency range for these waveforms is between ⇠ 10�5 and ⇠ 10�1 Hz, so f⇤ is required
to stay outside this range. In addition, f⇤ should be lower than the LIGO lower sensitivity
bound of ⇠ 10 Hz. Therefore the typical ‘safe’ values of f⇤ we use in the positive- and
negative-power cases are 2 Hz and 2⇥ 10�7 Hz, respectively; in this context, safe means that
the deviations from GR will remain small for any astrophysical system detectable by LISA.
Values of f⇤ within the LISA band can be considered, and will result in tighter parameter
constraints, but also imply that some LISA systems could show non-perturbative departures
from GR. Such non-perturbative e↵ects lie beyond the scope of the current work. Finally, it
is worth noting that constraints on eq. (2.23) are degenerate in �n/fn

⇤ and so constraints on
�n can be translated from one f⇤ to another (Appendix. D).

An EFT-inspired Ansatz

The second parametrization we consider has the property of rapidly changing from a value
of cT smaller than one at small frequencies to cT = 1 at high frequencies (see Figure 1):

cT (f) =

"
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f2
?
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?
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s

1 + 2
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1 � c2

0
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f2
?

#1/2

. (2.24)
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Figure 1: Plot of the EFT ansatz for cT as a function of frequency, as given by eq. (2.24).

The parametrization (2.24) is controlled by two free parameters: a fiducial frequency f?
around which cT changes rapidly, and a low-frequency speed c0 with 0 < c0  1. Ansatz
(2.24) is motivated by the analysis in [19] of an UV completion of a scalar field theory, where
the scalar velocity depends on the energy, and smoothly (but rapidly) connects from c0 to
1 as the energy increases. The transition from c0 to unity occurs within a relatively small
interval as the frequency increases; the width of the transition is not a free parameter and
depends entirely on c0. See Appendix C for more details on theoretical characterization of
this Ansatz and Appendix D for a discussion of its compatibility with the GW170817 bound.
Instances of such rapid changes in cT (f), although motivated from theoretical considerations,
are not easy to describe in terms of a perturbative Ansatz as (2.23). For this reason in the
following section we adopt the representative form (2.24) for modelling such systems. We
consider (2.24) as a convenient, 2-parameter choice of function with an enhanced, transient
variation of cT broadly motivated by the scenarios discussed in the Introduction. More
specifically, model-dependent choices of cT with similar properties might be considered, and
their consequences for LISA can be analyzed with the tools we develop in this work.

A frequency profile for cT (f) as (2.24) implies that all the frequency-dependent e↵ects
studied in §2.1 occur in a relatively small frequency band centered around f?. One can easily
compute numerically the function �(f), introduced in (2.12), which is the important quantity
that controls the deviations from GR. We plot �(f) in Figure 2 for representative choices of
parameters. We notice that this function has a pronounced peak, whose maximal value �max

depends on c0, but also on the redshift z at which the GW source event occurs. To understand
better how �(f) evolves over the z � c0 parameter space, we evaluate the amplitude and the
position of the maximum of the function for redshifts log-uniformly distributed from 0.1 to
10, and values of c0 uniformly distributed between 0.1 and 0.9, see Figure 3. We see that
maximum deviation from GR occurs at frequencies of the order f? and for small c0 and large
z, as expected. We numerically found a simple phenomenological fit relating �max to c0 and
z that is valid up to large redshifts (z = 15):

�max(c0, z) = (1.07 � 1.04 c0)


1 � 1

(1 + z)(1.07�0.84 c0)

�
. (2.25)

For more details on the expression above we refer the reader to Appendix C. This relation
suggests that if we were able to measure with good precision deviations from GR induced by
Ansatz (2.24), we might then be able to extract independent information on the redshift of
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Note: generalisation by considering a non-trivial function                    of the redshift and the frequency
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Figure 22: A deviation of (c�c0)/c = 10�4 in the EFT-inspired Ansatz (2.24) (black curve)
with f⇤ = 3 ⇥ 10�4 Hz, motivated by our forecasts in §5 and observable with LISA, can be
e�ciently suppressed with a power-law (blue) or exponential (red) suppression, eqs. (D.5)
and (D.6), from higher-order corrections to satisfy the GW170817 bound (gray dotted) while
remaining an accurate description in the LISA band. The parameters are chosen as f̃⇤ =
0.2 Hz, p = 2 and f̃⇤ = 1 Hz and p = 1/2 for the power-law and exponential suppressions,
respectively.

purpose we shall consider a power-law and exponential suppression of the tensor sound speed
of the forms

c̃T (f) =
cT (f) + (f/f̃⇤)2p

1 + (f/f̃⇤)2p
, (D.5)

c̃T (f) = 1 � [1 � cT (f)] e�(f/f̃⇤)2p , (D.6)

respectively. The parameters f̃⇤ and p shall be chosen such that cT (f), given by eqs. (2.23)
or (2.24), is valid in the LISA band and (c � cT )/c < 10�15 for LIGO. For simplicity, we
shall focus only on the EFT Ansatz, which in the high-frequency limit can however also be
interpreted in terms of a n = �1 power-law Ansatz. Figure 22 shows how a deviation of
(c � c0)/c = 10�4 in eq. (2.24) with f⇤ = 3 ⇥ 10�4 Hz, motivated by our forecasts in §5, can
be e�ciently suppressed with eqs. (D.5) or (D.6) in the LIGO band. Particularly, we find
that for an exponential or power-law suppression with p & 1/2 or p & 2, our forecasts remain
valid for a potential signature detectable in the LISA band that is hidden to LIGO.

E Future directions: general parametrization of GW propagation

In §2.2, we motivated a frequency-dependent group velocity cT (f) from the fact that, in many
models of modified gravity (including quantum gravity), the modification of the dispersion
relation can be written as a modified dispersion relation !2 � k2 ! F (!, k) = 0. There, we
assumed that all the time- or redshift-dependence of cT was implicit in the frequency f . Now
we relax that assumption and consider a non-trivial function cT (z, f) of the redshift and the
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The picture for �2 is a little more mixed, with PopIII model performing well in the
positive-power case, and the Q3-nod model favouring the negative-power case. We see that
the PopIII model, which generally produces lighter MBHs, yields good constraints on the
positive-power model – this is precisely in line with the discussion of §5.1.

Of course, in reality we will have to work with whatever population of MBH mergers
Nature gives us. If it closely resembles the Q3-delay model, for example, we will be dependent
on a rare golden system to carry out the constraints forecast in this work. However, it
is reassuring to see that in most cases our method has some robustness against realistic
population models. Hence tests of gravity at low frequency can be carried out with LISA in
(almost) any scenario.

6 Conclusions

The development of cosmological modified gravity theories has shown that infrared departures
from GR are theoretically possible. The clearest demonstration of this is screening e↵ects,
where departures from GR manifest on large scales – a weak-field, low-density arena – whilst
being strongly suppressed in other regimes (see [65, 92, 93] for reviews). At the same time,
deviations of the propagation speed of gravitational waves are a common signature of new
gravitational physics. As such, it is clear that the value of cT should be probed at low energy
scales, independently of existing constraints at higher frequencies.

That said, the current tests of gravity from ground-based detectors are a force to be
reckoned with. We find it is not simple to construct a function for cT (f) which satisfies the
LIGO-Virgo bounds whilst modifying the millihertz regime significantly. Sharp transitions
for cT (f) are needed in the frequency band between LISA and LIGO frequencies, to ensure
consistency with the results from GW170817. Future theoretical work will be needed to
explore more sophisticated models for cT (f), built from first principles, that do not rely on
this workaround.

Nevertheless, our work has established a theoretical and numerical toolkit for exploring
the detectability of modified GW propagation with LISA. We implemented two Ansätze for
frequency-dependent GW propagation speed, and computed the resulting modifications to
the GW amplitude and (non-spinning) phase at 2.5PN order. The first Ansatz proposed
departures of the GW propagation speed as a polynomial series in frequency for cT , in which
the powers can be positive or negative. The second Ansatz represented a smooth transition
in cT from some lower value to c, taking place inside or close to the LISA band. We then
performed a Fisher matrix analysis to forecast the constraints on five GR parameters and
two modified gravity parameters. We compared the Fisher forecast with MCMC inference
and found good agreement between them for the forecast parameter bounds, even for signals
of comparatively low SNR.

Our use of inspiral-only and a full IMR waveform represent analyses with di↵erent
theoretical assumptions. If considering departures from GR, one may wish to allow for the
strong-field regime itself to be modified as well; then using a (modified) PhenomA waveform,
which derives from GR simulations, is not appropriate. Our inspiral-only (§5.1) results
represent this conservative case. However, if one is confident that the strong-field regime
is identical to GR (the screened case), then our approach allows the continuation of GW
propagation e↵ects into the merger and ringdown regime. Our results using the full waveform
in §5.2 represent this more optimistic case. We used here a simple IMR waveform (PhenomA);
this should be extended to more sophisticated, spinning waveforms for use with real data.
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Figure 3: Variation of maximum value of � (left panel) and the position of the maximum (right
panel) with redshift and c0, for the EFT-inspired Ansatz of §2.2.

the source, which might be helpful to build a Hubble diagram with GW sirens. We leave the
exploration of this idea to future work.

The two parameters f? and c0 controlling the location and height of the transition (with
c0 = 1 corresponding to the GR case) can indeed be constrained very well with LISA. In
§5 we forecast LISA capabilities to measure these quantities, and find that both parameters
influence considerably GW waveforms. We conclude that for MBH binaries in specific mass
ranges (around Mtot ⇠ 105M�), the parameters f? and c0 characterizing Ansatz (2.24), can
be constrained to a fractional error of order percent level or better, with respect to their
fiducial values.

3 Waveform computation

In this section we compute how gravitational waveforms are modified in models where cT is a
function of frequency, making use of the two Ansätze discussed in the previous section. Both
the waveform amplitude and the phase are a↵ected. We combine methods first introduced in
[50] in the context of a massive graviton with tools motivated by the standard post-Newtonian
approach to GW observables. We start in §3.1 and §3.2 by discussing how the waveform
amplitude and phase are sensitive to a frequency-dependent cT , focussing on the inspiral
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motivated from a 
perturbative expansion in 
powers of

therefore not a reliable indicator of causality. Remarkably, in the standard EFT treatment
of GR one finds that loop contributions from massive fields lead to a non-luminal speed of
GWs on cosmological backgrounds; positivity arguments suggest a super-luminal speed of
GWs at low energies [36, 37]. Such findings are not at all in conflict with causality, and have
in several examples been shown to be necessary precisely to guarantee causality. In [37], a
notion of causality2 more reminiscent of the standard lore has been shown to be more than
compatible with positivity bounds whenever a well-defined decoupling limit of the (helicity-2
modes of the) theory exists3.

A frequency-dependent propagation speed can also arise in any scenario of gravity where
the spectral dimension of spacetime changes with the probed scale. This scale-dependent
behaviour of geometry is typical of a broad class of theories of quantum gravity [39–44] and
is due to the presence of at least one fundamental scale in the texture of spacetime (see also
[5, 45–48]). The ensuing dispersion relation features a non-trivial mixing between time and
momentum and leads to a mixed redshift-frequency dependence of cT (z, f). Also, a frequency
dependent GW speed arises in brane-world models motivated by string theory [49].

Lastly, we should mention that a massive graviton (or the related bigravity) scenario
can lead to a frequency-dependent GW velocity, with interesting and testable consequences
for GW waveforms (as first pointed out in [50]). We refer the reader to the recent [51], and
references therein, for thorough analysis of this case.

Our aim in this work is to develop a general theoretical and numerical toolkit for quan-
tifying the perspective of LISA to measure a frequency-dependent cT only through its e↵ects
on GW waveforms from merging massive black hole (MBH) binaries, without relying on spe-
cific modified gravity scenarios4. We implement two representative Ansätze for a frequency-
dependent GW propagation velocity. The first Ansatz is motivated from a perturbative
expansion in powers of (f/f?), with f? a fiducial frequency controlling the onset of deviations
from GR. The second Ansatz describes scenarios with rapid changes in cT , which smoothly
change from cT 6= 1 at small frequencies to cT = 1 at larger frequencies. For both Ansätze
we derive how the GW waveforms are modified with respect to GR. The tools we develop,
although applied to two representative scenarios, are very flexible, and can be used in future
for testing any new theoretical models predicting transitory variations of cT as function of
frequency.

We will show that LISA can obtain good constraints on both the GR and new parameters
involved, even without electromagnetic (EM) counterparts. In fact, a major advantage of
our work is that it does not rely on detection of unique EM counterparts for LISA sources.
Whilst LISA standard sirens can serve as a further tool to test gravity (see e.g. [13, 56–61]),
the rate of EM counterparts adds a further layer of uncertainty to that already coming from
the massive black hole population models. Furthermore, constraints from standard sirens
can only be obtained very close to or after the merger, when the sky localisation is good
enough to narrow down candidate host galaxies. In principle, one can imagine the analysis
we present here being performed on-the-fly as a system inspirals, as done for regular GR

2See also [38] for a very recent work where the notion of “infrared causality” is introduced and studied in
detail vis-à-vis asymptotic causality.

3In this context, the allowed super-luminality is Planck-suppressed and one cannot resolve the deviation
from luminality. This result, however, hinges on there being a well-defined decoupling limit. This is not the
case in all frames and one must not therefore extrapolate it to EFTs of dark energy, modified gravity.

4We refer the reader to [52] for a review of modified gravity models, and [5, 53–55] for some studies on
how to constrain modified gravity with GW observations.

– 3 –



Theoretical motivation for the EFT ansatz

Suppose there exists a scalar theory valid up to a strong coupling scale Λ, with new physics entering at the scale

Assume a homogeneous scalar background               that spontaneously breaks Lorentz invariance,                           , 
patametrised with a constant parameter  

The spontaneous breaking of Lorentz invariance typically leads to a scalar speed different to that of light

dispersion relation

scalar speed                                                                                       with 

Rewrite tensor speed in terms of frequency :

C Theoretical motivations for the EFT Ansatz

We are motivated by the arguments of [19]: suppose there exists a scalar theory valid up to a
strong coupling scale ⇤, with new physics (e.g extra degrees of freedom) entering at the scale
M  ⇤. Let us assume a homogeneous scalar background �0(t) that spontaneously breaks
Lorentz invariance, �0(t) = ↵⇤ t, parameterised with a constant parameter ↵ (although it
may be mildly time-dependent, with |↵̇/↵|  H). The spontaneous breaking of Lorentz
invariance typically leads to a scalar speed di↵erent to that of light. We consider for example
the partial UV completion of Eq. (6) in [19]. It leads to a dispersion relation,
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. (C.1)

The propagation speed is defined through the dispersion relation
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strong coupling scale ⇤, with new physics (e.g extra degrees of freedom) entering at the scale
M  ⇤. Let us assume a homogeneous scalar background �0(t) that spontaneously breaks
Lorentz invariance, �0(t) = ↵⇤ t, parameterised with a constant parameter ↵ (although it
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C Theoretical motivations for the EFT Ansatz
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C Theoretical motivations for the EFT Ansatz

We are motivated by the arguments of [19]: suppose there exists a scalar theory valid up to a
strong coupling scale ⇤, with new physics (e.g extra degrees of freedom) entering at the scale
M  ⇤. Let us assume a homogeneous scalar background �0(t) that spontaneously breaks
Lorentz invariance, �0(t) = ↵⇤ t, parameterised with a constant parameter ↵ (although it
may be mildly time-dependent, with |↵̇/↵|  H). The spontaneous breaking of Lorentz
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C Theoretical motivations for the EFT Ansatz

We are motivated by the arguments of [19]: suppose there exists a scalar theory valid up to a
strong coupling scale ⇤, with new physics (e.g extra degrees of freedom) entering at the scale
M  ⇤. Let us assume a homogeneous scalar background �0(t) that spontaneously breaks
Lorentz invariance, �0(t) = ↵⇤ t, parameterised with a constant parameter ↵ (although it
may be mildly time-dependent, with |↵̇/↵|  H). The spontaneous breaking of Lorentz
invariance typically leads to a scalar speed di↵erent to that of light. We consider for example
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C Theoretical motivations for the EFT Ansatz

We are motivated by the arguments of [19]: suppose there exists a scalar theory valid up to a
strong coupling scale ⇤, with new physics (e.g extra degrees of freedom) entering at the scale
M  ⇤. Let us assume a homogeneous scalar background �0(t) that spontaneously breaks
Lorentz invariance, �0(t) = ↵⇤ t, parameterised with a constant parameter ↵ (although it
may be mildly time-dependent, with |↵̇/↵|  H). The spontaneous breaking of Lorentz
invariance typically leads to a scalar speed di↵erent to that of light. We consider for example
the partial UV completion of Eq. (6) in [19]. It leads to a dispersion relation,

!2 = k2 � ↵2
!2M2

M2 � !2 + k2
. (C.1)

The propagation speed is defined through the dispersion relation

!2 = c2(t, k) k2. (C.2)

Therefore (C.1) leads to a scalar speed given by
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Although motivated by scalar theories, we adopt this expression in the tensor case for sim-
plicity. Here
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; c20 =
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1 + ↵2
(C.4)

Note that the function (C.3) has the properties

cs(k ⌧ k?) = c0, (C.5)

cs(k � k?) = 1, (C.6)

showing consistency with GR at large cases. Rewriting tensor speed in (C.3) in terms of
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Ansatze for

§ Polynomial ansatz

§ EFT-inspired ansatz 

As an immediate, general application of the formulas we derived, we conclude this
subsection by deriving an expression for the GW luminosity distance in scenarios with � 6= 0,
following the arguments of [60]. We call F the energy flux at observer position:

F =
dEo/dto

Area
(2.19)

where Area= 4⇡(rGW

phys
)2. Then we introduce the luminosity at the source position, L:

L =
dEs

dts
=

(1 + ze)2

(1 � �)2
dEo

dto
, (2.20)

where (2.15) has been used. The luminosity distance dGW

L is defined in terms of the following
relation

F ⌘ L
4⇡ (dGW

L )2
. (2.21)

Using these formulas, as well as relation (2.8) to connect comoving and physical distance, we
obtain

dGW

L = (1 + ze) (1 � �)�
1
2 rGW

com , (2.22)

so the e↵ects of a cT varying with frequency are contained in the dependence on � as defined
in (2.12). As we will learn in §3, the luminosity distance dGW

L and other relations we derived
here play an important role for characterizing the properties of the GW waveforms.

2.2 Two Ansätze for cT (f)

After the previous considerations, in this subsection we discuss two representative Ansätze
for cT . They will represent our benchmark scenarios for the LISA forecasts developed in the
next sections. In fact, after discussing the Ansatz functional forms, we briefly anticipate the
level of constraints we will be able to obtain with LISA on the parameters characterizing
them. Importantly, these Ansätze aim to discuss possible ways to parametrize deviations
from cT = 1 around LISA frequencies, and are not built for automatically satisfying at
the same time constraints on cT within ground-based frequency ranges. To do so, further
corrections to their frequency dependence might be needed in the intermediate frequency
band between LISA and ground-based experiments. We will comment on this point through
the text, and above all in Appendix D.

Polynomial Ansatz

Inspired by the scale-dependent choice originally put forward in [69], our first model param-
etrizes cT (f) as a polynomial in frequency:

cT (f) = 1 +
X

n

�n

✓
f

f⇤

◆n

. (2.23)

Here n can be a positive or negative integer, �n is a set of parameters controlling deviations
from GR, and f⇤ is a fixed frequency scale controlling the onset of the deviations. In what
follows we study both positive and negative values of n as separate cases. Note that, for
simplicity, we do not allow �n to be function of time; this possibility will nevertheless be
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set of parameters controlling deviations from GR

positive or negative integer

explored in appendix E. Notice that our Ansatz (2.23) includes more than one free parameter,
hence it goes beyond the one-parameter parametrization proposed in [45].

In the positive-power (n > 0) and negative-power (n < 0) cases alike, we assume
(f/f⇤)sgn(n) to be a small quantity, allowing us to Taylor expand cT (f) (assuming that the
�n are not large enough to violate the validity of the expansion). We will learn that expanding
cT (f) up to quadratic order will prove su�cient to study the dominant corrections to the
waveform that may be detectable with LISA. We do not include the n = 0 term in either
power-law model, since this represents a frequency-independent correction to cT that has
already been constrained to be very small at z ⌧ 1 by GW170817.

For the positive-power case, we require f⇤ > f everywhere in the LISA band, meaning
that the deviation cT /c � 1 will grow as the inspiral evolves (here we temporarily restore
speed-of-light units). This case turns out to be the mathematically simplest model we study;
however, it implicitly requires that some termination mechanism switches o↵ the deviations
between the LISA band and the band of ground-based detectors, again to maintain consis-
tency with current results bounds on cT (see Appendix D).

Similarly, for the negative-power model f⇤ should be outside the LISA frequency interval,
so that (f/f⇤)�1 stays small in the LISA band. The negative-power case is arguably a more
natural prescription of low-energy deviations from GR, because at high frequencies cT /c ! 1.
However, the bounds on |cT /c � 1| from GW170817 are so impressively tight that they are
hard to satisfy even in this model. Using the values of f⇤ we discuss in the next paragraph,
and assuming no finely-tuned cancellations between the n = �1 and n = �2 terms, formally
we need |�1| . 10�4 to satisfy the existing bounds (�2 remains virtually unconstrained).
However, recognising that our power-law models would at best be only crude representations
of the underlying physics, we do not apply the latter prior on �1 in most of this work. In
§5.2 we present results with only �2 allowed to vary, which require no further assumptions
to be consistent with GW170817.

In our forecast in §5, we mainly consider MBH binaries with total masses between 104

and 107M�, as these generally give signal-to-noise ratio (SNR) > 10 in LISA (see Figure 11).
The frequency range for these waveforms is between ⇠ 10�5 and ⇠ 10�1 Hz, so f⇤ is required
to stay outside this range. In addition, f⇤ should be lower than the LIGO lower sensitivity
bound of ⇠ 10 Hz. Therefore the typical ‘safe’ values of f⇤ we use in the positive- and
negative-power cases are 2 Hz and 2⇥ 10�7 Hz, respectively; in this context, safe means that
the deviations from GR will remain small for any astrophysical system detectable by LISA.
Values of f⇤ within the LISA band can be considered, and will result in tighter parameter
constraints, but also imply that some LISA systems could show non-perturbative departures
from GR. Such non-perturbative e↵ects lie beyond the scope of the current work. Finally, it
is worth noting that constraints on eq. (2.23) are degenerate in �n/fn

⇤ and so constraints on
�n can be translated from one f⇤ to another (Appendix. D).

An EFT-inspired Ansatz

The second parametrization we consider has the property of rapidly changing from a value
of cT smaller than one at small frequencies to cT = 1 at high frequencies (see Figure 1):

cT (f) =

"
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f2
?

f2
� f2

?

f2

s

1 + 2
�
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0

� f2

f2
?

#1/2

. (2.24)
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fixed frequency scale controlling the onset of the deviations

Note: generalization by considering a non-trivial function                    of the redshift and the frequency
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Figure 22: A deviation of (c�c0)/c = 10�4 in the EFT-inspired Ansatz (2.24) (black curve)
with f⇤ = 3 ⇥ 10�4 Hz, motivated by our forecasts in §5 and observable with LISA, can be
e�ciently suppressed with a power-law (blue) or exponential (red) suppression, eqs. (D.5)
and (D.6), from higher-order corrections to satisfy the GW170817 bound (gray dotted) while
remaining an accurate description in the LISA band. The parameters are chosen as f̃⇤ =
0.2 Hz, p = 2 and f̃⇤ = 1 Hz and p = 1/2 for the power-law and exponential suppressions,
respectively.

purpose we shall consider a power-law and exponential suppression of the tensor sound speed
of the forms

c̃T (f) =
cT (f) + (f/f̃⇤)2p

1 + (f/f̃⇤)2p
, (D.5)

c̃T (f) = 1 � [1 � cT (f)] e�(f/f̃⇤)2p , (D.6)

respectively. The parameters f̃⇤ and p shall be chosen such that cT (f), given by eqs. (2.23)
or (2.24), is valid in the LISA band and (c � cT )/c < 10�15 for LIGO. For simplicity, we
shall focus only on the EFT Ansatz, which in the high-frequency limit can however also be
interpreted in terms of a n = �1 power-law Ansatz. Figure 22 shows how a deviation of
(c � c0)/c = 10�4 in eq. (2.24) with f⇤ = 3 ⇥ 10�4 Hz, motivated by our forecasts in §5, can
be e�ciently suppressed with eqs. (D.5) or (D.6) in the LIGO band. Particularly, we find
that for an exponential or power-law suppression with p & 1/2 or p & 2, our forecasts remain
valid for a potential signature detectable in the LISA band that is hidden to LIGO.

E Future directions: general parametrization of GW propagation

In §2.2, we motivated a frequency-dependent group velocity cT (f) from the fact that, in many
models of modified gravity (including quantum gravity), the modification of the dispersion
relation can be written as a modified dispersion relation !2 � k2 ! F (!, k) = 0. There, we
assumed that all the time- or redshift-dependence of cT was implicit in the frequency f . Now
we relax that assumption and consider a non-trivial function cT (z, f) of the redshift and the
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Figure 2: Plot of � for the EFT-inspired Ansatz, as defined in (2.12). Left panel: z = 0.2; Right
panel: z = 2.

Figure 3: Variation of maximum value of � (left panel) and the position of the maximum (right
panel) with redshift and c0, for the EFT-inspired Ansatz of §2.2.

the source, which might be helpful to build a Hubble diagram with GW sirens. We leave the
exploration of this idea to future work.

The two parameters f? and c0 controlling the location and height of the transition (with
c0 = 1 corresponding to the GR case) can indeed be constrained very well with LISA. In
§5 we forecast LISA capabilities to measure these quantities, and find that both parameters
influence considerably GW waveforms. We conclude that for MBH binaries in specific mass
ranges (around Mtot ⇠ 105M�), the parameters f? and c0 characterizing Ansatz (2.24), can
be constrained to a fractional error of order percent level or better, with respect to their
fiducial values.

3 Waveform computation

In this section we compute how gravitational waveforms are modified in models where cT is a
function of frequency, making use of the two Ansätze discussed in the previous section. Both
the waveform amplitude and the phase are a↵ected. We combine methods first introduced in
[50] in the context of a massive graviton with tools motivated by the standard post-Newtonian
approach to GW observables. We start in §3.1 and §3.2 by discussing how the waveform
amplitude and phase are sensitive to a frequency-dependent cT , focussing on the inspiral
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We can use relation (2.5) to find how the typical time scale related with the evolution of
the GW phase di↵ers between source and at detection. For two signals emitted at the same
physical distance, one has

cT (fo) dto = (1 + z) cT (fs) dts . (2.9)

The relation between frequencies at source (fs) and at detection (fo), which scale as the
inverse of time di↵erences (f ⇠ 1/�t), reads

fo
cT (fo)

=
fs

(1 + z) cT (fs)
, (2.10)

where z = ze is the redshift of the source. Notice that, in the frequency regimes where cT (f)
is frequency-independent, we find

fs = (1 + z) fo (2.11)

which is the standard relation connecting frequencies at emission and at detection. In general,
however, a frequency-dependent GW velocity requires to generalize eq. (2.11) to eq. (2.10).

It is convenient to define a dimensionless quantity � that measures the deviation from
the standard relation (2.11) for GWs propagating through cosmological distances:

� =
fs � (1 + z) fo(fs, z)

fs
(2.12)

= 1 � cT (fo)

cT (fs)
. (2.13)

� can be expressed as function of fs, or of fo, depending on which is more convenient. A
value � 6= 0 indicates that cT is a non-constant function of frequency. Using the parameter
�, the clock ticks at source and observer are related by

dto =
fs
fo

dts (2.14)

=
(1 + z) dts

1 � �
, (2.15)

then integrating

to = (1 + z)

Z ts

0

dt0s
1 � �(t0s)

. (2.16)

Simple manipulations lead to the equality

dfo
dto

=
dfs
dts

(1 � �(fs))2

(1 + z)2


1 +

d ln(1 � �(fs))

d ln fs

�
, (2.17)

or equivalently

dfs
dts

=
dfo
dto

(1 + z)2

(1 � �(fo))2


1 � d ln(1 � �(fo))

d ln fo

�
. (2.18)
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c0 = 1 corresponding to the GR case) can indeed be constrained very well with LISA. In
§5 we forecast LISA capabilities to measure these quantities, and find that both parameters
influence considerably GW waveforms. We conclude that for MBH binaries in specific mass
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fiducial values.
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dimensionless quantity
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Figure 1: Plot of the EFT ansatz for cT as a function of frequency, as given by eq. (2.24).

The parametrization (2.24) is controlled by two free parameters: a fiducial frequency f?
around which cT changes rapidly, and a low-frequency speed c0 with 0 < c0  1. Ansatz
(2.24) is motivated by the analysis in [19] of an UV completion of a scalar field theory, where
the scalar velocity depends on the energy, and smoothly (but rapidly) connects from c0 to
1 as the energy increases. The transition from c0 to unity occurs within a relatively small
interval as the frequency increases; the width of the transition is not a free parameter and
depends entirely on c0. See Appendix C for more details on theoretical characterization of
this Ansatz and Appendix D for a discussion of its compatibility with the GW170817 bound.
Instances of such rapid changes in cT (f), although motivated from theoretical considerations,
are not easy to describe in terms of a perturbative Ansatz as (2.23). For this reason in the
following section we adopt the representative form (2.24) for modelling such systems. We
consider (2.24) as a convenient, 2-parameter choice of function with an enhanced, transient
variation of cT broadly motivated by the scenarios discussed in the Introduction. More
specifically, model-dependent choices of cT with similar properties might be considered, and
their consequences for LISA can be analyzed with the tools we develop in this work.

A frequency profile for cT (f) as (2.24) implies that all the frequency-dependent e↵ects
studied in §2.1 occur in a relatively small frequency band centered around f?. One can easily
compute numerically the function �(f), introduced in (2.12), which is the important quantity
that controls the deviations from GR. We plot �(f) in Figure 2 for representative choices of
parameters. We notice that this function has a pronounced peak, whose maximal value �max

depends on c0, but also on the redshift z at which the GW source event occurs. To understand
better how �(f) evolves over the z � c0 parameter space, we evaluate the amplitude and the
position of the maximum of the function for redshifts log-uniformly distributed from 0.1 to
10, and values of c0 uniformly distributed between 0.1 and 0.9, see Figure 3. We see that
maximum deviation from GR occurs at frequencies of the order f? and for small c0 and large
z, as expected. We numerically found a simple phenomenological fit relating �max to c0 and
z that is valid up to large redshifts (z = 15):

�max(c0, z) = (1.07 � 1.04 c0)


1 � 1

(1 + z)(1.07�0.84 c0)

�
. (2.25)

For more details on the expression above we refer the reader to Appendix C. This relation
suggests that if we were able to measure with good precision deviations from GR induced by
Ansatz (2.24), we might then be able to extract independent information on the redshift of
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Figure 4: dGW

L vs z in GR, the polynomial and the EFT Ansätze. dGW

L in the polynomial case is
computed in the positive-power case with exaggerated values of �1 = �2 = 10, at the frequency of
(fo/f⇤) = 10�2. dGW

L in the EFT case is computed choosing c0 = 0.9 at the frequency of (fo/f⇤) = 1.

epoch only. Then in §3.3 we take an additional step and consider extended gravitational
waveforms that include also the merger and ringdown epochs. We adopt the frequency-
domain PhenomA waveforms of [63], and follow similar lines to the ppE approach of [64] for
the phase of a system.

3.1 GW luminosity distance and GW amplitude

As we learned in §2.1, eq. (2.22), when cT is function of frequency the GW luminosity distance
is given by

dGW

L = (1 + z) rGW

com

s
cT (fs)

cT (fo)
. (3.1)

while the relation between frequencies at source and detection is

fo =
fs

(1 + z)

cT (fo)

cT (fs)
= fz

cT (fo)

cT (fs)
, (3.2)

where in the second equality we define fz = fs/(1 + z) as the redshifted frequency as in GR.
We plot in Figure 4 the GW luminosity distance versus z in GR, the polynomial Ansatz

and the EFT-inspired Ansatz respectively. The values of dGW

L in the polynomial case are
larger than in GR for positive values of parameters �1 and �2 (and vice-versa for negative �1
and �2). For the EFT-inspired case dGW

L is suppressed with respect to its GR behaviour.
The two helicities of the GW waveform for the binary compact object inspiral in Fourier

space are given by (see e.g. [70])

h+(f) = A(f)
1 + cos2 ◆

2
ei (f), (3.3)

h⇥(f) = iA(f) cos ◆ ei (f), (3.4)
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Consider                        (          non-constant function of frequency)

We can use relation (2.5) to find how the typical time scale related with the evolution of
the GW phase di↵ers between source and at detection. For two signals emitted at the same
physical distance, one has

cT (fo) dto = (1 + z) cT (fs) dts . (2.9)

The relation between frequencies at source (fs) and at detection (fo), which scale as the
inverse of time di↵erences (f ⇠ 1/�t), reads

fo
cT (fo)

=
fs

(1 + z) cT (fs)
, (2.10)

where z = ze is the redshift of the source. Notice that, in the frequency regimes where cT (f)
is frequency-independent, we find

fs = (1 + z) fo (2.11)

which is the standard relation connecting frequencies at emission and at detection. In general,
however, a frequency-dependent GW velocity requires to generalize eq. (2.11) to eq. (2.10).

It is convenient to define a dimensionless quantity � that measures the deviation from
the standard relation (2.11) for GWs propagating through cosmological distances:

� =
fs � (1 + z) fo(fs, z)

fs
(2.12)

= 1 � cT (fo)

cT (fs)
. (2.13)

� can be expressed as function of fs, or of fo, depending on which is more convenient. A
value � 6= 0 indicates that cT is a non-constant function of frequency. Using the parameter
�, the clock ticks at source and observer are related by

dto =
fs
fo

dts (2.14)

=
(1 + z) dts

1 � �
, (2.15)

then integrating

to = (1 + z)

Z ts

0

dt0s
1 � �(t0s)

. (2.16)

Simple manipulations lead to the equality

dfo
dto

=
dfs
dts

(1 � �(fs))2

(1 + z)2


1 +

d ln(1 � �(fs))

d ln fs

�
, (2.17)

or equivalently

dfs
dts

=
dfo
dto

(1 + z)2

(1 � �(fo))2


1 � d ln(1 � �(fo))

d ln fo

�
. (2.18)
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luminosity distance

As an immediate, general application of the formulas we derived, we conclude this
subsection by deriving an expression for the GW luminosity distance in scenarios with � 6= 0,
following the arguments of [60]. We call F the energy flux at observer position:

F =
dEo/dto

Area
(2.19)

where Area= 4⇡(rGW

phys
)2. Then we introduce the luminosity at the source position, L:

L =
dEs

dts
=

(1 + ze)2

(1 � �)2
dEo

dto
, (2.20)

where (2.15) has been used. The luminosity distance dGW

L is defined in terms of the following
relation

F ⌘ L
4⇡ (dGW

L )2
. (2.21)

Using these formulas, as well as relation (2.8) to connect comoving and physical distance, we
obtain

dGW

L = (1 + ze) (1 � �)�
1
2 rGW

com , (2.22)

so the e↵ects of a cT varying with frequency are contained in the dependence on � as defined
in (2.12). As we will learn in §3, the luminosity distance dGW

L and other relations we derived
here play an important role for characterizing the properties of the GW waveforms.

2.2 Two Ansätze for cT (f)

After the previous considerations, in this subsection we discuss two representative Ansätze
for cT . They will represent our benchmark scenarios for the LISA forecasts developed in the
next sections. In fact, after discussing the Ansatz functional forms, we briefly anticipate the
level of constraints we will be able to obtain with LISA on the parameters characterizing
them. Importantly, these Ansätze aim to discuss possible ways to parametrize deviations
from cT = 1 around LISA frequencies, and are not built for automatically satisfying at
the same time constraints on cT within ground-based frequency ranges. To do so, further
corrections to their frequency dependence might be needed in the intermediate frequency
band between LISA and ground-based experiments. We will comment on this point through
the text, and above all in Appendix D.

Polynomial Ansatz

Inspired by the scale-dependent choice originally put forward in [69], our first model param-
etrizes cT (f) as a polynomial in frequency:

cT (f) = 1 +
X

n

�n

✓
f

f⇤

◆n

. (2.23)

Here n can be a positive or negative integer, �n is a set of parameters controlling deviations
from GR, and f⇤ is a fixed frequency scale controlling the onset of the deviations. In what
follows we study both positive and negative values of n as separate cases. Note that, for
simplicity, we do not allow �n to be function of time; this possibility will nevertheless be
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to prove that the linearized evolution equation obtained from eq. (2.1) describes a free GW,
propagating through a cosmological space-time with arbitrary speed cT (f). The frequency
dependence of cT (f) appearing in eq. (2.1) is physically interpreted as the frequency of GW
as emitted by an inspiralling binary process. We can then make the hypothesis that f = f(t)
with t related to the coalescence time (up to a constant shift). Hence all quantities in eq.
(2.1) depend on time only. We do not need to make any further assumptions about the
functional dependence of cT (f) in this subsection.

It is convenient to distinguish three notions of time for the system under consideration
(see e.g. [68]):

- Time to as measured by ticks of a distant observer’s clock

- Time ts as measured by clock ticks near the source region (local wave zone)

- Time te when the signal is emitted (a cosmological time scale).

The frequency of GW at emission, fs, can be di↵erent from the frequency at detection, fo,
due to both the expansion of the universe and to modified gravity e↵ects. Let us study this
phenomenon in the system at hand.

The action (2.1) describes a free GW travelling through a geodesics in a Friedmann-
Lemaitre-Robertson-Walker (FRW) metric, characterized by a line element

ds2 = cT (f) ↵̄
⇥
�c2T (f) dt2 + a2(t) d~x2

⇤
. (2.2)

This is an e↵ective metric which we use for describing the propagation of the GW [60]. In
fact, denoting the associated metric tensor g̃µ⌫ , the Lagrangian density for a free spin-2 field
propagating through it reads

LT =
p

�g̃ [g̃µ⌫@µhij@⌫hij ] (2.3)

= a3 ↵̄


ḣ2ij � c2T

a2

⇣
~rhij

⌘2
�
, (2.4)

corresponding to the Lagrangian density in the integrand of eq. (2.1). With the help of
eq. (2.2) we write comoving and physical distances as

rGW

com(t) =

Z r

0

dr0 =

Z t

te

cT [f(t0)]

a(t0)
dt0 (2.5)

and

rGW

phys(t) = a(t) c1/2T (f) ↵̄1/2 rGW

com(t) . (2.6)

We make the hypothesis that, in proximity of the source, modified gravity e↵ects have no
time to develop, i.e.

lim
t!ts

rGW

phys
(t)

rGW
com(t)

= a(ts) . (2.7)

This fixes ↵̄ = c�1

T (fs) hence we conclude that

rGW

phys(t) = a(t)


cT (f(t))

cT (fs)

� 1
2

rGW

com(t) . (2.8)

– 5 –

to prove that the linearized evolution equation obtained from eq. (2.1) describes a free GW,
propagating through a cosmological space-time with arbitrary speed cT (f). The frequency
dependence of cT (f) appearing in eq. (2.1) is physically interpreted as the frequency of GW
as emitted by an inspiralling binary process. We can then make the hypothesis that f = f(t)
with t related to the coalescence time (up to a constant shift). Hence all quantities in eq.
(2.1) depend on time only. We do not need to make any further assumptions about the
functional dependence of cT (f) in this subsection.

It is convenient to distinguish three notions of time for the system under consideration
(see e.g. [68]):

- Time to as measured by ticks of a distant observer’s clock

- Time ts as measured by clock ticks near the source region (local wave zone)

- Time te when the signal is emitted (a cosmological time scale).

The frequency of GW at emission, fs, can be di↵erent from the frequency at detection, fo,
due to both the expansion of the universe and to modified gravity e↵ects. Let us study this
phenomenon in the system at hand.

The action (2.1) describes a free GW travelling through a geodesics in a Friedmann-
Lemaitre-Robertson-Walker (FRW) metric, characterized by a line element

ds2 = cT (f) ↵̄
⇥
�c2T (f) dt2 + a2(t) d~x2

⇤
. (2.2)

This is an e↵ective metric which we use for describing the propagation of the GW [60]. In
fact, denoting the associated metric tensor g̃µ⌫ , the Lagrangian density for a free spin-2 field
propagating through it reads

LT =
p

�g̃ [g̃µ⌫@µhij@⌫hij ] (2.3)

= a3 ↵̄


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L vs z in GR, the polynomial and the EFT Ansätze. dGW

L in the polynomial case is
computed in the positive-power case with exaggerated values of �1 = �2 = 10, at the frequency of
(fo/f⇤) = 10�2. dGW

L in the EFT case is computed choosing c0 = 0.9 at the frequency of (fo/f⇤) = 1.

epoch only. Then in §3.3 we take an additional step and consider extended gravitational
waveforms that include also the merger and ringdown epochs. We adopt the frequency-
domain PhenomA waveforms of [63], and follow similar lines to the ppE approach of [64] for
the phase of a system.

3.1 GW luminosity distance and GW amplitude

As we learned in §2.1, eq. (2.22), when cT is function of frequency the GW luminosity distance
is given by

dGW

L = (1 + z) rGW

com

s
cT (fs)

cT (fo)
. (3.1)

while the relation between frequencies at source and detection is

fo =
fs

(1 + z)

cT (fo)

cT (fs)
= fz

cT (fo)

cT (fs)
, (3.2)

where in the second equality we define fz = fs/(1 + z) as the redshifted frequency as in GR.
We plot in Figure 4 the GW luminosity distance versus z in GR, the polynomial Ansatz

and the EFT-inspired Ansatz respectively. The values of dGW

L in the polynomial case are
larger than in GR for positive values of parameters �1 and �2 (and vice-versa for negative �1
and �2). For the EFT-inspired case dGW

L is suppressed with respect to its GR behaviour.
The two helicities of the GW waveform for the binary compact object inspiral in Fourier

space are given by (see e.g. [70])

h+(f) = A(f)
1 + cos2 ◆

2
ei (f), (3.3)

h⇥(f) = iA(f) cos ◆ ei (f), (3.4)
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We can use relation (2.5) to find how the typical time scale related with the evolution of
the GW phase di↵ers between source and at detection. For two signals emitted at the same
physical distance, one has

cT (fo) dto = (1 + z) cT (fs) dts . (2.9)

The relation between frequencies at source (fs) and at detection (fo), which scale as the
inverse of time di↵erences (f ⇠ 1/�t), reads

fo
cT (fo)

=
fs

(1 + z) cT (fs)
, (2.10)

where z = ze is the redshift of the source. Notice that, in the frequency regimes where cT (f)
is frequency-independent, we find

fs = (1 + z) fo (2.11)

which is the standard relation connecting frequencies at emission and at detection. In general,
however, a frequency-dependent GW velocity requires to generalize eq. (2.11) to eq. (2.10).

It is convenient to define a dimensionless quantity � that measures the deviation from
the standard relation (2.11) for GWs propagating through cosmological distances:

� =
fs � (1 + z) fo(fs, z)

fs
(2.12)

= 1 � cT (fo)

cT (fs)
. (2.13)

� can be expressed as function of fs, or of fo, depending on which is more convenient. A
value � 6= 0 indicates that cT is a non-constant function of frequency. Using the parameter
�, the clock ticks at source and observer are related by

dto =
fs
fo

dts (2.14)

=
(1 + z) dts

1 � �
, (2.15)

then integrating

to = (1 + z)

Z ts

0

dt0s
1 � �(t0s)

. (2.16)

Simple manipulations lead to the equality

dfo
dto

=
dfs
dts

(1 � �(fs))2

(1 + z)2


1 +

d ln(1 � �(fs))

d ln fs

�
, (2.17)

or equivalently

dfs
dts

=
dfo
dto

(1 + z)2

(1 � �(fo))2


1 � d ln(1 � �(fo))

d ln fo

�
. (2.18)
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epoch only. Then in §3.3 we take an additional step and consider extended gravitational
waveforms that include also the merger and ringdown epochs. We adopt the frequency-
domain PhenomA waveforms of [63], and follow similar lines to the ppE approach of [64] for
the phase of a system.
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where in the second equality we define fz = fs/(1 + z) as the redshifted frequency as in GR.
We plot in Figure 4 the GW luminosity distance versus z in GR, the polynomial Ansatz

and the EFT-inspired Ansatz respectively. The values of dGW

L in the polynomial case are
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where A(f) is the amplitude of the waveform and  (f) the phase (to be discussed in the
next section). ◆ is the inclination angle of the orbit relative to the line of sight. The GW
amplitude in GR, without accounting for the redshift, is given by

AGR(fs) =

r
5⇡

24

M2
s

a(ts)rcom
(⇡Msfs)

�7/6 . (3.5)

It is derived from the time-dependent GW amplitude using the stationary phase approxima-
tion in the Fourier transform of the waveform [68]. Ms is the chirp mass of the binary system
at the source, defined by Ms = Mtot⌘3/5, with Mtot the binary total mass, ⌘ = m1m2/Mtot

the reduced mass parameter, and m1, m2 the two component masses. Since the signal ob-
served by the detector is redshifted, we rewrite the waveform using the redshifted chirp mass
Mz = (1 + z)Ms, redshifted frequency fz = fs/(1 + z), and using 1/a(ts) = (1 + z). The
redshifted GW waveform amplitude is then given by

AGR(fz) =

r
5⇡

24

M2
z

(1 + z)rcom
(⇡Mzfz)

�7/6 . (3.6)

In modified gravity, the quantities involved in GW propagation are not only scaled by redshift,
but also scaled by cT (fo)/cT (fs). Hence we define the observed chirp mass as

Mo = Mz
cT (fs)

cT (fo)
. (3.7)

We can replace the physical distance (1 + z)rcom by dGW

L using eq. (3.1), and replace Mz by
Mo, so to finally obtain the modified GW amplitude as

AMG(fo) =

r
5⇡

24

M2
o

dGW

L

(⇡Mofo)
� 7

6


cT (fo)

cT (fs)

� 3
2

. (3.8)

The amplitudes of the characteristic strains (defined by 2fo|h(fo)| [71]) in GR as well as the
positive- and the negative-power polynomial cases are plotted in Figure 5, with exaggerated
values of �1 and �2. Also plotted is the e↵ective sensitivity curve of LISA with angular
averaging over the sky and the polarisation angle adopted from reference [72]. It shows
that the modified amplitudes deviate from their GR equivalents as fo approaches f⇤. Note
that the amplitudes in the figure extend to the merger and the ringdown phases using the
PhenomA waveform, which we discuss in §3.3. Since f⇤ for the positive and the negative-
power polynomial cases are in opposite extrema of the LISA band, the modification e↵ects
are more manifest in systems with di↵erent total masses in the two cases. Lighter systems are
preferred for detecting beyond Einstein models described by the positive-power polynimal
Ansatz, and heavier systems for the negative-power polynomial Ansatz.

3.2 Phase

The phase of the GW during inspiral can be computed analytically using methods based on
the Post-Newtonian (PN) expansion. We first set up the calculation using a general cT (f),
and then we specialise our results to the polynomial and EFT-inspired Ansätze described in
§2. As the focus of our work is on GW propagation e↵ects, we do not consider modifications
to the physics of the merging process at the source position. As such, we expect the rate of
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that the modified amplitudes deviate from their GR equivalents as fo approaches f⇤. Note
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PhenomA waveform, which we discuss in §3.3. Since f⇤ for the positive and the negative-
power polynomial cases are in opposite extrema of the LISA band, the modification e↵ects
are more manifest in systems with di↵erent total masses in the two cases. Lighter systems are
preferred for detecting beyond Einstein models described by the positive-power polynimal
Ansatz, and heavier systems for the negative-power polynomial Ansatz.
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that the modified amplitudes deviate from their GR equivalents as fo approaches f⇤. Note
that the amplitudes in the figure extend to the merger and the ringdown phases using the
PhenomA waveform, which we discuss in §3.3. Since f⇤ for the positive and the negative-
power polynomial cases are in opposite extrema of the LISA band, the modification e↵ects
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The amplitudes of the characteristic strains (defined by 2fo|h(fo)| [71]) in GR as well as the
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that the modified amplitudes deviate from their GR equivalents as fo approaches f⇤. Note
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PhenomA waveform, which we discuss in §3.3. Since f⇤ for the positive and the negative-
power polynomial cases are in opposite extrema of the LISA band, the modification e↵ects
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Ansatz, and heavier systems for the negative-power polynomial Ansatz.
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The amplitudes of the characteristic strains (defined by 2fo|h(fo)| [71]) in GR as well as the
positive- and the negative-power polynomial cases are plotted in Figure 5, with exaggerated
values of �1 and �2. Also plotted is the e↵ective sensitivity curve of LISA with angular
averaging over the sky and the polarisation angle adopted from reference [72]. It shows
that the modified amplitudes deviate from their GR equivalents as fo approaches f⇤. Note
that the amplitudes in the figure extend to the merger and the ringdown phases using the
PhenomA waveform, which we discuss in §3.3. Since f⇤ for the positive and the negative-
power polynomial cases are in opposite extrema of the LISA band, the modification e↵ects
are more manifest in systems with di↵erent total masses in the two cases. Lighter systems are
preferred for detecting beyond Einstein models described by the positive-power polynimal
Ansatz, and heavier systems for the negative-power polynomial Ansatz.
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§2. As the focus of our work is on GW propagation e↵ects, we do not consider modifications
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L vs z in GR, the polynomial and the EFT Ansätze. dGW

L in the polynomial case is
computed in the positive-power case with exaggerated values of �1 = �2 = 10, at the frequency of
(fo/f⇤) = 10�2. dGW

L in the EFT case is computed choosing c0 = 0.9 at the frequency of (fo/f⇤) = 1.

epoch only. Then in §3.3 we take an additional step and consider extended gravitational
waveforms that include also the merger and ringdown epochs. We adopt the frequency-
domain PhenomA waveforms of [63], and follow similar lines to the ppE approach of [64] for
the phase of a system.

3.1 GW luminosity distance and GW amplitude

As we learned in §2.1, eq. (2.22), when cT is function of frequency the GW luminosity distance
is given by

dGW
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while the relation between frequencies at source and detection is
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= fz

cT (fo)

cT (fs)
, (3.2)

where in the second equality we define fz = fs/(1 + z) as the redshifted frequency as in GR.
We plot in Figure 4 the GW luminosity distance versus z in GR, the polynomial Ansatz

and the EFT-inspired Ansatz respectively. The values of dGW

L in the polynomial case are
larger than in GR for positive values of parameters �1 and �2 (and vice-versa for negative �1
and �2). For the EFT-inspired case dGW

L is suppressed with respect to its GR behaviour.
The two helicities of the GW waveform for the binary compact object inspiral in Fourier

space are given by (see e.g. [70])

h+(f) = A(f)
1 + cos2 ◆

2
ei (f), (3.3)

h⇥(f) = iA(f) cos ◆ ei (f), (3.4)
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tion in the Fourier transform of the waveform [68]. Ms is the chirp mass of the binary system
at the source, defined by Ms = Mtot⌘3/5, with Mtot the binary total mass, ⌘ = m1m2/Mtot

the reduced mass parameter, and m1, m2 the two component masses. Since the signal ob-
served by the detector is redshifted, we rewrite the waveform using the redshifted chirp mass
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In modified gravity, the quantities involved in GW propagation are not only scaled by redshift,
but also scaled by cT (fo)/cT (fs). Hence we define the observed chirp mass as
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. (3.7)

We can replace the physical distance (1 + z)rcom by dGW
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The amplitudes of the characteristic strains (defined by 2fo|h(fo)| [71]) in GR as well as the
positive- and the negative-power polynomial cases are plotted in Figure 5, with exaggerated
values of �1 and �2. Also plotted is the e↵ective sensitivity curve of LISA with angular
averaging over the sky and the polarisation angle adopted from reference [72]. It shows
that the modified amplitudes deviate from their GR equivalents as fo approaches f⇤. Note
that the amplitudes in the figure extend to the merger and the ringdown phases using the
PhenomA waveform, which we discuss in §3.3. Since f⇤ for the positive and the negative-
power polynomial cases are in opposite extrema of the LISA band, the modification e↵ects
are more manifest in systems with di↵erent total masses in the two cases. Lighter systems are
preferred for detecting beyond Einstein models described by the positive-power polynimal
Ansatz, and heavier systems for the negative-power polynomial Ansatz.

3.2 Phase

The phase of the GW during inspiral can be computed analytically using methods based on
the Post-Newtonian (PN) expansion. We first set up the calculation using a general cT (f),
and then we specialise our results to the polynomial and EFT-inspired Ansätze described in
§2. As the focus of our work is on GW propagation e↵ects, we do not consider modifications
to the physics of the merging process at the source position. As such, we expect the rate of
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The amplitudes of the characteristic strains (defined by 2fo|h(fo)| [71]) in GR as well as the
positive- and the negative-power polynomial cases are plotted in Figure 5, with exaggerated
values of �1 and �2. Also plotted is the e↵ective sensitivity curve of LISA with angular
averaging over the sky and the polarisation angle adopted from reference [72]. It shows
that the modified amplitudes deviate from their GR equivalents as fo approaches f⇤. Note
that the amplitudes in the figure extend to the merger and the ringdown phases using the
PhenomA waveform, which we discuss in §3.3. Since f⇤ for the positive and the negative-
power polynomial cases are in opposite extrema of the LISA band, the modification e↵ects
are more manifest in systems with di↵erent total masses in the two cases. Lighter systems are
preferred for detecting beyond Einstein models described by the positive-power polynimal
Ansatz, and heavier systems for the negative-power polynomial Ansatz.

3.2 Phase

The phase of the GW during inspiral can be computed analytically using methods based on
the Post-Newtonian (PN) expansion. We first set up the calculation using a general cT (f),
and then we specialise our results to the polynomial and EFT-inspired Ansätze described in
§2. As the focus of our work is on GW propagation e↵ects, we do not consider modifications
to the physics of the merging process at the source position. As such, we expect the rate of
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The amplitudes of the characteristic strains (defined by 2fo|h(fo)| [71]) in GR as well as the
positive- and the negative-power polynomial cases are plotted in Figure 5, with exaggerated
values of �1 and �2. Also plotted is the e↵ective sensitivity curve of LISA with angular
averaging over the sky and the polarisation angle adopted from reference [72]. It shows
that the modified amplitudes deviate from their GR equivalents as fo approaches f⇤. Note
that the amplitudes in the figure extend to the merger and the ringdown phases using the
PhenomA waveform, which we discuss in §3.3. Since f⇤ for the positive and the negative-
power polynomial cases are in opposite extrema of the LISA band, the modification e↵ects
are more manifest in systems with di↵erent total masses in the two cases. Lighter systems are
preferred for detecting beyond Einstein models described by the positive-power polynimal
Ansatz, and heavier systems for the negative-power polynomial Ansatz.
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the Post-Newtonian (PN) expansion. We first set up the calculation using a general cT (f),
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that the amplitudes in the figure extend to the merger and the ringdown phases using the
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Figure 4: dGW

L vs z in GR, the polynomial and the EFT Ansätze. dGW

L in the polynomial case is
computed in the positive-power case with exaggerated values of �1 = �2 = 10, at the frequency of
(fo/f⇤) = 10�2. dGW

L in the EFT case is computed choosing c0 = 0.9 at the frequency of (fo/f⇤) = 1.

epoch only. Then in §3.3 we take an additional step and consider extended gravitational
waveforms that include also the merger and ringdown epochs. We adopt the frequency-
domain PhenomA waveforms of [63], and follow similar lines to the ppE approach of [64] for
the phase of a system.

3.1 GW luminosity distance and GW amplitude

As we learned in §2.1, eq. (2.22), when cT is function of frequency the GW luminosity distance
is given by

dGW

L = (1 + z) rGW

com

s
cT (fs)

cT (fo)
. (3.1)

while the relation between frequencies at source and detection is

fo =
fs

(1 + z)

cT (fo)

cT (fs)
= fz

cT (fo)

cT (fs)
, (3.2)

where in the second equality we define fz = fs/(1 + z) as the redshifted frequency as in GR.
We plot in Figure 4 the GW luminosity distance versus z in GR, the polynomial Ansatz

and the EFT-inspired Ansatz respectively. The values of dGW

L in the polynomial case are
larger than in GR for positive values of parameters �1 and �2 (and vice-versa for negative �1
and �2). For the EFT-inspired case dGW

L is suppressed with respect to its GR behaviour.
The two helicities of the GW waveform for the binary compact object inspiral in Fourier

space are given by (see e.g. [70])

h+(f) = A(f)
1 + cos2 ◆

2
ei (f), (3.3)

h⇥(f) = iA(f) cos ◆ ei (f), (3.4)
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As an immediate, general application of the formulas we derived, we conclude this
subsection by deriving an expression for the GW luminosity distance in scenarios with � 6= 0,
following the arguments of [60]. We call F the energy flux at observer position:

F =
dEo/dto

Area
(2.19)

where Area= 4⇡(rGW

phys
)2. Then we introduce the luminosity at the source position, L:

L =
dEs

dts
=

(1 + ze)2

(1 � �)2
dEo

dto
, (2.20)

where (2.15) has been used. The luminosity distance dGW

L is defined in terms of the following
relation

F ⌘ L
4⇡ (dGW

L )2
. (2.21)

Using these formulas, as well as relation (2.8) to connect comoving and physical distance, we
obtain

dGW

L = (1 + ze) (1 � �)�
1
2 rGW

com , (2.22)

so the e↵ects of a cT varying with frequency are contained in the dependence on � as defined
in (2.12). As we will learn in §3, the luminosity distance dGW

L and other relations we derived
here play an important role for characterizing the properties of the GW waveforms.

2.2 Two Ansätze for cT (f)

After the previous considerations, in this subsection we discuss two representative Ansätze
for cT . They will represent our benchmark scenarios for the LISA forecasts developed in the
next sections. In fact, after discussing the Ansatz functional forms, we briefly anticipate the
level of constraints we will be able to obtain with LISA on the parameters characterizing
them. Importantly, these Ansätze aim to discuss possible ways to parametrize deviations
from cT = 1 around LISA frequencies, and are not built for automatically satisfying at
the same time constraints on cT within ground-based frequency ranges. To do so, further
corrections to their frequency dependence might be needed in the intermediate frequency
band between LISA and ground-based experiments. We will comment on this point through
the text, and above all in Appendix D.

Polynomial Ansatz

Inspired by the scale-dependent choice originally put forward in [69], our first model param-
etrizes cT (f) as a polynomial in frequency:

cT (f) = 1 +
X

n

�n

✓
f

f⇤

◆n

. (2.23)

Here n can be a positive or negative integer, �n is a set of parameters controlling deviations
from GR, and f⇤ is a fixed frequency scale controlling the onset of the deviations. In what
follows we study both positive and negative values of n as separate cases. Note that, for
simplicity, we do not allow �n to be function of time; this possibility will nevertheless be
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Consider non-spinning binary systems on circular orbits

parameters associated with spin/non-circular orbits will be included in a later analysis, for
example following the methods of [73, 74]. In this case, the PN coe�cients read [75]:
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where ⌘ = m1m2/(m1 + m2)2 is the symmetric mass ratio. We include up to the 2.5 PN
term, as this is dominant for the latest stage of inspiral phase we consider – Figure 6 shows
this for GR and the negative polynomial Ansatz (we do not show the positive polynomial
Ansatz as its deviations from GR are less pronounced). We verified that the 3 PN term
remains subdominant in all our calculations.

We express our results in terms of the quantity �(f) introduced in (2.12) for parame-
terizing deviations from GR. Making use of formulas (2.17) and (2.18), we find

dfo
dto

= (1 � �)2
 

1

1 + fo
1��

@�
@fo

!
96

5⇡M2
z
u

11
3

"
1 +  1u

2
3 +  1.5u +  2u

4
3 +  2.5u

5
3

#
.

(3.15)

Note that the mass appearing in the line above is now the redshifted chirp mass, and all
references to source-frame quantities have been eliminated. The next step of the calculation
is to integrate this expression twice, to find the time to coalescence and then the GW phase.
At this point, we separate the discussion for the polynomial and EFT Ansätze.

3.2.1 Polynomial parametrization models

For the polynomial case only, we make an additional simplification by setting cT (fs) = 1.
LISA binaries are located inside galaxies, a region where existing observations [54, 76–78]
constrain gravity to be very close to GR. We will coarsely model this behaviour by fixing
cT to unity at the starting point of the GW extragalactic path as well. We do not attempt
to model what happens when the GW exits or enters a galaxy, as our simple Ansatz in
eq. (2.23) contains no environmental dependence. However, we assume that entrance to a
screened region does not completely erase the accumulated beyond-GR changes to the signal6.
Then eq. (3.15) becomes:

dfo
dto

=
cT (fo)2

1 � @ ln cT (fo)
@ ln fo

96

5⇡M2
z
u

11
3

"
1 +  1u

2
3 +  1.5u +  2u

4
3 +  2.5u

5
3

#
. (3.16)

6We note that such erasure does happen to the amplitude changes induced by modified GW damping in
some scalar-tensor theories [79]. In these models the GW amplitude depends only on the start and end points
of the GW trajectory. We are not aware of any reason similar behaviour should happen when cT is modified,
or in models that lie outside the standard Horndeski canon (such as those represented here).

– 14 –

Figure 5: The characteristic strains in GR (green), the positive-power polynomial Ansatz (red)
and the negative-power polynomial Ansatz (blue) for binaries with di↵erent total masses at z = 1.
The characteristic strain is the modulus of the strain scaled by the frequency, i.e. 2fo|h(fo)| [71].
The sensitivity curve is plotted as

p
foSn(fo). We use exaggerated values �1 = �2 = 100 for the

positive-power case and �1 = �2 = 200 for the negative-power case to visualize the modified gravity
e↵ects. We use f⇤ = 2 Hz and f⇤ = 2⇥10�7 Hz for the positive and negative-power cases respectively.
The timeline shown on the amplitude is the time before merger computed at Newtonian order.

change of GW frequency in the source frame to match that of GR. This is the starting point
of our calculation, and is given by (we expand up to 2.5 PN order):

dfs
dts

=
96

5⇡M2
s
u
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"
1 +  1u

2
3 +  1.5u +  2u

4
3 +  2.5u
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#
, (3.9)

where u is defined as

u = ⇡Msfs = ⇡Mzfz = ⇡Mofo , (3.10)

and is frame-independent, while  k (k = 1, 1.5, 2, 2.5) are the PN phase parameters. In
this work we specialise to non-spinning binary systems on circular orbits, recognising that
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the PN phase parameters

red-shifted chirp mass

We can use relation (2.5) to find how the typical time scale related with the evolution of
the GW phase di↵ers between source and at detection. For two signals emitted at the same
physical distance, one has

cT (fo) dto = (1 + z) cT (fs) dts . (2.9)

The relation between frequencies at source (fs) and at detection (fo), which scale as the
inverse of time di↵erences (f ⇠ 1/�t), reads

fo
cT (fo)

=
fs

(1 + z) cT (fs)
, (2.10)

where z = ze is the redshift of the source. Notice that, in the frequency regimes where cT (f)
is frequency-independent, we find

fs = (1 + z) fo (2.11)

which is the standard relation connecting frequencies at emission and at detection. In general,
however, a frequency-dependent GW velocity requires to generalize eq. (2.11) to eq. (2.10).

It is convenient to define a dimensionless quantity � that measures the deviation from
the standard relation (2.11) for GWs propagating through cosmological distances:

� =
fs � (1 + z) fo(fs, z)

fs
(2.12)

= 1 � cT (fo)

cT (fs)
. (2.13)

� can be expressed as function of fs, or of fo, depending on which is more convenient. A
value � 6= 0 indicates that cT is a non-constant function of frequency. Using the parameter
�, the clock ticks at source and observer are related by

dto =
fs
fo

dts (2.14)

=
(1 + z) dts

1 � �
, (2.15)

then integrating

to = (1 + z)

Z ts

0

dt0s
1 � �(t0s)

. (2.16)

Simple manipulations lead to the equality

dfo
dto

=
dfs
dts

(1 � �(fs))2

(1 + z)2


1 +

d ln(1 � �(fs))
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The phase of GW during inspiral can be computed analytically using PN expansion

We focus on GW propagation effects, so we do not consider modifications to the physics of the merging process at 
the source position                     the rate of change of GW frequency in the source frame should match that of GR
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parameters associated with spin/non-circular orbits will be included in a later analysis, for
example following the methods of [73, 74]. In this case, the PN coe�cients read [75]:
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where ⌘ = m1m2/(m1 + m2)2 is the symmetric mass ratio. We include up to the 2.5 PN
term, as this is dominant for the latest stage of inspiral phase we consider – Figure 6 shows
this for GR and the negative polynomial Ansatz (we do not show the positive polynomial
Ansatz as its deviations from GR are less pronounced). We verified that the 3 PN term
remains subdominant in all our calculations.

We express our results in terms of the quantity �(f) introduced in (2.12) for parame-
terizing deviations from GR. Making use of formulas (2.17) and (2.18), we find
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Note that the mass appearing in the line above is now the redshifted chirp mass, and all
references to source-frame quantities have been eliminated. The next step of the calculation
is to integrate this expression twice, to find the time to coalescence and then the GW phase.
At this point, we separate the discussion for the polynomial and EFT Ansätze.

3.2.1 Polynomial parametrization models

For the polynomial case only, we make an additional simplification by setting cT (fs) = 1.
LISA binaries are located inside galaxies, a region where existing observations [54, 76–78]
constrain gravity to be very close to GR. We will coarsely model this behaviour by fixing
cT to unity at the starting point of the GW extragalactic path as well. We do not attempt
to model what happens when the GW exits or enters a galaxy, as our simple Ansatz in
eq. (2.23) contains no environmental dependence. However, we assume that entrance to a
screened region does not completely erase the accumulated beyond-GR changes to the signal6.
Then eq. (3.15) becomes:
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6We note that such erasure does happen to the amplitude changes induced by modified GW damping in
some scalar-tensor theories [79]. In these models the GW amplitude depends only on the start and end points
of the GW trajectory. We are not aware of any reason similar behaviour should happen when cT is modified,
or in models that lie outside the standard Horndeski canon (such as those represented here).
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Figure 5: The characteristic strains in GR (green), the positive-power polynomial Ansatz (red)
and the negative-power polynomial Ansatz (blue) for binaries with di↵erent total masses at z = 1.
The characteristic strain is the modulus of the strain scaled by the frequency, i.e. 2fo|h(fo)| [71].
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positive-power case and �1 = �2 = 200 for the negative-power case to visualize the modified gravity
e↵ects. We use f⇤ = 2 Hz and f⇤ = 2⇥10�7 Hz for the positive and negative-power cases respectively.
The timeline shown on the amplitude is the time before merger computed at Newtonian order.

change of GW frequency in the source frame to match that of GR. This is the starting point
of our calculation, and is given by (we expand up to 2.5 PN order):
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where u is defined as

u = ⇡Msfs = ⇡Mzfz = ⇡Mofo , (3.10)

and is frame-independent, while  k (k = 1, 1.5, 2, 2.5) are the PN phase parameters. In
this work we specialise to non-spinning binary systems on circular orbits, recognising that
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the PN phase parameters

red-shifted chirp mass

We can use relation (2.5) to find how the typical time scale related with the evolution of
the GW phase di↵ers between source and at detection. For two signals emitted at the same
physical distance, one has

cT (fo) dto = (1 + z) cT (fs) dts . (2.9)

The relation between frequencies at source (fs) and at detection (fo), which scale as the
inverse of time di↵erences (f ⇠ 1/�t), reads
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, (2.10)

where z = ze is the redshift of the source. Notice that, in the frequency regimes where cT (f)
is frequency-independent, we find

fs = (1 + z) fo (2.11)

which is the standard relation connecting frequencies at emission and at detection. In general,
however, a frequency-dependent GW velocity requires to generalize eq. (2.11) to eq. (2.10).

It is convenient to define a dimensionless quantity � that measures the deviation from
the standard relation (2.11) for GWs propagating through cosmological distances:
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� can be expressed as function of fs, or of fo, depending on which is more convenient. A
value � 6= 0 indicates that cT is a non-constant function of frequency. Using the parameter
�, the clock ticks at source and observer are related by
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where A(f) is the amplitude of the waveform and  (f) the phase (to be discussed in the
next section). ◆ is the inclination angle of the orbit relative to the line of sight. The GW
amplitude in GR, without accounting for the redshift, is given by

AGR(fs) =

r
5⇡

24

M2
s

a(ts)rcom
(⇡Msfs)

�7/6 . (3.5)

It is derived from the time-dependent GW amplitude using the stationary phase approxima-
tion in the Fourier transform of the waveform [68]. Ms is the chirp mass of the binary system
at the source, defined by Ms = Mtot⌘3/5, with Mtot the binary total mass, ⌘ = m1m2/Mtot

the reduced mass parameter, and m1, m2 the two component masses. Since the signal ob-
served by the detector is redshifted, we rewrite the waveform using the redshifted chirp mass
Mz = (1 + z)Ms, redshifted frequency fz = fs/(1 + z), and using 1/a(ts) = (1 + z). The
redshifted GW waveform amplitude is then given by

AGR(fz) =

r
5⇡

24

M2
z

(1 + z)rcom
(⇡Mzfz)

�7/6 . (3.6)

In modified gravity, the quantities involved in GW propagation are not only scaled by redshift,
but also scaled by cT (fo)/cT (fs). Hence we define the observed chirp mass as

Mo = Mz
cT (fs)

cT (fo)
. (3.7)

We can replace the physical distance (1 + z)rcom by dGW

L using eq. (3.1), and replace Mz by
Mo, so to finally obtain the modified GW amplitude as
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The amplitudes of the characteristic strains (defined by 2fo|h(fo)| [71]) in GR as well as the
positive- and the negative-power polynomial cases are plotted in Figure 5, with exaggerated
values of �1 and �2. Also plotted is the e↵ective sensitivity curve of LISA with angular
averaging over the sky and the polarisation angle adopted from reference [72]. It shows
that the modified amplitudes deviate from their GR equivalents as fo approaches f⇤. Note
that the amplitudes in the figure extend to the merger and the ringdown phases using the
PhenomA waveform, which we discuss in §3.3. Since f⇤ for the positive and the negative-
power polynomial cases are in opposite extrema of the LISA band, the modification e↵ects
are more manifest in systems with di↵erent total masses in the two cases. Lighter systems are
preferred for detecting beyond Einstein models described by the positive-power polynimal
Ansatz, and heavier systems for the negative-power polynomial Ansatz.

3.2 Phase

The phase of the GW during inspiral can be computed analytically using methods based on
the Post-Newtonian (PN) expansion. We first set up the calculation using a general cT (f),
and then we specialise our results to the polynomial and EFT-inspired Ansätze described in
§2. As the focus of our work is on GW propagation e↵ects, we do not consider modifications
to the physics of the merging process at the source position. As such, we expect the rate of
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Figure 5: The characteristic strains in GR (green), the positive-power polynomial Ansatz (red)
and the negative-power polynomial Ansatz (blue) for binaries with di↵erent total masses at z = 1.
The characteristic strain is the modulus of the strain scaled by the frequency, i.e. 2fo|h(fo)| [71].
The sensitivity curve is plotted as

p
foSn(fo). We use exaggerated values �1 = �2 = 100 for the

positive-power case and �1 = �2 = 200 for the negative-power case to visualize the modified gravity
e↵ects. We use f⇤ = 2 Hz and f⇤ = 2⇥10�7 Hz for the positive and negative-power cases respectively.
The timeline shown on the amplitude is the time before merger computed at Newtonian order.

change of GW frequency in the source frame to match that of GR. This is the starting point
of our calculation, and is given by (we expand up to 2.5 PN order):
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where u is defined as

u = ⇡Msfs = ⇡Mzfz = ⇡Mofo , (3.10)

and is frame-independent, while  k (k = 1, 1.5, 2, 2.5) are the PN phase parameters. In
this work we specialise to non-spinning binary systems on circular orbits, recognising that
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As an immediate, general application of the formulas we derived, we conclude this
subsection by deriving an expression for the GW luminosity distance in scenarios with � 6= 0,
following the arguments of [60]. We call F the energy flux at observer position:

F =
dEo/dto

Area
(2.19)

where Area= 4⇡(rGW

phys
)2. Then we introduce the luminosity at the source position, L:

L =
dEs

dts
=

(1 + ze)2

(1 � �)2
dEo

dto
, (2.20)

where (2.15) has been used. The luminosity distance dGW

L is defined in terms of the following
relation

F ⌘ L
4⇡ (dGW

L )2
. (2.21)

Using these formulas, as well as relation (2.8) to connect comoving and physical distance, we
obtain

dGW

L = (1 + ze) (1 � �)�
1
2 rGW

com , (2.22)

so the e↵ects of a cT varying with frequency are contained in the dependence on � as defined
in (2.12). As we will learn in §3, the luminosity distance dGW

L and other relations we derived
here play an important role for characterizing the properties of the GW waveforms.

2.2 Two Ansätze for cT (f)

After the previous considerations, in this subsection we discuss two representative Ansätze
for cT . They will represent our benchmark scenarios for the LISA forecasts developed in the
next sections. In fact, after discussing the Ansatz functional forms, we briefly anticipate the
level of constraints we will be able to obtain with LISA on the parameters characterizing
them. Importantly, these Ansätze aim to discuss possible ways to parametrize deviations
from cT = 1 around LISA frequencies, and are not built for automatically satisfying at
the same time constraints on cT within ground-based frequency ranges. To do so, further
corrections to their frequency dependence might be needed in the intermediate frequency
band between LISA and ground-based experiments. We will comment on this point through
the text, and above all in Appendix D.

Polynomial Ansatz

Inspired by the scale-dependent choice originally put forward in [69], our first model param-
etrizes cT (f) as a polynomial in frequency:

cT (f) = 1 +
X

n

�n

✓
f

f⇤

◆n

. (2.23)

Here n can be a positive or negative integer, �n is a set of parameters controlling deviations
from GR, and f⇤ is a fixed frequency scale controlling the onset of the deviations. In what
follows we study both positive and negative values of n as separate cases. Note that, for
simplicity, we do not allow �n to be function of time; this possibility will nevertheless be
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Figure 7: The phases in GR (green), the positive-power case (red) and the negative-power case
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eq. (3.15). The integration of the time interval becomes
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The phase is then computed as :

 (fo) = 2⇡

Z fo

fc

[to(f̃o) � tc] df̃o � ⇡

4
. (3.30)

We evaluate the derivatives of � with respect to fo numerically, and compute the phase by
numerically integrating eqs. (3.29) and (3.30). The amplitudes and the phases for systems
with di↵erent total masses in the EFT Ansatz with f⇤ = 5⇥10�4 Hz are plotted in Figure 8.
Recall that in this model, f⇤ sets the position of the rapid growth of cT (f). We notice that
at frequencies much higher than f⇤, both amplitudes and phases are the same as in GR. The
modified gravity e↵ects start to become manifest when the observed frequency approaches f⇤,
resulting in a di↵erent cT at the source and observer. The modified amplitudes show constant
o↵sets from their GR equivalences at low frequencies much smaller than f⇤. This is because
the comoving distance is modified by a factor of cT (f), and cT (f) ' c0 when f ⌧ f⇤, so that
the amplitude is suppressed by a factor of 1/c0 at low frequencies. The modified phase for
the high mass system seems equivalent to GR values, but actually the deviation from GR of
the phase does not vanish at low frequencies. The weakening of the deviation in the figure is
caused by the fact that the deviation becomes less significant compared to the large values
of the phase at low frequencies.

3.3 IMR extension

The inspiral waveform we have discussed above starts to become invalid above fc ⇠ 2fISCO.
In GR, extended template waveforms that include the complete Inspiral-Merger-Ringdown
(IMR) phases can be obtained from numerical studies of binary black hole mergers. Here
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We evaluate the derivatives of � with respect to fo numerically, and compute the phase by
numerically integrating eqs. (3.29) and (3.30). The amplitudes and the phases for systems
with di↵erent total masses in the EFT Ansatz with f⇤ = 5⇥10�4 Hz are plotted in Figure 8.
Recall that in this model, f⇤ sets the position of the rapid growth of cT (f). We notice that
at frequencies much higher than f⇤, both amplitudes and phases are the same as in GR. The
modified gravity e↵ects start to become manifest when the observed frequency approaches f⇤,
resulting in a di↵erent cT at the source and observer. The modified amplitudes show constant
o↵sets from their GR equivalences at low frequencies much smaller than f⇤. This is because
the comoving distance is modified by a factor of cT (f), and cT (f) ' c0 when f ⌧ f⇤, so that
the amplitude is suppressed by a factor of 1/c0 at low frequencies. The modified phase for
the high mass system seems equivalent to GR values, but actually the deviation from GR of
the phase does not vanish at low frequencies. The weakening of the deviation in the figure is
caused by the fact that the deviation becomes less significant compared to the large values
of the phase at low frequencies.

3.3 IMR extension

The inspiral waveform we have discussed above starts to become invalid above fc ⇠ 2fISCO.
In GR, extended template waveforms that include the complete Inspiral-Merger-Ringdown
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We evaluate the derivatives of � with respect to fo numerically, and compute the phase by
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with di↵erent total masses in the EFT Ansatz with f⇤ = 5⇥10�4 Hz are plotted in Figure 8.
Recall that in this model, f⇤ sets the position of the rapid growth of cT (f). We notice that
at frequencies much higher than f⇤, both amplitudes and phases are the same as in GR. The
modified gravity e↵ects start to become manifest when the observed frequency approaches f⇤,
resulting in a di↵erent cT at the source and observer. The modified amplitudes show constant
o↵sets from their GR equivalences at low frequencies much smaller than f⇤. This is because
the comoving distance is modified by a factor of cT (f), and cT (f) ' c0 when f ⌧ f⇤, so that
the amplitude is suppressed by a factor of 1/c0 at low frequencies. The modified phase for
the high mass system seems equivalent to GR values, but actually the deviation from GR of
the phase does not vanish at low frequencies. The weakening of the deviation in the figure is
caused by the fact that the deviation becomes less significant compared to the large values
of the phase at low frequencies.
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We evaluate the derivatives of � with respect to fo numerically, and compute the phase by
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resulting in a di↵erent cT at the source and observer. The modified amplitudes show constant
o↵sets from their GR equivalences at low frequencies much smaller than f⇤. This is because
the comoving distance is modified by a factor of cT (f), and cT (f) ' c0 when f ⌧ f⇤, so that
the amplitude is suppressed by a factor of 1/c0 at low frequencies. The modified phase for
the high mass system seems equivalent to GR values, but actually the deviation from GR of
the phase does not vanish at low frequencies. The weakening of the deviation in the figure is
caused by the fact that the deviation becomes less significant compared to the large values
of the phase at low frequencies.
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The inspiral waveform we have discussed above starts to become invalid above fc ⇠ 2fISCO.
In GR, extended template waveforms that include the complete Inspiral-Merger-Ringdown
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As an immediate, general application of the formulas we derived, we conclude this
subsection by deriving an expression for the GW luminosity distance in scenarios with � 6= 0,
following the arguments of [60]. We call F the energy flux at observer position:

F =
dEo/dto

Area
(2.19)

where Area= 4⇡(rGW

phys
)2. Then we introduce the luminosity at the source position, L:

L =
dEs

dts
=

(1 + ze)2

(1 � �)2
dEo

dto
, (2.20)

where (2.15) has been used. The luminosity distance dGW

L is defined in terms of the following
relation

F ⌘ L
4⇡ (dGW

L )2
. (2.21)

Using these formulas, as well as relation (2.8) to connect comoving and physical distance, we
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so the e↵ects of a cT varying with frequency are contained in the dependence on � as defined
in (2.12). As we will learn in §3, the luminosity distance dGW

L and other relations we derived
here play an important role for characterizing the properties of the GW waveforms.

2.2 Two Ansätze for cT (f)

After the previous considerations, in this subsection we discuss two representative Ansätze
for cT . They will represent our benchmark scenarios for the LISA forecasts developed in the
next sections. In fact, after discussing the Ansatz functional forms, we briefly anticipate the
level of constraints we will be able to obtain with LISA on the parameters characterizing
them. Importantly, these Ansätze aim to discuss possible ways to parametrize deviations
from cT = 1 around LISA frequencies, and are not built for automatically satisfying at
the same time constraints on cT within ground-based frequency ranges. To do so, further
corrections to their frequency dependence might be needed in the intermediate frequency
band between LISA and ground-based experiments. We will comment on this point through
the text, and above all in Appendix D.

Polynomial Ansatz

Inspired by the scale-dependent choice originally put forward in [69], our first model param-
etrizes cT (f) as a polynomial in frequency:

cT (f) = 1 +
X

n
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. (2.23)

Here n can be a positive or negative integer, �n is a set of parameters controlling deviations
from GR, and f⇤ is a fixed frequency scale controlling the onset of the deviations. In what
follows we study both positive and negative values of n as separate cases. Note that, for
simplicity, we do not allow �n to be function of time; this possibility will nevertheless be
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The phase is then computed as :
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We evaluate the derivatives of � with respect to fo numerically, and compute the phase by
numerically integrating eqs. (3.29) and (3.30). The amplitudes and the phases for systems
with di↵erent total masses in the EFT Ansatz with f⇤ = 5⇥10�4 Hz are plotted in Figure 8.
Recall that in this model, f⇤ sets the position of the rapid growth of cT (f). We notice that
at frequencies much higher than f⇤, both amplitudes and phases are the same as in GR. The
modified gravity e↵ects start to become manifest when the observed frequency approaches f⇤,
resulting in a di↵erent cT at the source and observer. The modified amplitudes show constant
o↵sets from their GR equivalences at low frequencies much smaller than f⇤. This is because
the comoving distance is modified by a factor of cT (f), and cT (f) ' c0 when f ⌧ f⇤, so that
the amplitude is suppressed by a factor of 1/c0 at low frequencies. The modified phase for
the high mass system seems equivalent to GR values, but actually the deviation from GR of
the phase does not vanish at low frequencies. The weakening of the deviation in the figure is
caused by the fact that the deviation becomes less significant compared to the large values
of the phase at low frequencies.

3.3 IMR extension

The inspiral waveform we have discussed above starts to become invalid above fc ⇠ 2fISCO.
In GR, extended template waveforms that include the complete Inspiral-Merger-Ringdown
(IMR) phases can be obtained from numerical studies of binary black hole mergers. Here
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ũ�

11
3

⇥
"
1 +  1ũ
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Polynomial model:

Deviations of the modified phases from their GR correspondences as        approaches  

where A(f) is the amplitude of the waveform and  (f) the phase (to be discussed in the
next section). ◆ is the inclination angle of the orbit relative to the line of sight. The GW
amplitude in GR, without accounting for the redshift, is given by

AGR(fs) =

r
5⇡

24

M2
s

a(ts)rcom
(⇡Msfs)

�7/6 . (3.5)

It is derived from the time-dependent GW amplitude using the stationary phase approxima-
tion in the Fourier transform of the waveform [68]. Ms is the chirp mass of the binary system
at the source, defined by Ms = Mtot⌘3/5, with Mtot the binary total mass, ⌘ = m1m2/Mtot

the reduced mass parameter, and m1, m2 the two component masses. Since the signal ob-
served by the detector is redshifted, we rewrite the waveform using the redshifted chirp mass
Mz = (1 + z)Ms, redshifted frequency fz = fs/(1 + z), and using 1/a(ts) = (1 + z). The
redshifted GW waveform amplitude is then given by

AGR(fz) =

r
5⇡

24

M2
z

(1 + z)rcom
(⇡Mzfz)

�7/6 . (3.6)

In modified gravity, the quantities involved in GW propagation are not only scaled by redshift,
but also scaled by cT (fo)/cT (fs). Hence we define the observed chirp mass as

Mo = Mz
cT (fs)

cT (fo)
. (3.7)

We can replace the physical distance (1 + z)rcom by dGW

L using eq. (3.1), and replace Mz by
Mo, so to finally obtain the modified GW amplitude as

AMG(fo) =

r
5⇡

24

M2
o

dGW

L

(⇡Mofo)
� 7

6


cT (fo)

cT (fs)

� 3
2

. (3.8)

The amplitudes of the characteristic strains (defined by 2fo|h(fo)| [71]) in GR as well as the
positive- and the negative-power polynomial cases are plotted in Figure 5, with exaggerated
values of �1 and �2. Also plotted is the e↵ective sensitivity curve of LISA with angular
averaging over the sky and the polarisation angle adopted from reference [72]. It shows
that the modified amplitudes deviate from their GR equivalents as fo approaches f⇤. Note
that the amplitudes in the figure extend to the merger and the ringdown phases using the
PhenomA waveform, which we discuss in §3.3. Since f⇤ for the positive and the negative-
power polynomial cases are in opposite extrema of the LISA band, the modification e↵ects
are more manifest in systems with di↵erent total masses in the two cases. Lighter systems are
preferred for detecting beyond Einstein models described by the positive-power polynimal
Ansatz, and heavier systems for the negative-power polynomial Ansatz.

3.2 Phase

The phase of the GW during inspiral can be computed analytically using methods based on
the Post-Newtonian (PN) expansion. We first set up the calculation using a general cT (f),
and then we specialise our results to the polynomial and EFT-inspired Ansätze described in
§2. As the focus of our work is on GW propagation e↵ects, we do not consider modifications
to the physics of the merging process at the source position. As such, we expect the rate of
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Mz = (1 + z)Ms, redshifted frequency fz = fs/(1 + z), and using 1/a(ts) = (1 + z). The
redshifted GW waveform amplitude is then given by

AGR(fz) =

r
5⇡
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z

(1 + z)rcom
(⇡Mzfz)

�7/6 . (3.6)

In modified gravity, the quantities involved in GW propagation are not only scaled by redshift,
but also scaled by cT (fo)/cT (fs). Hence we define the observed chirp mass as

Mo = Mz
cT (fs)

cT (fo)
. (3.7)

We can replace the physical distance (1 + z)rcom by dGW

L using eq. (3.1), and replace Mz by
Mo, so to finally obtain the modified GW amplitude as

AMG(fo) =
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(⇡Mofo)
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cT (fo)
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The amplitudes of the characteristic strains (defined by 2fo|h(fo)| [71]) in GR as well as the
positive- and the negative-power polynomial cases are plotted in Figure 5, with exaggerated
values of �1 and �2. Also plotted is the e↵ective sensitivity curve of LISA with angular
averaging over the sky and the polarisation angle adopted from reference [72]. It shows
that the modified amplitudes deviate from their GR equivalents as fo approaches f⇤. Note
that the amplitudes in the figure extend to the merger and the ringdown phases using the
PhenomA waveform, which we discuss in §3.3. Since f⇤ for the positive and the negative-
power polynomial cases are in opposite extrema of the LISA band, the modification e↵ects
are more manifest in systems with di↵erent total masses in the two cases. Lighter systems are
preferred for detecting beyond Einstein models described by the positive-power polynimal
Ansatz, and heavier systems for the negative-power polynomial Ansatz.

3.2 Phase

The phase of the GW during inspiral can be computed analytically using methods based on
the Post-Newtonian (PN) expansion. We first set up the calculation using a general cT (f),
and then we specialise our results to the polynomial and EFT-inspired Ansätze described in
§2. As the focus of our work is on GW propagation e↵ects, we do not consider modifications
to the physics of the merging process at the source position. As such, we expect the rate of
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The characteristic strains and phases of the EFT ansatz case compared with GR for binaries with different total masses at
Figure 8: The characteristic strains and phases of the EFT Ansatz case (red) compared with GR
(green) for binaries with di↵erent total masses at z = 1. We use c0 = 0.6 and f⇤ = 5 ⇥ 10�4 Hz.

we lay out an approximate analytic prescription for adding the merger and ringdown to the
inspiral waveforms obtained in the previous section. Note that this is possible because we are
not modifying the intrinsic strong-field dynamics of the source, but only modulations that
a↵ect its propagation.

However, our treatment involves some degree of approximation in the merger phase, the
full extent of which can only be tested with dedicated with numerical relativity simulations.
For this reason, in §5 we will present results using both the inspiral-only and full IMR
waveform described below; these can be considered conservative and optimistic versions of
our analysis, respectively.

We adopt a modified version of the frequency-domain PhenomA waveform from Ajith
et al. [63]. As our work neglects component spins, we do not require a more sophisticated
waveform such as PhenomD [80]. By fitting to a suite of numerical relativity simulations,
the amplitude of the PhenomA waveform in GR is constructed piecewise as:

Ains(f) = C
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fmerg

◆� 7
6

, (3.31)
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Aring(f) = C!L(f, fring,�), (3.33)

where the prefactor is
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The Lorentzian function in the ringdown phase reads

L(f, fring,�) =

✓
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�

(f � fring)2 + �2/4
(3.36)
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Figure 8: The characteristic strains and phases of the EFT Ansatz case (red) compared with GR
(green) for binaries with di↵erent total masses at z = 1. We use c0 = 0.6 and f⇤ = 5 ⇥ 10�4 Hz.
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inspiral waveforms obtained in the previous section. Note that this is possible because we are
not modifying the intrinsic strong-field dynamics of the source, but only modulations that
a↵ect its propagation.

However, our treatment involves some degree of approximation in the merger phase, the
full extent of which can only be tested with dedicated with numerical relativity simulations.
For this reason, in §5 we will present results using both the inspiral-only and full IMR
waveform described below; these can be considered conservative and optimistic versions of
our analysis, respectively.

We adopt a modified version of the frequency-domain PhenomA waveform from Ajith
et al. [63]. As our work neglects component spins, we do not require a more sophisticated
waveform such as PhenomD [80]. By fitting to a suite of numerical relativity simulations,
the amplitude of the PhenomA waveform in GR is constructed piecewise as:
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- The modified gravity effects start to become manifest when the observed frequency approaches       (the frequency 
that sets the position of the rapid growth of             )

- The modified amplitudes show constant offsets from their GR equivalences at low frequencies much smaller than
- The modified phase for the high mass system seems equivalent to GR values, but actually the deviation from GR of the 

phase does not vanish at low frequencies 

Figure 7: The phases in GR (green), the positive-power case (red) and the negative-power case
(blue) for binaries with di↵erent total masses at z = 1. We use exaggerated values �1 = �2 = 20 for
the positive-power case and �1 = �2 = 100 for the negative-power case to visualize the modified gravity
e↵ect. We use f⇤ = 2 Hz for the positive-power case, and f⇤ = 2 ⇥ 10�7 Hz for the negative-power
one.

eq. (3.15). The integration of the time interval becomes
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5
3

#�1

df̃o. (3.29)

The phase is then computed as :

 (fo) = 2⇡

Z fo

fc

[to(f̃o) � tc] df̃o � ⇡

4
. (3.30)

We evaluate the derivatives of � with respect to fo numerically, and compute the phase by
numerically integrating eqs. (3.29) and (3.30). The amplitudes and the phases for systems
with di↵erent total masses in the EFT Ansatz with f⇤ = 5⇥10�4 Hz are plotted in Figure 8.
Recall that in this model, f⇤ sets the position of the rapid growth of cT (f). We notice that
at frequencies much higher than f⇤, both amplitudes and phases are the same as in GR. The
modified gravity e↵ects start to become manifest when the observed frequency approaches f⇤,
resulting in a di↵erent cT at the source and observer. The modified amplitudes show constant
o↵sets from their GR equivalences at low frequencies much smaller than f⇤. This is because
the comoving distance is modified by a factor of cT (f), and cT (f) ' c0 when f ⌧ f⇤, so that
the amplitude is suppressed by a factor of 1/c0 at low frequencies. The modified phase for
the high mass system seems equivalent to GR values, but actually the deviation from GR of
the phase does not vanish at low frequencies. The weakening of the deviation in the figure is
caused by the fact that the deviation becomes less significant compared to the large values
of the phase at low frequencies.

3.3 IMR extension

The inspiral waveform we have discussed above starts to become invalid above fc ⇠ 2fISCO.
In GR, extended template waveforms that include the complete Inspiral-Merger-Ringdown
(IMR) phases can be obtained from numerical studies of binary black hole mergers. Here
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Figure 7: The phases in GR (green), the positive-power case (red) and the negative-power case
(blue) for binaries with di↵erent total masses at z = 1. We use exaggerated values �1 = �2 = 20 for
the positive-power case and �1 = �2 = 100 for the negative-power case to visualize the modified gravity
e↵ect. We use f⇤ = 2 Hz for the positive-power case, and f⇤ = 2 ⇥ 10�7 Hz for the negative-power
one.
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5
3

#�1

df̃o. (3.29)

The phase is then computed as :

 (fo) = 2⇡
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4
. (3.30)

We evaluate the derivatives of � with respect to fo numerically, and compute the phase by
numerically integrating eqs. (3.29) and (3.30). The amplitudes and the phases for systems
with di↵erent total masses in the EFT Ansatz with f⇤ = 5⇥10�4 Hz are plotted in Figure 8.
Recall that in this model, f⇤ sets the position of the rapid growth of cT (f). We notice that
at frequencies much higher than f⇤, both amplitudes and phases are the same as in GR. The
modified gravity e↵ects start to become manifest when the observed frequency approaches f⇤,
resulting in a di↵erent cT at the source and observer. The modified amplitudes show constant
o↵sets from their GR equivalences at low frequencies much smaller than f⇤. This is because
the comoving distance is modified by a factor of cT (f), and cT (f) ' c0 when f ⌧ f⇤, so that
the amplitude is suppressed by a factor of 1/c0 at low frequencies. The modified phase for
the high mass system seems equivalent to GR values, but actually the deviation from GR of
the phase does not vanish at low frequencies. The weakening of the deviation in the figure is
caused by the fact that the deviation becomes less significant compared to the large values
of the phase at low frequencies.

3.3 IMR extension

The inspiral waveform we have discussed above starts to become invalid above fc ⇠ 2fISCO.
In GR, extended template waveforms that include the complete Inspiral-Merger-Ringdown
(IMR) phases can be obtained from numerical studies of binary black hole mergers. Here
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explored in appendix E. Notice that our Ansatz (2.23) includes more than one free parameter,
hence it goes beyond the one-parameter parametrization proposed in [45].

In the positive-power (n > 0) and negative-power (n < 0) cases alike, we assume
(f/f⇤)sgn(n) to be a small quantity, allowing us to Taylor expand cT (f) (assuming that the
�n are not large enough to violate the validity of the expansion). We will learn that expanding
cT (f) up to quadratic order will prove su�cient to study the dominant corrections to the
waveform that may be detectable with LISA. We do not include the n = 0 term in either
power-law model, since this represents a frequency-independent correction to cT that has
already been constrained to be very small at z ⌧ 1 by GW170817.

For the positive-power case, we require f⇤ > f everywhere in the LISA band, meaning
that the deviation cT /c � 1 will grow as the inspiral evolves (here we temporarily restore
speed-of-light units). This case turns out to be the mathematically simplest model we study;
however, it implicitly requires that some termination mechanism switches o↵ the deviations
between the LISA band and the band of ground-based detectors, again to maintain consis-
tency with current results bounds on cT (see Appendix D).

Similarly, for the negative-power model f⇤ should be outside the LISA frequency interval,
so that (f/f⇤)�1 stays small in the LISA band. The negative-power case is arguably a more
natural prescription of low-energy deviations from GR, because at high frequencies cT /c ! 1.
However, the bounds on |cT /c � 1| from GW170817 are so impressively tight that they are
hard to satisfy even in this model. Using the values of f⇤ we discuss in the next paragraph,
and assuming no finely-tuned cancellations between the n = �1 and n = �2 terms, formally
we need |�1| . 10�4 to satisfy the existing bounds (�2 remains virtually unconstrained).
However, recognising that our power-law models would at best be only crude representations
of the underlying physics, we do not apply the latter prior on �1 in most of this work. In
§5.2 we present results with only �2 allowed to vary, which require no further assumptions
to be consistent with GW170817.

In our forecast in §5, we mainly consider MBH binaries with total masses between 104

and 107M�, as these generally give signal-to-noise ratio (SNR) > 10 in LISA (see Figure 11).
The frequency range for these waveforms is between ⇠ 10�5 and ⇠ 10�1 Hz, so f⇤ is required
to stay outside this range. In addition, f⇤ should be lower than the LIGO lower sensitivity
bound of ⇠ 10 Hz. Therefore the typical ‘safe’ values of f⇤ we use in the positive- and
negative-power cases are 2 Hz and 2⇥ 10�7 Hz, respectively; in this context, safe means that
the deviations from GR will remain small for any astrophysical system detectable by LISA.
Values of f⇤ within the LISA band can be considered, and will result in tighter parameter
constraints, but also imply that some LISA systems could show non-perturbative departures
from GR. Such non-perturbative e↵ects lie beyond the scope of the current work. Finally, it
is worth noting that constraints on eq. (2.23) are degenerate in �n/fn

⇤ and so constraints on
�n can be translated from one f⇤ to another (Appendix. D).

An EFT-inspired Ansatz

The second parametrization we consider has the property of rapidly changing from a value
of cT smaller than one at small frequencies to cT = 1 at high frequencies (see Figure 1):

cT (f) =

"
1 +
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?
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s

1 + 2
�
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0

� f2

f2
?
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. (2.24)
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Figure 7: The phases in GR (green), the positive-power case (red) and the negative-power case
(blue) for binaries with di↵erent total masses at z = 1. We use exaggerated values �1 = �2 = 20 for
the positive-power case and �1 = �2 = 100 for the negative-power case to visualize the modified gravity
e↵ect. We use f⇤ = 2 Hz for the positive-power case, and f⇤ = 2 ⇥ 10�7 Hz for the negative-power
one.
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The phase is then computed as :

 (fo) = 2⇡

Z fo

fc

[to(f̃o) � tc] df̃o � ⇡

4
. (3.30)

We evaluate the derivatives of � with respect to fo numerically, and compute the phase by
numerically integrating eqs. (3.29) and (3.30). The amplitudes and the phases for systems
with di↵erent total masses in the EFT Ansatz with f⇤ = 5⇥10�4 Hz are plotted in Figure 8.
Recall that in this model, f⇤ sets the position of the rapid growth of cT (f). We notice that
at frequencies much higher than f⇤, both amplitudes and phases are the same as in GR. The
modified gravity e↵ects start to become manifest when the observed frequency approaches f⇤,
resulting in a di↵erent cT at the source and observer. The modified amplitudes show constant
o↵sets from their GR equivalences at low frequencies much smaller than f⇤. This is because
the comoving distance is modified by a factor of cT (f), and cT (f) ' c0 when f ⌧ f⇤, so that
the amplitude is suppressed by a factor of 1/c0 at low frequencies. The modified phase for
the high mass system seems equivalent to GR values, but actually the deviation from GR of
the phase does not vanish at low frequencies. The weakening of the deviation in the figure is
caused by the fact that the deviation becomes less significant compared to the large values
of the phase at low frequencies.

3.3 IMR extension

The inspiral waveform we have discussed above starts to become invalid above fc ⇠ 2fISCO.
In GR, extended template waveforms that include the complete Inspiral-Merger-Ringdown
(IMR) phases can be obtained from numerical studies of binary black hole mergers. Here
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EFT-inspired model:

Figure 5: The characteristic strains in GR (green), the positive-power polynomial Ansatz (red)
and the negative-power polynomial Ansatz (blue) for binaries with di↵erent total masses at z = 1.
The characteristic strain is the modulus of the strain scaled by the frequency, i.e. 2fo|h(fo)| [71].
The sensitivity curve is plotted as

p
foSn(fo). We use exaggerated values �1 = �2 = 100 for the

positive-power case and �1 = �2 = 200 for the negative-power case to visualize the modified gravity
e↵ects. We use f⇤ = 2 Hz and f⇤ = 2⇥10�7 Hz for the positive and negative-power cases respectively.
The timeline shown on the amplitude is the time before merger computed at Newtonian order.

change of GW frequency in the source frame to match that of GR. This is the starting point
of our calculation, and is given by (we expand up to 2.5 PN order):

dfs
dts

=
96

5⇡M2
s
u

11
3

"
1 +  1u

2
3 +  1.5u +  2u

4
3 +  2.5u

5
3

#
, (3.9)

where u is defined as

u = ⇡Msfs = ⇡Mzfz = ⇡Mofo , (3.10)

and is frame-independent, while  k (k = 1, 1.5, 2, 2.5) are the PN phase parameters. In
this work we specialise to non-spinning binary systems on circular orbits, recognising that
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where A(f) is the amplitude of the waveform and  (f) the phase (to be discussed in the
next section). ◆ is the inclination angle of the orbit relative to the line of sight. The GW
amplitude in GR, without accounting for the redshift, is given by

AGR(fs) =

r
5⇡

24

M2
s

a(ts)rcom
(⇡Msfs)

�7/6 . (3.5)

It is derived from the time-dependent GW amplitude using the stationary phase approxima-
tion in the Fourier transform of the waveform [68]. Ms is the chirp mass of the binary system
at the source, defined by Ms = Mtot⌘3/5, with Mtot the binary total mass, ⌘ = m1m2/Mtot

the reduced mass parameter, and m1, m2 the two component masses. Since the signal ob-
served by the detector is redshifted, we rewrite the waveform using the redshifted chirp mass
Mz = (1 + z)Ms, redshifted frequency fz = fs/(1 + z), and using 1/a(ts) = (1 + z). The
redshifted GW waveform amplitude is then given by

AGR(fz) =

r
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z

(1 + z)rcom
(⇡Mzfz)

�7/6 . (3.6)

In modified gravity, the quantities involved in GW propagation are not only scaled by redshift,
but also scaled by cT (fo)/cT (fs). Hence we define the observed chirp mass as

Mo = Mz
cT (fs)

cT (fo)
. (3.7)

We can replace the physical distance (1 + z)rcom by dGW

L using eq. (3.1), and replace Mz by
Mo, so to finally obtain the modified GW amplitude as
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The amplitudes of the characteristic strains (defined by 2fo|h(fo)| [71]) in GR as well as the
positive- and the negative-power polynomial cases are plotted in Figure 5, with exaggerated
values of �1 and �2. Also plotted is the e↵ective sensitivity curve of LISA with angular
averaging over the sky and the polarisation angle adopted from reference [72]. It shows
that the modified amplitudes deviate from their GR equivalents as fo approaches f⇤. Note
that the amplitudes in the figure extend to the merger and the ringdown phases using the
PhenomA waveform, which we discuss in §3.3. Since f⇤ for the positive and the negative-
power polynomial cases are in opposite extrema of the LISA band, the modification e↵ects
are more manifest in systems with di↵erent total masses in the two cases. Lighter systems are
preferred for detecting beyond Einstein models described by the positive-power polynimal
Ansatz, and heavier systems for the negative-power polynomial Ansatz.

3.2 Phase

The phase of the GW during inspiral can be computed analytically using methods based on
the Post-Newtonian (PN) expansion. We first set up the calculation using a general cT (f),
and then we specialise our results to the polynomial and EFT-inspired Ansätze described in
§2. As the focus of our work is on GW propagation e↵ects, we do not consider modifications
to the physics of the merging process at the source position. As such, we expect the rate of
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Inspiral-Merger-Ringdown (IMR) extension

The inspiral waveform starts to become invalid above

GR: extended template waveforms that include IMR phases obtained from numerical studies of BBH mergers

Figure 7: The phases in GR (green), the positive-power case (red) and the negative-power case
(blue) for binaries with di↵erent total masses at z = 1. We use exaggerated values �1 = �2 = 20 for
the positive-power case and �1 = �2 = 100 for the negative-power case to visualize the modified gravity
e↵ect. We use f⇤ = 2 Hz for the positive-power case, and f⇤ = 2 ⇥ 10�7 Hz for the negative-power
one.

eq. (3.15). The integration of the time interval becomes
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The phase is then computed as :

 (fo) = 2⇡

Z fo

fc

[to(f̃o) � tc] df̃o � ⇡

4
. (3.30)

We evaluate the derivatives of � with respect to fo numerically, and compute the phase by
numerically integrating eqs. (3.29) and (3.30). The amplitudes and the phases for systems
with di↵erent total masses in the EFT Ansatz with f⇤ = 5⇥10�4 Hz are plotted in Figure 8.
Recall that in this model, f⇤ sets the position of the rapid growth of cT (f). We notice that
at frequencies much higher than f⇤, both amplitudes and phases are the same as in GR. The
modified gravity e↵ects start to become manifest when the observed frequency approaches f⇤,
resulting in a di↵erent cT at the source and observer. The modified amplitudes show constant
o↵sets from their GR equivalences at low frequencies much smaller than f⇤. This is because
the comoving distance is modified by a factor of cT (f), and cT (f) ' c0 when f ⌧ f⇤, so that
the amplitude is suppressed by a factor of 1/c0 at low frequencies. The modified phase for
the high mass system seems equivalent to GR values, but actually the deviation from GR of
the phase does not vanish at low frequencies. The weakening of the deviation in the figure is
caused by the fact that the deviation becomes less significant compared to the large values
of the phase at low frequencies.

3.3 IMR extension

The inspiral waveform we have discussed above starts to become invalid above fc ⇠ 2fISCO.
In GR, extended template waveforms that include the complete Inspiral-Merger-Ringdown
(IMR) phases can be obtained from numerical studies of binary black hole mergers. Here
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Inspiral-Merger-Ringdown (IMR) extension

The inspiral waveform starts to become invalid above

GR: extended template waveforms that include IMR phases obtained from numerical studies of BBH mergers

§ Inspiral-only waveform (conservative case)

If considering departures from GR, we allow for the strong-field regime itself to be modified as well

Post Newtonian expansion at 2.5PN order

Figure 7: The phases in GR (green), the positive-power case (red) and the negative-power case
(blue) for binaries with di↵erent total masses at z = 1. We use exaggerated values �1 = �2 = 20 for
the positive-power case and �1 = �2 = 100 for the negative-power case to visualize the modified gravity
e↵ect. We use f⇤ = 2 Hz for the positive-power case, and f⇤ = 2 ⇥ 10�7 Hz for the negative-power
one.
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The phase is then computed as :

 (fo) = 2⇡
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4
. (3.30)

We evaluate the derivatives of � with respect to fo numerically, and compute the phase by
numerically integrating eqs. (3.29) and (3.30). The amplitudes and the phases for systems
with di↵erent total masses in the EFT Ansatz with f⇤ = 5⇥10�4 Hz are plotted in Figure 8.
Recall that in this model, f⇤ sets the position of the rapid growth of cT (f). We notice that
at frequencies much higher than f⇤, both amplitudes and phases are the same as in GR. The
modified gravity e↵ects start to become manifest when the observed frequency approaches f⇤,
resulting in a di↵erent cT at the source and observer. The modified amplitudes show constant
o↵sets from their GR equivalences at low frequencies much smaller than f⇤. This is because
the comoving distance is modified by a factor of cT (f), and cT (f) ' c0 when f ⌧ f⇤, so that
the amplitude is suppressed by a factor of 1/c0 at low frequencies. The modified phase for
the high mass system seems equivalent to GR values, but actually the deviation from GR of
the phase does not vanish at low frequencies. The weakening of the deviation in the figure is
caused by the fact that the deviation becomes less significant compared to the large values
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Figure 8: The characteristic strains and phases of the EFT Ansatz case (red) compared with GR
(green) for binaries with di↵erent total masses at z = 1. We use c0 = 0.6 and f⇤ = 5 ⇥ 10�4 Hz.

we lay out an approximate analytic prescription for adding the merger and ringdown to the
inspiral waveforms obtained in the previous section. Note that this is possible because we are
not modifying the intrinsic strong-field dynamics of the source, but only modulations that
a↵ect its propagation.

However, our treatment involves some degree of approximation in the merger phase, the
full extent of which can only be tested with dedicated with numerical relativity simulations.
For this reason, in §5 we will present results using both the inspiral-only and full IMR
waveform described below; these can be considered conservative and optimistic versions of
our analysis, respectively.

We adopt a modified version of the frequency-domain PhenomA waveform from Ajith
et al. [63]. As our work neglects component spins, we do not require a more sophisticated
waveform such as PhenomD [80]. By fitting to a suite of numerical relativity simulations,
the amplitude of the PhenomA waveform in GR is constructed piecewise as:
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The ends of inspiral, merger and ringdown phase are marked by fmerg, fring and fcut respec-
tively. Their values, along with the value of �, are computed via expressions of the form
fk = (ak⌘2 + bk⌘ + ck)/⇡Mtot, with the values of ak, bk and ck are read from Table I in [63].
One can verify the continuity of the above amplitudes across the IMR phase boundaries. We
have verified that our computations in §3.1 & §3.2 match the inspiral section of the PhenomA
template when cT = 1, up to 2.5 PN order.

Since we are studying the e↵ects of modified GW propagation, we assume that the
PhenomA waveform in GR is valid at the source. This implies the modification of the
inspiral amplitude we derived in §3.1 – which accounts for e↵ects of varying cT during the
propagation to the observer – can be applied to all three pieces of the PhenomA amplitude.
This allows us to replace
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in eqs. (3.31)–(3.33). This produces the amplitude of the modified PhenomA template we
use in our analysis.

For the phase: we already have the modified phase for the inspiral from our previous
computations in §3.2. For the merger part of the signal, there is no straightforward pre-
scription for how to adapt the GR PhenomA phase to our modified scenario. Hence, we will
discard the merger phase of the PhenomA and replace it as follows.

We will expand the phase as a power series in the frequency variable u = ⇡Mofo. This
step is analogous to what is done in the Parameterized Post-Einsteinian (ppE) framework
[5, 64], which describes deviations from GR in the waveform (see §E.5 for further details on
ppE). For prompt mergers, it is su�cient to truncate the series at linear order [64]:

 merg(f) =  ̄c + 2⇡t̄cf . (3.38)

where t̄c and  ̄c are new constants. These are determined by enforcing the continuity of the
the phase and its derivative at fmerg, that is,  ins(fmerg) =  merg(fmerg). Explicitly this fixes
the barred quantities to

 ̄c =  ins(fmerg) � 2⇡t̄cfmerg (3.39)

t̄c =
1
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df

�����
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Hence the merger phase is fully determined by consistency with our inspiral calcuations. We
will set the phase during the ringdown epoch to zero, as is done in ppE [64] (modelling of
quasinormal modes during ringdown lies beyond the scope of this work). Since the modified
PhenomA waveform allows us to use the full GW signal, the SNR of our detections will
increase. In addition, more cycles in the late inspiral epoch, and a merger era in the phase are
included. These help tighten the constraints on our modified gravity parameters. We expect
the additional amplitude information during the ringdown to be only weakly constraining.

4 GW data analysis

We employ data analysis techniques in order to find constraints both on GR quantities and
on modified gravity parameters impacting the amplitude and phase of the waveform. In
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The ends of inspiral, merger and ringdown phase are marked by fmerg, fring and fcut respec-
tively. Their values, along with the value of �, are computed via expressions of the form
fk = (ak⌘2 + bk⌘ + ck)/⇡Mtot, with the values of ak, bk and ck are read from Table I in [63].
One can verify the continuity of the above amplitudes across the IMR phase boundaries. We
have verified that our computations in §3.1 & §3.2 match the inspiral section of the PhenomA
template when cT = 1, up to 2.5 PN order.

Since we are studying the e↵ects of modified GW propagation, we assume that the
PhenomA waveform in GR is valid at the source. This implies the modification of the
inspiral amplitude we derived in §3.1 – which accounts for e↵ects of varying cT during the
propagation to the observer – can be applied to all three pieces of the PhenomA amplitude.
This allows us to replace
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in eqs. (3.31)–(3.33). This produces the amplitude of the modified PhenomA template we
use in our analysis.

For the phase: we already have the modified phase for the inspiral from our previous
computations in §3.2. For the merger part of the signal, there is no straightforward pre-
scription for how to adapt the GR PhenomA phase to our modified scenario. Hence, we will
discard the merger phase of the PhenomA and replace it as follows.

We will expand the phase as a power series in the frequency variable u = ⇡Mofo. This
step is analogous to what is done in the Parameterized Post-Einsteinian (ppE) framework
[5, 64], which describes deviations from GR in the waveform (see §E.5 for further details on
ppE). For prompt mergers, it is su�cient to truncate the series at linear order [64]:

 merg(f) =  ̄c + 2⇡t̄cf . (3.38)

where t̄c and  ̄c are new constants. These are determined by enforcing the continuity of the
the phase and its derivative at fmerg, that is,  ins(fmerg) =  merg(fmerg). Explicitly this fixes
the barred quantities to

 ̄c =  ins(fmerg) � 2⇡t̄cfmerg (3.39)
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Hence the merger phase is fully determined by consistency with our inspiral calcuations. We
will set the phase during the ringdown epoch to zero, as is done in ppE [64] (modelling of
quasinormal modes during ringdown lies beyond the scope of this work). Since the modified
PhenomA waveform allows us to use the full GW signal, the SNR of our detections will
increase. In addition, more cycles in the late inspiral epoch, and a merger era in the phase are
included. These help tighten the constraints on our modified gravity parameters. We expect
the additional amplitude information during the ringdown to be only weakly constraining.

4 GW data analysis

We employ data analysis techniques in order to find constraints both on GR quantities and
on modified gravity parameters impacting the amplitude and phase of the waveform. In
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will set the phase during the ringdown epoch to zero, as is done in ppE [64] (modelling of
quasinormal modes during ringdown lies beyond the scope of this work). Since the modified
PhenomA waveform allows us to use the full GW signal, the SNR of our detections will
increase. In addition, more cycles in the late inspiral epoch, and a merger era in the phase are
included. These help tighten the constraints on our modified gravity parameters. We expect
the additional amplitude information during the ringdown to be only weakly constraining.

4 GW data analysis

We employ data analysis techniques in order to find constraints both on GR quantities and
on modified gravity parameters impacting the amplitude and phase of the waveform. In
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in eqs. (3.31)–(3.33). This produces the amplitude of the modified PhenomA template we
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Phase during ringdown = 0 (as in ppE)

Ajith et al (2008)
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Lorentzian function in the ringdown phase 



Question: How well a four-year LISA mission can constrain both the polynomial and EFT-inspired ansatze for              , both 
with a single MBH merger and a population of MBH mergers
Fisher matrix analysis to forecast constraints on five GR parameters and 2 modified gravity parameters

Notice that this is formally equivalent to combining three likelihoods with the form given
in eq. (4.5). We are assuming here that measurements in the three independent channels
do not break any degeneracies among the signal or noise parameters. This is not strictly
true, as in general the three detectors have di↵erent angular responses, and this could help
to break degeneracies in, for example, sky localization. As a consequence, our assumption
can be seen as a pessimistic one, and the constraints could be improved in a fully consistent,
though more complicated, analysis which is postponed to future works on this topic.

We conclude this section by presenting a direct comparison between the constraints on
~✓ obtained from Flk and the ones obtained by directly evaluating eq. (4.5). This comparison
is carried out for two sources: a high SNR case, where the two approaches are expected to
match exactly and a low SNR one, where the real constraints obtained from the MCMC
sampling of eq. (4.5) are expected to start diverging from the Fisher ones. In both cases, we
start by estimating the in-band time using [68]
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where fi is the initial frequency (i.e., the smallest frequency in the LISA band at which the
source emits) and fc is the cuto↵ frequency. In practice, since most of the SNR comes from
the high-frequency part of the signal, we cut the low-frequency part of the GW spectrum
by choosing fi so that T ' 10 days11. We then generate a Gaussian realization of the noise
on top of which we inject the signal, given by hth(f, ~✓), to get the d̃ to be used to evaluate
eq. (4.5). The sampling of the parameter space is performed using Polychord [85, 86] via its
interface with Cobaya [87].

In Figure 9 we show the comparison between our Fisher forecast and a full MCMC
sampling of the parameter space for a loud source with SNR ' 1020. It is manifest that for
this event the two approaches lead to very similar results, confirming the validity of the Fisher
approximations for similarly loud signals. On the other hand, in Figure 10, we compare the
Fisher forecasts with the MCMC constraints for an event with SNR ' 42. Since in this case
the event is much fainter, the validity of the Fisher approximation starts to break. As is
clearly visible from the 1-dimensional marginalized constraints, the order of magnitude of
the forecasted error bars are still accurate for all the parameters. However, we notice some
deviations between the Fisher analysis and the real structure of the parameter space. This
can be appreciated for example from displacement between the injected parameters (i.e. the
centers of the Fisher ellipses) and the best fit values recovered through the MCMC procedure.
Nevertheless, since the recovered values are always 2�-compatible with the injected values,
these displacements should not be interpreted as problematic. Events with similar SNR
should be considered as thresholds to assume the Fisher forecasts are su�ciently robust.

5 Forecasts

After confirming that Fisher forecasts give satisfactory results for the parameters of interest,
we focus on a Fisher analysis in what follows. We will present forecasts for how well a four-
year LISA mission can constrain both the polynomial and EFT-inspired Ansätze for cT (f)

11The main reason for this choice is that reducing the total observation time corresponds to reducing the
frequency resolution. In practice this leads to a faster evaluation of the waveform and thus of the likelihood.
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Naively one might expect that the best constraints will be obtained from systems with the highest total SNR

SNR contours for LISA detections within GR in terms of MBH total mass and redshift using
only inspiral portion of the signal              and          full inspiral-merger-ringdown signal 

Systems between         and                  provide the highest SNR detections in both cases

Figure 9: Comparison of MCMC and Fisher constraints for large (' 1020) SNR. The values of
injected parameters (not including redshift e↵ects) are Mtot = 105M�, ⌘ = 0.25, z = 1, ⌧c = 0,
 c = 0, �1 = 0, �2 = 0. The positive-power polynomial Ansatz for cT (f) is used, with f⇤ = 0.1 Hz.
(Note that we have sampled the Fisher matrix here simply for convenience, they should be considered
as perfect ellipses.)

described in §2.2, both with a single MBH merger (§5.1) and a population of MBH mergers
(§5.2).

Naively one might expect that the best constraints on our modified gravity parameters
will be obtained from systems with the highest total SNR. Figure 11 displays SNR contours for
LISA detections within GR in terms of MBH total mass and redshift, using only the inspiral
portion of the signal (left panel) and full inspiral-merger-ringdown signal (right panel). We
notice that systems between 105 and 107 M� provide the highest SNR detections in both
cases. We will show that these are not necessarily the optimal systems for bounding cT (f),
due to the frequency-dependent nature of our corrections.
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These however are not necessarily the optimal systems for bounding               , due to the frequency-dependent nature of 
the corrections. The constrains are controlled by the SNR and the total mass of the system.



Polynomial model

- The presence of      and      weakens the constraints on the GR parameters 

- The constraints on GR parameters are controlled by the SNR and the total mass of the system:

tend to be better constrained when the SNR is higher

constraints on                              are tighter for systems with lower masses 

(signals from lower mass systems stay longer in the LISA band, so that more cycles are available for constraining the parameters)

subdominant to �1 in the LISA band).

Figure 15: � as a function of observed frequency in the EFT-inspired Ansatz, at frequencies of the
binary inspiral waveforms for Mtot = 105 M�, c0 = 0.99 and f⇤ = 3 ⇥ 10�4 Hz at di↵erent redshifts.

Figure 17 shows the contours of constraints on c0 � 1 and fractional constraints on
f⇤ in the {Mtot, z} plane. The lowest total mass we consider here is 103.5M�, because the
numerical derivatives with respect to c0 and f⇤ become unstable for systems with lower total
masses. This can be explained by the fact that lower-mass systems evolve into frequencies
much higher than f⇤, at which the e↵ects of the transition in cT are very small – this makes
the derivatives with respect to the beyond Einstein parameters noisy. We can see from the
plots that the tightest constraints on c0 and f⇤ are found by systems with Mtot ⇠ 104.5M�.
This is likely because our fiducial choice of f⇤ is located within the early inspiral stage of such
systems, so that most of the transition of cT from 1 to c0 takes place within the detectable
signal. For lower-mass systems, only a small portion of their inspiral waveform is a↵ected by
the cT transition. On the other hand, for more massive systems, f⇤ is above their inspiral
frequency ranges, so that similarly most of their inspiral is also not a↵ected by the transition
of cT .

5.2 Inclusion of ringdown-merger signal

For models where beyond Einstein e↵ects grow with frequency, we naturally expect that
including the merger and ringdown phases of the waveform will enhance our constraining
power. For cases where the opposite is true (like the negative-power polynomial model) one
might guess that such additions will be irrelevant. In fact this turns out not to be correct:
including the merger and ringdown still tightens constraints on the GR parameters, and due
to the correlations between parameters, this leads to a mild improvement in �1 and �2. Given
that the constraints on the EFT-inspired model are already strong from the inspiral alone,
we will focus our attention here solely on the polynomial models.

We perform the Fisher forecast on the same sets of systems as in §5.1, but with the
modified PhenomA waveform of §3.3. We present the full constraints in Appendix A, in com-
parison with the constraints from only the inspiral waveform that ends at 2fISCO. It is clear
that the merger and ringdown phases increase the SNR values (and hence tighten constraints
for all parameters), especially for intermediate and heavy mass systems which otherwise have
only a short inspiral track in the LISA band. The constraint on �2 is considerably improved
in the positive power case for all systems, except for a 106 M� binary at z = 2, 3.
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Figure 11: The SNR contours in the space of total mass and redshift for the inspiral-only waveform
(left panel) and the entire PhenomA waveform (right panel).

the waveform with respect to the parameters; we then verified our results with numerical
derivatives. When computing the Fisher matrix, we put flat priors on tc in (�50, 50),  c

in (�⇡,⇡), �1 in (�20, 20), and �2 in (�1000, 1000). As per the discussion of §2.2, we fix
f⇤ = 2 Hz for the positive-power case, and f⇤ = 2 ⇥ 10�7 Hz for the negative-power case.
However, we note again that the forecasted constraints on �n can be translated to other values
of f⇤ (Appendix D). The fiducial values we use for the modified gravity parameters are the
GR values of �1 = �2 = 0. The fiducial nuisance parameters are set to be tc =  c = 0.
Instead of constraining the value of ⌘, Mz and z, we constrain their fractional errors in
order to avoid incomparable magnitudes among the waveform derivatives that cause large
o↵-diagonality in the Fisher matrix.

For the positive power model, we show the forecast constraint contours for the cases
with total mass of 105 M� at di↵erent redshifts in Figure 12. As expected, the constraints
are weaker for higher redshift due to an overall lowering of the SNR. Our results reflect a
common di�culty of this analysis [50], namely that some of the parameters in the modified
waveform are highly degenerate, e.g. the parameter pairs (ln ⌘, c), (ln ⌘,�1) and ( c,�1).
A possible reason for this result is that, apart from z, all other parameters are contained in
the phase, so they are highly correlated with oneanother.

In addition to this plot, the constraints on parameters for all the models using the
inspiral waveform in GR, positive and negative-power polynomial cases are listed in the
tables in Appendix A. A comparison with the GR case shows that the presence of �1 and �2
weakens the constraints on the GR parameters. We find that the constraints are controlled
by the SNR and the total mass of the system. Some GR parameters tend to be better
constrained when the SNR is higher, such as ⌘, z and  c. But the constraints on Mz

and tc are tighter for systems with lower masses. This is expected since signals from lower
mass systems stay longer in the LISA band, so that more inspiral cycles are available for
constraining the parameters (see Figure 13).

The modified gravity parameters �1 and �2 are special, in the sense that they are
better constrained when the signals extend to frequencies closer to f⇤. This means that the
positive-power case is best constrained by systems with Mtot < 105M�. Note also that these
systems have the final stages of their inspiral – where the modified PN terms of §3.2 are most
significant – around the peak sensitivity region of the LISA power spectral density (PSD).
The left panel of Figure 14 shows the marginalised constraints on �1 for both positive- and
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Figure 11: The SNR contours in the space of total mass and redshift for the inspiral-only waveform
(left panel) and the entire PhenomA waveform (right panel).
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As an immediate, general application of the formulas we derived, we conclude this
subsection by deriving an expression for the GW luminosity distance in scenarios with � 6= 0,
following the arguments of [60]. We call F the energy flux at observer position:

F =
dEo/dto

Area
(2.19)

where Area= 4⇡(rGW

phys
)2. Then we introduce the luminosity at the source position, L:

L =
dEs

dts
=

(1 + ze)2

(1 � �)2
dEo

dto
, (2.20)

where (2.15) has been used. The luminosity distance dGW

L is defined in terms of the following
relation

F ⌘ L
4⇡ (dGW

L )2
. (2.21)

Using these formulas, as well as relation (2.8) to connect comoving and physical distance, we
obtain

dGW

L = (1 + ze) (1 � �)�
1
2 rGW

com , (2.22)

so the e↵ects of a cT varying with frequency are contained in the dependence on � as defined
in (2.12). As we will learn in §3, the luminosity distance dGW

L and other relations we derived
here play an important role for characterizing the properties of the GW waveforms.

2.2 Two Ansätze for cT (f)

After the previous considerations, in this subsection we discuss two representative Ansätze
for cT . They will represent our benchmark scenarios for the LISA forecasts developed in the
next sections. In fact, after discussing the Ansatz functional forms, we briefly anticipate the
level of constraints we will be able to obtain with LISA on the parameters characterizing
them. Importantly, these Ansätze aim to discuss possible ways to parametrize deviations
from cT = 1 around LISA frequencies, and are not built for automatically satisfying at
the same time constraints on cT within ground-based frequency ranges. To do so, further
corrections to their frequency dependence might be needed in the intermediate frequency
band between LISA and ground-based experiments. We will comment on this point through
the text, and above all in Appendix D.

Polynomial Ansatz

Inspired by the scale-dependent choice originally put forward in [69], our first model param-
etrizes cT (f) as a polynomial in frequency:

cT (f) = 1 +
X

n

�n

✓
f

f⇤

◆n

. (2.23)

Here n can be a positive or negative integer, �n is a set of parameters controlling deviations
from GR, and f⇤ is a fixed frequency scale controlling the onset of the deviations. In what
follows we study both positive and negative values of n as separate cases. Note that, for
simplicity, we do not allow �n to be function of time; this possibility will nevertheless be
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is challenging to constraint (second order correction to             )

Figure 13: Number of cycles (neglecting post-Newtonian e↵ects) in-band for LISA sources in the
{Mtot, z} plane (see eq.22 of [62]). We count cycles from the time the system exceeds SNR=8 until
the end of the inspiral phase, which we take to be at f = 2fISCO.

to manifest in the heaviest systems, but this is compensated for by the rapidly rising PSD
(and hence decreasing SNR) at low frequencies.

In general we learn that �2 is challenging to constrain; this is not unexpected, given
it represents a second-order correction to cT (f). For the positive-power case using only the
inspiral waveform (Table 4 in Appendix A), the prior on �2 is saturated for the Mtot = 106 M�
cases, indicating that we fail to obtain a meaningful constraint. Hence in right panels of
Figure 14 we show only results that include the PhenomA merger-ringdown extension (see
next subsection).

We stress that the constraints obtained are quite sensitive to the value of f⇤. Here
we have adopted a maximally conservative approach, by setting f⇤ completely outside the
LISA band for both positive- and negative-power polynomial cases. Alternatively, for a given
{Mtot, z}, f⇤ can adopt any value provided that (f/f⇤)n << 1, such the expansion used in §3
remains valid. An example of this can be seen in Figure 9, where a lower value of f⇤ = 0.1 Hz
was used; an improvement of one and two orders of magnitude results for the constraints on
�1 and �2, respectively.

Finally, the degeneracies between the parameters analysed in this section could be re-
duced by replacing the highly correlated parameters with new ones, for example treating the
complete amplitude as a single parameter, so that parameters in the phase will not correlate
to the amplitude. However, significant correlations between the phase parameters would
likely remain, and we would lose the ability to estimate �z – which could be significant for
associating the merger to a host galaxy.

EFT-Inspired Model

We now move on to Fisher forecasts for the EFT case, where the beyond Einstein parameters
of interest are f⇤ and c0. Recall that these parameters control the location and height of the
transition seen in Figure 1, with c0 = 1 corresponding to the GR case (no transition).

Since the phase of the waveform in the EFT case is computed numerically, we also
numerically compute the derivatives of the waveform used in the Fisher matrix. We use
c0 = 0.99 instead of c0 = 1 for the fiducial model, because the numerical derivatives with
respect to c0 and f⇤ become unstable when c0 = 1. This is easily understood, as when there
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Figure 13: Number of cycles (neglecting post-Newtonian e↵ects) in-band for LISA sources in the
{Mtot, z} plane (see eq.22 of [62]). We count cycles from the time the system exceeds SNR=8 until
the end of the inspiral phase, which we take to be at f = 2fISCO.

to manifest in the heaviest systems, but this is compensated for by the rapidly rising PSD
(and hence decreasing SNR) at low frequencies.

In general we learn that �2 is challenging to constrain; this is not unexpected, given
it represents a second-order correction to cT (f). For the positive-power case using only the
inspiral waveform (Table 4 in Appendix A), the prior on �2 is saturated for the Mtot = 106 M�
cases, indicating that we fail to obtain a meaningful constraint. Hence in right panels of
Figure 14 we show only results that include the PhenomA merger-ringdown extension (see
next subsection).

We stress that the constraints obtained are quite sensitive to the value of f⇤. Here
we have adopted a maximally conservative approach, by setting f⇤ completely outside the
LISA band for both positive- and negative-power polynomial cases. Alternatively, for a given
{Mtot, z}, f⇤ can adopt any value provided that (f/f⇤)n << 1, such the expansion used in §3
remains valid. An example of this can be seen in Figure 9, where a lower value of f⇤ = 0.1 Hz
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of interest are f⇤ and c0. Recall that these parameters control the location and height of the
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Including the merger and ringdown still tightens constraints on the GR parameters and due to the 
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Figure 15: � as a function of observed frequency in the EFT-inspired Ansatz, at frequencies of the
binary inspiral waveforms for Mtot = 105 M�, c0 = 0.99 and f⇤ = 3 ⇥ 10�4 Hz at di↵erent redshifts.

Figure 17 shows the contours of constraints on c0 � 1 and fractional constraints on
f⇤ in the {Mtot, z} plane. The lowest total mass we consider here is 103.5M�, because the
numerical derivatives with respect to c0 and f⇤ become unstable for systems with lower total
masses. This can be explained by the fact that lower-mass systems evolve into frequencies
much higher than f⇤, at which the e↵ects of the transition in cT are very small – this makes
the derivatives with respect to the beyond Einstein parameters noisy. We can see from the
plots that the tightest constraints on c0 and f⇤ are found by systems with Mtot ⇠ 104.5M�.
This is likely because our fiducial choice of f⇤ is located within the early inspiral stage of such
systems, so that most of the transition of cT from 1 to c0 takes place within the detectable
signal. For lower-mass systems, only a small portion of their inspiral waveform is a↵ected by
the cT transition. On the other hand, for more massive systems, f⇤ is above their inspiral
frequency ranges, so that similarly most of their inspiral is also not a↵ected by the transition
of cT .

5.2 Inclusion of ringdown-merger signal

For models where beyond Einstein e↵ects grow with frequency, we naturally expect that
including the merger and ringdown phases of the waveform will enhance our constraining
power. For cases where the opposite is true (like the negative-power polynomial model) one
might guess that such additions will be irrelevant. In fact this turns out not to be correct:
including the merger and ringdown still tightens constraints on the GR parameters, and due
to the correlations between parameters, this leads to a mild improvement in �1 and �2. Given
that the constraints on the EFT-inspired model are already strong from the inspiral alone,
we will focus our attention here solely on the polynomial models.

We perform the Fisher forecast on the same sets of systems as in §5.1, but with the
modified PhenomA waveform of §3.3. We present the full constraints in Appendix A, in com-
parison with the constraints from only the inspiral waveform that ends at 2fISCO. It is clear
that the merger and ringdown phases increase the SNR values (and hence tighten constraints
for all parameters), especially for intermediate and heavy mass systems which otherwise have
only a short inspiral track in the LISA band. The constraint on �2 is considerably improved
in the positive power case for all systems, except for a 106 M� binary at z = 2, 3.
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Figure 13: Number of cycles (neglecting post-Newtonian e↵ects) in-band for LISA sources in the
{Mtot, z} plane (see eq.22 of [62]). We count cycles from the time the system exceeds SNR=8 until
the end of the inspiral phase, which we take to be at f = 2fISCO.

to manifest in the heaviest systems, but this is compensated for by the rapidly rising PSD
(and hence decreasing SNR) at low frequencies.

In general we learn that �2 is challenging to constrain; this is not unexpected, given
it represents a second-order correction to cT (f). For the positive-power case using only the
inspiral waveform (Table 4 in Appendix A), the prior on �2 is saturated for the Mtot = 106 M�
cases, indicating that we fail to obtain a meaningful constraint. Hence in right panels of
Figure 14 we show only results that include the PhenomA merger-ringdown extension (see
next subsection).

We stress that the constraints obtained are quite sensitive to the value of f⇤. Here
we have adopted a maximally conservative approach, by setting f⇤ completely outside the
LISA band for both positive- and negative-power polynomial cases. Alternatively, for a given
{Mtot, z}, f⇤ can adopt any value provided that (f/f⇤)n << 1, such the expansion used in §3
remains valid. An example of this can be seen in Figure 9, where a lower value of f⇤ = 0.1 Hz
was used; an improvement of one and two orders of magnitude results for the constraints on
�1 and �2, respectively.

Finally, the degeneracies between the parameters analysed in this section could be re-
duced by replacing the highly correlated parameters with new ones, for example treating the
complete amplitude as a single parameter, so that parameters in the phase will not correlate
to the amplitude. However, significant correlations between the phase parameters would
likely remain, and we would lose the ability to estimate �z – which could be significant for
associating the merger to a host galaxy.

EFT-Inspired Model

We now move on to Fisher forecasts for the EFT case, where the beyond Einstein parameters
of interest are f⇤ and c0. Recall that these parameters control the location and height of the
transition seen in Figure 1, with c0 = 1 corresponding to the GR case (no transition).

Since the phase of the waveform in the EFT case is computed numerically, we also
numerically compute the derivatives of the waveform used in the Fisher matrix. We use
c0 = 0.99 instead of c0 = 1 for the fiducial model, because the numerical derivatives with
respect to c0 and f⇤ become unstable when c0 = 1. This is easily understood, as when there
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Positive-power case: best constrained by systems with

Negative-power case: greatest deviation from GR for heaviest systems

Figure 11: The SNR contours in the space of total mass and redshift for the inspiral-only waveform
(left panel) and the entire PhenomA waveform (right panel).

the waveform with respect to the parameters; we then verified our results with numerical
derivatives. When computing the Fisher matrix, we put flat priors on tc in (�50, 50),  c

in (�⇡,⇡), �1 in (�20, 20), and �2 in (�1000, 1000). As per the discussion of §2.2, we fix
f⇤ = 2 Hz for the positive-power case, and f⇤ = 2 ⇥ 10�7 Hz for the negative-power case.
However, we note again that the forecasted constraints on �n can be translated to other values
of f⇤ (Appendix D). The fiducial values we use for the modified gravity parameters are the
GR values of �1 = �2 = 0. The fiducial nuisance parameters are set to be tc =  c = 0.
Instead of constraining the value of ⌘, Mz and z, we constrain their fractional errors in
order to avoid incomparable magnitudes among the waveform derivatives that cause large
o↵-diagonality in the Fisher matrix.

For the positive power model, we show the forecast constraint contours for the cases
with total mass of 105 M� at di↵erent redshifts in Figure 12. As expected, the constraints
are weaker for higher redshift due to an overall lowering of the SNR. Our results reflect a
common di�culty of this analysis [50], namely that some of the parameters in the modified
waveform are highly degenerate, e.g. the parameter pairs (ln ⌘, c), (ln ⌘,�1) and ( c,�1).
A possible reason for this result is that, apart from z, all other parameters are contained in
the phase, so they are highly correlated with oneanother.

In addition to this plot, the constraints on parameters for all the models using the
inspiral waveform in GR, positive and negative-power polynomial cases are listed in the
tables in Appendix A. A comparison with the GR case shows that the presence of �1 and �2
weakens the constraints on the GR parameters. We find that the constraints are controlled
by the SNR and the total mass of the system. Some GR parameters tend to be better
constrained when the SNR is higher, such as ⌘, z and  c. But the constraints on Mz

and tc are tighter for systems with lower masses. This is expected since signals from lower
mass systems stay longer in the LISA band, so that more inspiral cycles are available for
constraining the parameters (see Figure 13).

The modified gravity parameters �1 and �2 are special, in the sense that they are
better constrained when the signals extend to frequencies closer to f⇤. This means that the
positive-power case is best constrained by systems with Mtot < 105M�. Note also that these
systems have the final stages of their inspiral – where the modified PN terms of §3.2 are most
significant – around the peak sensitivity region of the LISA power spectral density (PSD).
The left panel of Figure 14 shows the marginalised constraints on �1 for both positive- and
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As an immediate, general application of the formulas we derived, we conclude this
subsection by deriving an expression for the GW luminosity distance in scenarios with � 6= 0,
following the arguments of [60]. We call F the energy flux at observer position:

F =
dEo/dto

Area
(2.19)

where Area= 4⇡(rGW

phys
)2. Then we introduce the luminosity at the source position, L:

L =
dEs

dts
=

(1 + ze)2

(1 � �)2
dEo

dto
, (2.20)

where (2.15) has been used. The luminosity distance dGW

L is defined in terms of the following
relation

F ⌘ L
4⇡ (dGW

L )2
. (2.21)

Using these formulas, as well as relation (2.8) to connect comoving and physical distance, we
obtain

dGW

L = (1 + ze) (1 � �)�
1
2 rGW

com , (2.22)

so the e↵ects of a cT varying with frequency are contained in the dependence on � as defined
in (2.12). As we will learn in §3, the luminosity distance dGW

L and other relations we derived
here play an important role for characterizing the properties of the GW waveforms.

2.2 Two Ansätze for cT (f)

After the previous considerations, in this subsection we discuss two representative Ansätze
for cT . They will represent our benchmark scenarios for the LISA forecasts developed in the
next sections. In fact, after discussing the Ansatz functional forms, we briefly anticipate the
level of constraints we will be able to obtain with LISA on the parameters characterizing
them. Importantly, these Ansätze aim to discuss possible ways to parametrize deviations
from cT = 1 around LISA frequencies, and are not built for automatically satisfying at
the same time constraints on cT within ground-based frequency ranges. To do so, further
corrections to their frequency dependence might be needed in the intermediate frequency
band between LISA and ground-based experiments. We will comment on this point through
the text, and above all in Appendix D.

Polynomial Ansatz

Inspired by the scale-dependent choice originally put forward in [69], our first model param-
etrizes cT (f) as a polynomial in frequency:

cT (f) = 1 +
X

n

�n

✓
f

f⇤

◆n

. (2.23)

Here n can be a positive or negative integer, �n is a set of parameters controlling deviations
from GR, and f⇤ is a fixed frequency scale controlling the onset of the deviations. In what
follows we study both positive and negative values of n as separate cases. Note that, for
simplicity, we do not allow �n to be function of time; this possibility will nevertheless be

– 7 –

Polynomial model



Figure 1: Plot of the EFT ansatz for cT as a function of frequency, as given by eq. (2.24).

The parametrization (2.24) is controlled by two free parameters: a fiducial frequency f?
around which cT changes rapidly, and a low-frequency speed c0 with 0 < c0  1. Ansatz
(2.24) is motivated by the analysis in [19] of an UV completion of a scalar field theory, where
the scalar velocity depends on the energy, and smoothly (but rapidly) connects from c0 to
1 as the energy increases. The transition from c0 to unity occurs within a relatively small
interval as the frequency increases; the width of the transition is not a free parameter and
depends entirely on c0. See Appendix C for more details on theoretical characterization of
this Ansatz and Appendix D for a discussion of its compatibility with the GW170817 bound.
Instances of such rapid changes in cT (f), although motivated from theoretical considerations,
are not easy to describe in terms of a perturbative Ansatz as (2.23). For this reason in the
following section we adopt the representative form (2.24) for modelling such systems. We
consider (2.24) as a convenient, 2-parameter choice of function with an enhanced, transient
variation of cT broadly motivated by the scenarios discussed in the Introduction. More
specifically, model-dependent choices of cT with similar properties might be considered, and
their consequences for LISA can be analyzed with the tools we develop in this work.

A frequency profile for cT (f) as (2.24) implies that all the frequency-dependent e↵ects
studied in §2.1 occur in a relatively small frequency band centered around f?. One can easily
compute numerically the function �(f), introduced in (2.12), which is the important quantity
that controls the deviations from GR. We plot �(f) in Figure 2 for representative choices of
parameters. We notice that this function has a pronounced peak, whose maximal value �max

depends on c0, but also on the redshift z at which the GW source event occurs. To understand
better how �(f) evolves over the z � c0 parameter space, we evaluate the amplitude and the
position of the maximum of the function for redshifts log-uniformly distributed from 0.1 to
10, and values of c0 uniformly distributed between 0.1 and 0.9, see Figure 3. We see that
maximum deviation from GR occurs at frequencies of the order f? and for small c0 and large
z, as expected. We numerically found a simple phenomenological fit relating �max to c0 and
z that is valid up to large redshifts (z = 15):

�max(c0, z) = (1.07 � 1.04 c0)


1 � 1

(1 + z)(1.07�0.84 c0)

�
. (2.25)

For more details on the expression above we refer the reader to Appendix C. This relation
suggests that if we were able to measure with good precision deviations from GR induced by
Ansatz (2.24), we might then be able to extract independent information on the redshift of
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Figure 13: Number of cycles (neglecting post-Newtonian e↵ects) in-band for LISA sources in the
{Mtot, z} plane (see eq.22 of [62]). We count cycles from the time the system exceeds SNR=8 until
the end of the inspiral phase, which we take to be at f = 2fISCO.

to manifest in the heaviest systems, but this is compensated for by the rapidly rising PSD
(and hence decreasing SNR) at low frequencies.

In general we learn that �2 is challenging to constrain; this is not unexpected, given
it represents a second-order correction to cT (f). For the positive-power case using only the
inspiral waveform (Table 4 in Appendix A), the prior on �2 is saturated for the Mtot = 106 M�
cases, indicating that we fail to obtain a meaningful constraint. Hence in right panels of
Figure 14 we show only results that include the PhenomA merger-ringdown extension (see
next subsection).

We stress that the constraints obtained are quite sensitive to the value of f⇤. Here
we have adopted a maximally conservative approach, by setting f⇤ completely outside the
LISA band for both positive- and negative-power polynomial cases. Alternatively, for a given
{Mtot, z}, f⇤ can adopt any value provided that (f/f⇤)n << 1, such the expansion used in §3
remains valid. An example of this can be seen in Figure 9, where a lower value of f⇤ = 0.1 Hz
was used; an improvement of one and two orders of magnitude results for the constraints on
�1 and �2, respectively.

Finally, the degeneracies between the parameters analysed in this section could be re-
duced by replacing the highly correlated parameters with new ones, for example treating the
complete amplitude as a single parameter, so that parameters in the phase will not correlate
to the amplitude. However, significant correlations between the phase parameters would
likely remain, and we would lose the ability to estimate �z – which could be significant for
associating the merger to a host galaxy.

EFT-Inspired Model

We now move on to Fisher forecasts for the EFT case, where the beyond Einstein parameters
of interest are f⇤ and c0. Recall that these parameters control the location and height of the
transition seen in Figure 1, with c0 = 1 corresponding to the GR case (no transition).

Since the phase of the waveform in the EFT case is computed numerically, we also
numerically compute the derivatives of the waveform used in the Fisher matrix. We use
c0 = 0.99 instead of c0 = 1 for the fiducial model, because the numerical derivatives with
respect to c0 and f⇤ become unstable when c0 = 1. This is easily understood, as when there
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{Mtot, z} plane (see eq.22 of [62]). We count cycles from the time the system exceeds SNR=8 until
the end of the inspiral phase, which we take to be at f = 2fISCO.
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(and hence decreasing SNR) at low frequencies.

In general we learn that �2 is challenging to constrain; this is not unexpected, given
it represents a second-order correction to cT (f). For the positive-power case using only the
inspiral waveform (Table 4 in Appendix A), the prior on �2 is saturated for the Mtot = 106 M�
cases, indicating that we fail to obtain a meaningful constraint. Hence in right panels of
Figure 14 we show only results that include the PhenomA merger-ringdown extension (see
next subsection).
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we have adopted a maximally conservative approach, by setting f⇤ completely outside the
LISA band for both positive- and negative-power polynomial cases. Alternatively, for a given
{Mtot, z}, f⇤ can adopt any value provided that (f/f⇤)n << 1, such the expansion used in §3
remains valid. An example of this can be seen in Figure 9, where a lower value of f⇤ = 0.1 Hz
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duced by replacing the highly correlated parameters with new ones, for example treating the
complete amplitude as a single parameter, so that parameters in the phase will not correlate
to the amplitude. However, significant correlations between the phase parameters would
likely remain, and we would lose the ability to estimate �z – which could be significant for
associating the merger to a host galaxy.
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We now move on to Fisher forecasts for the EFT case, where the beyond Einstein parameters
of interest are f⇤ and c0. Recall that these parameters control the location and height of the
transition seen in Figure 1, with c0 = 1 corresponding to the GR case (no transition).

Since the phase of the waveform in the EFT case is computed numerically, we also
numerically compute the derivatives of the waveform used in the Fisher matrix. We use
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cases, indicating that we fail to obtain a meaningful constraint. Hence in right panels of
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transition seen in Figure 1, with c0 = 1 corresponding to the GR case (no transition).
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c0 = 0.99 instead of c0 = 1 for the fiducial model, because the numerical derivatives with
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The constraints on GR parameters are roughly as tight as the ones in the polynomial case

However, we now obtain tight constraints on          and 

- Deviations from GR are strongest in the mid-inspiral phase, where both number of cycles and SNR accumulation are 
reasonable

- Both parameters play comparable roles in modifying the waveform (polynomial case: is significantly subdominant 
to      In the LISA band)

subdominant to �1 in the LISA band).

Figure 15: � as a function of observed frequency in the EFT-inspired Ansatz, at frequencies of the
binary inspiral waveforms for Mtot = 105 M�, c0 = 0.99 and f⇤ = 3 ⇥ 10�4 Hz at di↵erent redshifts.

Figure 17 shows the contours of constraints on c0 � 1 and fractional constraints on
f⇤ in the {Mtot, z} plane. The lowest total mass we consider here is 103.5M�, because the
numerical derivatives with respect to c0 and f⇤ become unstable for systems with lower total
masses. This can be explained by the fact that lower-mass systems evolve into frequencies
much higher than f⇤, at which the e↵ects of the transition in cT are very small – this makes
the derivatives with respect to the beyond Einstein parameters noisy. We can see from the
plots that the tightest constraints on c0 and f⇤ are found by systems with Mtot ⇠ 104.5M�.
This is likely because our fiducial choice of f⇤ is located within the early inspiral stage of such
systems, so that most of the transition of cT from 1 to c0 takes place within the detectable
signal. For lower-mass systems, only a small portion of their inspiral waveform is a↵ected by
the cT transition. On the other hand, for more massive systems, f⇤ is above their inspiral
frequency ranges, so that similarly most of their inspiral is also not a↵ected by the transition
of cT .

5.2 Inclusion of ringdown-merger signal

For models where beyond Einstein e↵ects grow with frequency, we naturally expect that
including the merger and ringdown phases of the waveform will enhance our constraining
power. For cases where the opposite is true (like the negative-power polynomial model) one
might guess that such additions will be irrelevant. In fact this turns out not to be correct:
including the merger and ringdown still tightens constraints on the GR parameters, and due
to the correlations between parameters, this leads to a mild improvement in �1 and �2. Given
that the constraints on the EFT-inspired model are already strong from the inspiral alone,
we will focus our attention here solely on the polynomial models.

We perform the Fisher forecast on the same sets of systems as in §5.1, but with the
modified PhenomA waveform of §3.3. We present the full constraints in Appendix A, in com-
parison with the constraints from only the inspiral waveform that ends at 2fISCO. It is clear
that the merger and ringdown phases increase the SNR values (and hence tighten constraints
for all parameters), especially for intermediate and heavy mass systems which otherwise have
only a short inspiral track in the LISA band. The constraint on �2 is considerably improved
in the positive power case for all systems, except for a 106 M� binary at z = 2, 3.
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EFT-inspired model

explored in appendix E. Notice that our Ansatz (2.23) includes more than one free parameter,
hence it goes beyond the one-parameter parametrization proposed in [45].

In the positive-power (n > 0) and negative-power (n < 0) cases alike, we assume
(f/f⇤)sgn(n) to be a small quantity, allowing us to Taylor expand cT (f) (assuming that the
�n are not large enough to violate the validity of the expansion). We will learn that expanding
cT (f) up to quadratic order will prove su�cient to study the dominant corrections to the
waveform that may be detectable with LISA. We do not include the n = 0 term in either
power-law model, since this represents a frequency-independent correction to cT that has
already been constrained to be very small at z ⌧ 1 by GW170817.

For the positive-power case, we require f⇤ > f everywhere in the LISA band, meaning
that the deviation cT /c � 1 will grow as the inspiral evolves (here we temporarily restore
speed-of-light units). This case turns out to be the mathematically simplest model we study;
however, it implicitly requires that some termination mechanism switches o↵ the deviations
between the LISA band and the band of ground-based detectors, again to maintain consis-
tency with current results bounds on cT (see Appendix D).

Similarly, for the negative-power model f⇤ should be outside the LISA frequency interval,
so that (f/f⇤)�1 stays small in the LISA band. The negative-power case is arguably a more
natural prescription of low-energy deviations from GR, because at high frequencies cT /c ! 1.
However, the bounds on |cT /c � 1| from GW170817 are so impressively tight that they are
hard to satisfy even in this model. Using the values of f⇤ we discuss in the next paragraph,
and assuming no finely-tuned cancellations between the n = �1 and n = �2 terms, formally
we need |�1| . 10�4 to satisfy the existing bounds (�2 remains virtually unconstrained).
However, recognising that our power-law models would at best be only crude representations
of the underlying physics, we do not apply the latter prior on �1 in most of this work. In
§5.2 we present results with only �2 allowed to vary, which require no further assumptions
to be consistent with GW170817.

In our forecast in §5, we mainly consider MBH binaries with total masses between 104

and 107M�, as these generally give signal-to-noise ratio (SNR) > 10 in LISA (see Figure 11).
The frequency range for these waveforms is between ⇠ 10�5 and ⇠ 10�1 Hz, so f⇤ is required
to stay outside this range. In addition, f⇤ should be lower than the LIGO lower sensitivity
bound of ⇠ 10 Hz. Therefore the typical ‘safe’ values of f⇤ we use in the positive- and
negative-power cases are 2 Hz and 2⇥ 10�7 Hz, respectively; in this context, safe means that
the deviations from GR will remain small for any astrophysical system detectable by LISA.
Values of f⇤ within the LISA band can be considered, and will result in tighter parameter
constraints, but also imply that some LISA systems could show non-perturbative departures
from GR. Such non-perturbative e↵ects lie beyond the scope of the current work. Finally, it
is worth noting that constraints on eq. (2.23) are degenerate in �n/fn

⇤ and so constraints on
�n can be translated from one f⇤ to another (Appendix. D).

An EFT-inspired Ansatz

The second parametrization we consider has the property of rapidly changing from a value
of cT smaller than one at small frequencies to cT = 1 at high frequencies (see Figure 1):

cT (f) =

"
1 +

f2
?

f2
� f2

?

f2

s

1 + 2
�
1 � c2

0

� f2

f2
?

#1/2

. (2.24)
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Comments:

§ The obtained constraints were derived from single event detections; we should consider an MBH population
In most cases our method has robustness against realistic population models

Tests of gravity at low frequency can be carried out with LISA in (almost) any scenario

§ We focused exclusively on the frequency dependence of       ; as a result, the constraints are always tightest from          
low-redshift sources  
We have consequently considered a non-trivial function                     of the redshift and the frequency, also including                
a non-trivial modification to the cosmological friction term

§ Our method does not rely on the presence of an electromagnetic counterpart: for long-duration sources our analysis 
could be applied on-the-fly months oρ years before merger.

§ We have a mapping between our beyond Einstein parameters and those of parametrised post-Einsteinian framework

Figures 14 and 17 represent the major results of our work, showing how the constraining
power of LISA for our cT (f) models is sensitive to the total mass and redshift of a MBH
system. These raise the possibility that a single ‘golden’ source may be as useful a population
of less optimal systems. However, this statement clearly depends on the expected rate of MBH
mergers, which is still poorly known. This sensitivity to the underlying MBH population
increases further if redshift-dependent or cumulative corrections to GW propagation are
considered. In this work we focused exclusively on the frequency dependence of cT ; as
a result, our constraints are (unsurprisingly) always tightest from low-redshift sources. If
instead the beyond Einstein e↵ects accumulated with propagation distances – as happens for
some modified gravity models (see e.g. [60, 94] and references therein) – then the redshift
location of peaks in Figure 20 would also play a role in determining the constraints. For these
reasons, and in view of future analyses, we developed in appendix E formulae that extend the
discussion of the main text to include non-standard friction e↵ects in the GW propagation.

Our method in this work has been distinctively di↵erent from that used to measure the
propagation speed of GWs with event GW170817. We do not rely on the presence of an EM
counterpart: for long-duration sources our analysis could be applied on-the-fly months or
years before merger. This may open the possibility of multiband analyses for some sources,
as considered in, e.g. [95–98].

This is not the first time modified propagation e↵ects on the GW phase and amplitude
have been computed. The ppE framework [64] is a well-established formalism that shares
many of the goals of this work. In fact, ppE is su�ciently general to include distinct mod-
ifications at each PN order of the phase, and can also encapsulate departures from the GR
generation of GWs (not just propagation e↵ects, as in the present work). The price paid for
this powerful generality is an increased number of modified gravity parameters, such that
these are usually varied and constrained one by one (see [99] for recent discussion). By fo-
cussing on a modification to cT alone, our work e↵ectively links amplitude and various PN
phase terms to vary in concert, creating a distinct signal. A mapping between our beyond
Einstein parameters and those of ppE is discussed in appendix E.5.

The rate of ground-based GW detections will continue to rise sharply over the next
decade, leading to tight constraints on gravity at the frequency of terrestrial detectors (or
very exciting new results in gravitational physics). Nevertheless, LISA has a crucial role to
play by opening the door to the unexplored millihertz GW regime. In this work we have
developed the first tools for probing new phenomenology we may find there. Motivated by
the direction of current theoretical ideas, this represents the first step of a continuing program
to explore frequency-dependent e↵ects in GW cosmology.
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for acting as internal referee within the LISA Consortium, as well as Nelson Chistensen for
his help within the LISA PPC. T.B. is supported by ERC Starting Grant SHADE (grant
no. StG 949572) and a Royal Society University Research Fellowship (grant no. URF\
R1\180009). G.C. is supported by the I+D grant PID2020-118159GB-C41 of the Spanish

– 37 –

10!6 10!4 0.01 1 100 104
10!16

10!13

10!10

10!7

10!4

0.1

f !Hz

"c
!
c T
#!
c

LISA LIGO

GW170817

EFT

exponential
power law

Figure 22: A deviation of (c�c0)/c = 10�4 in the EFT-inspired Ansatz (2.24) (black curve)
with f⇤ = 3 ⇥ 10�4 Hz, motivated by our forecasts in §5 and observable with LISA, can be
e�ciently suppressed with a power-law (blue) or exponential (red) suppression, eqs. (D.5)
and (D.6), from higher-order corrections to satisfy the GW170817 bound (gray dotted) while
remaining an accurate description in the LISA band. The parameters are chosen as f̃⇤ =
0.2 Hz, p = 2 and f̃⇤ = 1 Hz and p = 1/2 for the power-law and exponential suppressions,
respectively.

purpose we shall consider a power-law and exponential suppression of the tensor sound speed
of the forms

c̃T (f) =
cT (f) + (f/f̃⇤)2p

1 + (f/f̃⇤)2p
, (D.5)

c̃T (f) = 1 � [1 � cT (f)] e�(f/f̃⇤)2p , (D.6)

respectively. The parameters f̃⇤ and p shall be chosen such that cT (f), given by eqs. (2.23)
or (2.24), is valid in the LISA band and (c � cT )/c < 10�15 for LIGO. For simplicity, we
shall focus only on the EFT Ansatz, which in the high-frequency limit can however also be
interpreted in terms of a n = �1 power-law Ansatz. Figure 22 shows how a deviation of
(c � c0)/c = 10�4 in eq. (2.24) with f⇤ = 3 ⇥ 10�4 Hz, motivated by our forecasts in §5, can
be e�ciently suppressed with eqs. (D.5) or (D.6) in the LIGO band. Particularly, we find
that for an exponential or power-law suppression with p & 1/2 or p & 2, our forecasts remain
valid for a potential signature detectable in the LISA band that is hidden to LIGO.

E Future directions: general parametrization of GW propagation

In §2.2, we motivated a frequency-dependent group velocity cT (f) from the fact that, in many
models of modified gravity (including quantum gravity), the modification of the dispersion
relation can be written as a modified dispersion relation !2 � k2 ! F (!, k) = 0. There, we
assumed that all the time- or redshift-dependence of cT was implicit in the frequency f . Now
we relax that assumption and consider a non-trivial function cT (z, f) of the redshift and the
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Brane/String theory: Extra dimensions

Constraints on the number of spacetime dimensions from GWs

Damping of the waveform due to gravitational leakage into extra dim 

Deviation depends on the number of dimensions D and would result to  a systematic 
overestimation of the source            inferred from GW data 

10

Table I of [19].
The long inspiral observed in GW170817 (relative to

previous binary black hole signals) allows us to place the
first stringent constraints on �'̂�2. Binaries comprised
of compact objects with additional charges that charac-
terize couplings with fields other than the metric will
generically support a time-varying dipole moment. Such
systems will emit dipole radiation in addition to the en-
ergy flux predicted in GR (given at leading order by the
quadrupole formula). Provided that this additional flux
is a small correction to the total flux, the dipole radi-
ation mainly induces a negative �1PN order correction
in the phase evolution. Writing the total energy flux
as FGW = FGR(1 + Bc

2
/v

2), the leading-order modifica-
tion to the phase due to theory-agnostic effects of dipole
radiation is given by �'̂�2 = �4B/7 [60, 61]. Combining
the PDFs shown in Fig. 1 obtained with the PhenomPNRT

and SEOBNRT waveforms and restricting to the physical
parameter space B � 0 corresponding to positive outgo-
ing flux, the presence of dipole radiation in GW170817
can be constrained to B  1.2 ⇥ 10�5. For compari-
son, precise timing of radio pulses from binary pulsars
can constrain |B| <

⇠ 6 ⇥ 10�8 [61]; this much stronger
constraint arises, in part, because of the much longer ob-
servation time over which the inspirals of binary pulsars
are tracked.

Though our bound on the dipole parameter B is weaker
than existing constraints, it is the first that comes di-
rectly from the nonlinear and dynamical regime of grav-
ity achieved during compact binary coalescences. In this
regard, we note that for general scalar-tensor theories
there are regions of parameter space where constraints
from both Solar System and binary pulsar observations
are satisfied, and yet new effects appear in the frequency
range of GW detectors, such as spontaneous scalariza-
tion [62] or resonant excitation [63, 64] of a massive field,
or dynamical scalarization [65–67].

CONSTRAINTS FROM GRAVITATIONAL WAVE
PROPAGATION

The propagation of GWs may differ in theories be-
yond GR, and the deviations depend on the distance that
the GWs travel. The search for such deviations provides
unique tests of relativity, particularly when the distance
inferred through GWs can be compared with an accu-
rate, independent distance measurement from EM obser-
vations. In GR, GWs propagate non-dispersively at the
speed of light with an amplitude inversely proportional
to the distance travelled. Using GW170817, we carry out
two different types of analyses to study the propagation
of GWs, looking for possible deviations from GR’s pre-
dictions. The first method implements a generic modifi-
cation to the GWs dispersion relation, adding terms that
correct for a massive graviton, and momentum depen-

dent dispersion that could be apparent in Lorentz vio-
lating models [68, 69]. The second modifies the distance
relation GWs follow in GR by adding correcting factors
accounting for the GW’s gravitational leakage into the
large extra dimensions of higher-dimensional theories of
gravity [70, 71].

Constraints on Modified Dispersion

In GR, gravitational waves propagate at the speed of
light and are non-dispersive, leading to a dispersion re-
lation E

2 = p
2
c
2. An alternative theory may generi-

cally modify this as E
2 = p

2
c
2 + A p

↵
c
↵, where A is

the coefficient of modified dispersion corresponding to
the exponent denoted by ↵ [68, 69]. When ↵ = 0, a
modification with A > 0 may be interpreted as due to
a non-zero graviton mass (A = m

2
g
c
4) [69]. It can be

shown that such modified dispersion relations would lead
to corrections to the GW phasing, thereby allowing us to
constrain any dispersion of GWs [69]. This method, im-
plemented in a Bayesian framework, placed bounds on
A corresponding to different ↵ using binary black hole
detections [16]. We apply the above method to constrain
dispersion of GWs in the case of the binary neutron star
merger GW170817 [1]. We find that GW170817 places
weaker bounds on dispersion of GWs than the binary
black holes. For instance, the bound on the graviton
mass mg we obtain from GW170817 is 9.51⇥10�22 eV/c2,
which is weaker compared to the bounds reported in [16].
This is not surprising as GW170817 is the closest source
detected so far, and for the same SNR propagation-based
tests such as this are more effective when the sources are
farther away. This method complements the bounds on
non-dispersive standard model extension coefficients [72]
reported in [2] from GW170817.

Constraints on the Number of Spacetime
Dimensions

In higher-dimensional theories of gravity the scaling
between the GW strain and the luminosity distance of the
source is expected to be modified, suggesting a damping
of the waveform due to gravitational leakage into large
extra dimensions. This deviation from the GR scaling
hGR / d

�1
L

depends on the number of dimensions D > 4
and would result in a systematic overestimation of the
source luminosity distance inferred from GW observa-
tions [70, 71]. A comparison of distance measurements
from GW and EM observations of GW170817 allows us
to constrain the presence of large additional spacetime
dimensions. We assume, as is the case in many extra-
dimensional models, that light and matter propagate in
four spacetime dimensions only, thus allowing us to infer
the EM luminosity distance d

EM
L

. In the absence of a
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complete, unique GW model in higher-dimensional grav-
ity, we use a phenomenological ansatz for the GW am-
plitude scaling and neglect all other effects of modified
gravity in the GW phase and amplitude. This approach
requires that gravity be asymptotically GR in the strong-
field regime, while modifications due to leakage into extra
dimensions start to appear at large distances from the
source. We therefore consider gravity modifications with
a screening mechanism, i.e., a phenomenological model
with a characteristic length scale Rc beyond which the
propagating GWs start to leak into higher dimensions.
In this model, the strain scales as

h /
1

d
GW
L

=
1

d
EM
L


1 +

✓
d
EM
L

Rc

◆n��(D�4)/(2n)

(2)

where D denotes the number of spacetime dimensions,
and where Rc and n are the distance scale of the screen-
ing and the transition steepness, respectively. Eq. (2)
reduces to the standard GR scaling at distances much
shorter than Rc, and the model is consistent with tests
of GR performed in the Solar System or with binary pul-
sars. Unlike the scaling relation considered in [70, 71],
notice that Eq. (2) reduces to the GR limit for D = 4
spacetime dimensions. An independent measurement of
the source luminosity distance from EM observations of
GW170817 allows us to infer the number of spacetime di-
mensions from a comparison of the GW and EM distance
estimates, for given values of model parameters Rc and
n. Constraints on the number of spacetime dimensions
are derived in a framework of Bayesian analysis, from the
joint posterior probability for D, d

GW
L

and d
EM
L

, given the
two statistically independent measurements of EM data
xEM and GW data xGW. The posterior for D is then
given by:

p(D|xGW, xEM) =

Z
p(dGW

L
|xGW)p(dEM

L
|xEM)�(D � D(dGW

L
, d

EM
L

, Rc, n)) dd
GW
L

dd
EM
L

. (3)

As in [19], we use a measurement of the surface brightness
fluctuation distance to the host galaxy NGC 4993 from
[73] to constrain the EM distance, assuming a Gaussian
distribution for the posterior probability p(dEM

L
|xEM),

with the mean value and standard deviation given by
40.7 ± 2.4 Mpc [73]. Contrary to [71], our analysis relies
on a direct measurement of d

EM
L

and is independent of
prior information on H0 or any other cosmological pa-
rameter. For the measurement of the GW distance, the
posterior distribution p(dGW

L
|xGW) was inferred from the

GW data assuming general relativity and fixing the sky
position to the optical counterpart while marginalizing
over all other waveform parameters [19]. Our analysis
imposes a prior on the GW luminosity distance that is
consistent with a four-dimensional Universe, but we have
checked that other reasonable prior choices do not signif-
icantly modify the results. We invert the scaling relation
in Eq. (2) to compute D(dGW

L
, d

EM
L

, Rc, n) in Eq. (3).
Fig. 3 shows the 90% upper bounds on the number of di-
mensions D, for theories with a certain transition steep-
ness n and distance scale Rc. Shading indicates the ex-
cluded regions of parameter space. Our results are con-
sistent with the GR prediction of D = 4.

Additionally, the data allows us to infer constraints on
the characteristic distance scale Rc of higher-dimensional
theories with a screening mechanism, while fixing D to
5, 6 or 7. The posterior for p(Rc|xGW, xEM) is ob-
tained from the joint posterior probability of Rc, d

GW

L

and d
EM

L
, fixing D instead of Rc in Eq. (3) and comput-

ing Rc(dGW
L

, d
EM
L

, D, n) by inverting the scaling relation

FIG. 3. 90% upper bounds on the number of spacetime di-
mensions D, assuming fixed transition steepness n and dis-
tance scale Rc. Shading indicates the regions of parameter
space excluded by the data.

in Eq. (2). Since we consider higher-dimensional mod-
els that allow only for a relative damping of the GW
signal, we select posterior samples with d

GW
L

> d
EM
L

,
leading to an additional step function ✓(dGW

L
� d

EM
L

) in
p(Rc|xGW, xEM). In Fig. 4, we show 10% lower bounds
on the screening radius Rc, for theories with a certain
fixed transition steepness n and number of dimensions
D > 4. Shading indicates the excluded regions of pa-
rameter space. For higher-dimensional theories of grav-
ity with a characteristic length scale Rc of the order of
the Hubble radius RH ⇠ 4 Gpc, such as the well known
Dvali-Gabadadze-Porrati (DGP) models of dark energy

Strain measured in a 
GW interferometer

Luminosity distance measured for the 
optical counterpart of the standard siren

§ Consistency with GR in D=4 dim
§ Some models (e.g. the Dvali-Gabadadze-Porrati (DGP) model) are ruled out

GW event 1.7 s before γ-ray observation 
GRB 170817A and GW170817 

BNS merger at 40 Mpc



Long-range nonperturbative mechanism found in most QG candidates:
Dimensional flow (change of spacetime dimensionality)

2

In this Letter, we consider a long-range nonperturba-
tive mechanism, dimensional flow, namely the change of
spacetime dimensionality found in most QG candidates
[17–19]. We argue that this feature of QG, already used
as a direct agent in QG inflationary models [20–23], can
also have important consequences for the propagation of
GWs over cosmological distances. We identify QG pre-
dictions shared by different quantization schemes, and
determine a model-independent expression, Eq. (5), for
the luminosity distance of GWs propagating in a di-
mensionally changing spacetime in QG. Testing this ex-
pression against current LIGO-Virgo data, mock LISA
data, and solar-system tests, allows us to constrain the
spacetime dimensionality of a representative number of
QG theories. We mainly focus on the spin-2 GW sec-
tor and on specific opportunities of GW experiments to
test QG scenarios, assuming that the other dynamical
sectors (e.g. spin-0 and spin-1) are not modified by QG
corrections. Our results suggest that group field the-
ory/spin foams/loop quantum gravity (GFT/SF/LQG),
known to affect both the UV limit of gravity and cos-
mological inflationary scales, can also modify late-time
GWs, due to effects that have not been previously con-
sidered. We also compare our results with complemen-
tary constraints on modified dispersion relations, and dis-
cuss possible implications of the Hulse–Taylor pulsar. Fi-
nally, we also take into consideration some different type
of model-dependent bounds to QG theories, particularly
from solar-system experiments.

Dimensional flow. The fact that the dimensionality of
spacetime experienced by a quantum field might depend
on the energy scale has important implications for the
field dynamics. We illustrate this phenomenon by consid-
ering a metric perturbation propagating on a QG space-
time, effectively emerging from some fundamental dy-
namics that we not need to specify here. In Isaacson
shortwave approximation [28], a gravitational wave is a
high-frequency spin-2 perturbation hµν = h+e+µν+h×e×µν
over a background metric g(0)µν = gµν − hµν and is de-
scribed by the two polarization modes h+,× (with e+,×

µν

being the polarization tensors). We make the following
technical assumptions, valid for the main QG theories,
that will be the basis for our arguments.
(i) There is a continuum limit of the QG theory to a
spacetime with a continuous integrodifferential structure.
(ii) The effective dynamics of a high frequency GW over
a spacetime distorted by QG effects can be characterized
by a spacetime measure dϱ(x) and a kinetic term K(∂).
Both can be deformed by QG effects unrelated to pertur-
bative curvature corrections. The perturbed action for a

small perturbation hµν over a background g(0)µν is

S =
1

2ℓ2Γ
∗

∫

dϱ
√

−g(0)
[

hµνKhµν+O(h2
µν ) + J µνhµν

]

,(1)

where the prefactor makes the action dimensionless, J µν

is a generic source term, and the O(h2
µν ) terms play no

role at small scales. The modes h+,×/ℓΓ∗ , where ℓ∗ is
a characteristic scale of the geometry, are dimensionally
and dynamically equivalent to a scalar field.
The measure defines a geometric observable, the Haus-

dorff dimension dH(ℓ) := d ln ϱ(ℓ)/d ln ℓ, describing how
volumes scale with their linear size ℓ. In a classical space-
time, dH = 4.
(iii) Spacetime is dual to a well-defined momentum space
characterized by a measure ϱ̃(k) with Hausdorff dimen-
sion dkH, in general different from dH. The kinetic term
is related to dkH and to another geometric observable,
the spectral dimension dS(ℓ) := −d lnP(ℓ)/d ln ℓ, where
P(ℓ) ∝

∫

ϱ̃(k) exp[−ℓ2K̃(−k2)] and the function K̃ is the
dispersion relation K rescaled by a length power. It is
not difficult to see that dS = 2dkH/[K] [24], with square
brackets indicating the scaling dimension.
(iv) dS ≠ 0 at all scales. The case of geometries where
dS = 0 at short scales must be treated separately [27].

We now have the tools to express the scaling of ϕ in
terms of geometric observables: [h+,×/ℓΓ∗ ] = Γ(ℓ), where

Γ(ℓ) :=
dH(ℓ)

2
−

dkH(ℓ)

dS(ℓ)
. (2)

In the GR limit, dH = dkH = dS = 4 and Γ = 1. Equation
(2) applies to many concrete proposals for QG, each with
its own characteristic motivation and level of theoretical
robustness. The predictions of representative theories at
small (ΓUV) and intermediate scales (Γmeso) are found
in Tab. I. Scales at which QG corrections are important
belong to the UV regime, whereas intermediate scales
where the corrections to GR are small but non-negligible
belong to the mesoscopic one.

ΓUV Γmeso ! 1

GFT/SF/LQG [29–31] [−3, 0) yes

Causal dynamical triangulations [32] −2/3

κ-Minkowski (other) [33, 34] [−1/2, 1]

Stelle gravity [35, 36] 0

String theory (low-energy limit) [37, 38] 0

Asymptotic safety [39] 0

Hořava–Lifshitz gravity [40] 0

κ-Minkowski bicross-product ∇
2 [34] 3/2 yes

κ-Minkowski relative-locality ∇
2 [34] 2 yes

Padmanabhan nonlocal model [41, 42] 2 yes

TABLE I. The value of ΓUV for different QG theories. Theo-
ries with a near-IR parameter Γmeso ! 1 are indicated in the
second column.

Given a spacetime measure ϱ, a kinetic operator K,
and a compact source J , the Green function G(r) of
the modes h (subscripts omitted) in radial coordinates
and Euclidean signature in the absence of curvature is
G(r) = ⟨h(r)h(0)⟩ ∼ (ℓ2
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In this Letter, we consider a long-range nonperturba-
tive mechanism, dimensional flow, namely the change of
spacetime dimensionality found in most QG candidates
[17–19]. We argue that this feature of QG, already used
as a direct agent in QG inflationary models [20–23], can
also have important consequences for the propagation of
GWs over cosmological distances. We identify QG pre-
dictions shared by different quantization schemes, and
determine a model-independent expression, Eq. (5), for
the luminosity distance of GWs propagating in a di-
mensionally changing spacetime in QG. Testing this ex-
pression against current LIGO-Virgo data, mock LISA
data, and solar-system tests, allows us to constrain the
spacetime dimensionality of a representative number of
QG theories. We mainly focus on the spin-2 GW sec-
tor and on specific opportunities of GW experiments to
test QG scenarios, assuming that the other dynamical
sectors (e.g. spin-0 and spin-1) are not modified by QG
corrections. Our results suggest that group field the-
ory/spin foams/loop quantum gravity (GFT/SF/LQG),
known to affect both the UV limit of gravity and cos-
mological inflationary scales, can also modify late-time
GWs, due to effects that have not been previously con-
sidered. We also compare our results with complemen-
tary constraints on modified dispersion relations, and dis-
cuss possible implications of the Hulse–Taylor pulsar. Fi-
nally, we also take into consideration some different type
of model-dependent bounds to QG theories, particularly
from solar-system experiments.

Dimensional flow. The fact that the dimensionality of
spacetime experienced by a quantum field might depend
on the energy scale has important implications for the
field dynamics. We illustrate this phenomenon by consid-
ering a metric perturbation propagating on a QG space-
time, effectively emerging from some fundamental dy-
namics that we not need to specify here. In Isaacson
shortwave approximation [28], a gravitational wave is a
high-frequency spin-2 perturbation hµν = h+e+µν+h×e×µν
over a background metric g(0)µν = gµν − hµν and is de-
scribed by the two polarization modes h+,× (with e+,×

µν

being the polarization tensors). We make the following
technical assumptions, valid for the main QG theories,
that will be the basis for our arguments.
(i) There is a continuum limit of the QG theory to a
spacetime with a continuous integrodifferential structure.
(ii) The effective dynamics of a high frequency GW over
a spacetime distorted by QG effects can be characterized
by a spacetime measure dϱ(x) and a kinetic term K(∂).
Both can be deformed by QG effects unrelated to pertur-
bative curvature corrections. The perturbed action for a

small perturbation hµν over a background g(0)µν is

S =
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µν ) terms play no

role at small scales. The modes h+,×/ℓΓ∗ , where ℓ∗ is
a characteristic scale of the geometry, are dimensionally
and dynamically equivalent to a scalar field.
The measure defines a geometric observable, the Haus-

dorff dimension dH(ℓ) := d ln ϱ(ℓ)/d ln ℓ, describing how
volumes scale with their linear size ℓ. In a classical space-
time, dH = 4.
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sion dkH, in general different from dH. The kinetic term
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ϱ̃(k) exp[−ℓ2K̃(−k2)] and the function K̃ is the
dispersion relation K rescaled by a length power. It is
not difficult to see that dS = 2dkH/[K] [24], with square
brackets indicating the scaling dimension.
(iv) dS ≠ 0 at all scales. The case of geometries where
dS = 0 at short scales must be treated separately [27].

We now have the tools to express the scaling of ϕ in
terms of geometric observables: [h+,×/ℓΓ∗ ] = Γ(ℓ), where

Γ(ℓ) :=
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In the GR limit, dH = dkH = dS = 4 and Γ = 1. Equation
(2) applies to many concrete proposals for QG, each with
its own characteristic motivation and level of theoretical
robustness. The predictions of representative theories at
small (ΓUV) and intermediate scales (Γmeso) are found
in Tab. I. Scales at which QG corrections are important
belong to the UV regime, whereas intermediate scales
where the corrections to GR are small but non-negligible
belong to the mesoscopic one.

ΓUV Γmeso ! 1

GFT/SF/LQG [29–31] [−3, 0) yes

Causal dynamical triangulations [32] −2/3

κ-Minkowski (other) [33, 34] [−1/2, 1]

Stelle gravity [35, 36] 0

String theory (low-energy limit) [37, 38] 0

Asymptotic safety [39] 0

Hořava–Lifshitz gravity [40] 0

κ-Minkowski bicross-product ∇
2 [34] 3/2 yes

κ-Minkowski relative-locality ∇
2 [34] 2 yes

Padmanabhan nonlocal model [41, 42] 2 yes
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[17–19]. We argue that this feature of QG, already used
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known to affect both the UV limit of gravity and cos-
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GWs, due to effects that have not been previously con-
sidered. We also compare our results with complemen-
tary constraints on modified dispersion relations, and dis-
cuss possible implications of the Hulse–Taylor pulsar. Fi-
nally, we also take into consideration some different type
of model-dependent bounds to QG theories, particularly
from solar-system experiments.
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spacetime experienced by a quantum field might depend
on the energy scale has important implications for the
field dynamics. We illustrate this phenomenon by consid-
ering a metric perturbation propagating on a QG space-
time, effectively emerging from some fundamental dy-
namics that we not need to specify here. In Isaacson
shortwave approximation [28], a gravitational wave is a
high-frequency spin-2 perturbation hµν = h+e+µν+h×e×µν
over a background metric g(0)µν = gµν − hµν and is de-
scribed by the two polarization modes h+,× (with e+,×
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being the polarization tensors). We make the following
technical assumptions, valid for the main QG theories,
that will be the basis for our arguments.
(i) There is a continuum limit of the QG theory to a
spacetime with a continuous integrodifferential structure.
(ii) The effective dynamics of a high frequency GW over
a spacetime distorted by QG effects can be characterized
by a spacetime measure dϱ(x) and a kinetic term K(∂).
Both can be deformed by QG effects unrelated to pertur-
bative curvature corrections. The perturbed action for a

small perturbation hµν over a background g(0)µν is
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∫

dϱ
√
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,(1)

where the prefactor makes the action dimensionless, J µν

is a generic source term, and the O(h2
µν ) terms play no

role at small scales. The modes h+,×/ℓΓ∗ , where ℓ∗ is
a characteristic scale of the geometry, are dimensionally
and dynamically equivalent to a scalar field.
The measure defines a geometric observable, the Haus-

dorff dimension dH(ℓ) := d ln ϱ(ℓ)/d ln ℓ, describing how
volumes scale with their linear size ℓ. In a classical space-
time, dH = 4.
(iii) Spacetime is dual to a well-defined momentum space
characterized by a measure ϱ̃(k) with Hausdorff dimen-
sion dkH, in general different from dH. The kinetic term
is related to dkH and to another geometric observable,
the spectral dimension dS(ℓ) := −d lnP(ℓ)/d ln ℓ, where
P(ℓ) ∝

∫

ϱ̃(k) exp[−ℓ2K̃(−k2)] and the function K̃ is the
dispersion relation K rescaled by a length power. It is
not difficult to see that dS = 2dkH/[K] [24], with square
brackets indicating the scaling dimension.
(iv) dS ≠ 0 at all scales. The case of geometries where
dS = 0 at short scales must be treated separately [27].

We now have the tools to express the scaling of ϕ in
terms of geometric observables: [h+,×/ℓΓ∗ ] = Γ(ℓ), where

Γ(ℓ) :=
dH(ℓ)

2
−

dkH(ℓ)

dS(ℓ)
. (2)

In the GR limit, dH = dkH = dS = 4 and Γ = 1. Equation
(2) applies to many concrete proposals for QG, each with
its own characteristic motivation and level of theoretical
robustness. The predictions of representative theories at
small (ΓUV) and intermediate scales (Γmeso) are found
in Tab. I. Scales at which QG corrections are important
belong to the UV regime, whereas intermediate scales
where the corrections to GR are small but non-negligible
belong to the mesoscopic one.

ΓUV Γmeso ! 1

GFT/SF/LQG [29–31] [−3, 0) yes

Causal dynamical triangulations [32] −2/3

κ-Minkowski (other) [33, 34] [−1/2, 1]

Stelle gravity [35, 36] 0

String theory (low-energy limit) [37, 38] 0

Asymptotic safety [39] 0

Hořava–Lifshitz gravity [40] 0
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h ∝
∫
dϱJ G of the source with the retarded Green func-

tion obeying KG = δϱ, where δϱ is the Dirac delta gen-
eralized to a nontrivial measure ϱ. In radial coordinates
in the local wave zone (a region of space larger than the
system size, but smaller than any cosmological scale),
G(t, r) ∼ fG(t, r) r−Γ, where fG is dimensionless. This
yields the scaling of h,

h(t, r) ∼ fh(t, r) (ℓ∗/r)
Γ , [fh] = 0 . (3)

Equation (3) describes the distance scaling of the ampli-
tude of GW radiation emitted by a binary system and
observed in the local wave zone, in any regime where
Γ ≈ const. fh depends on the source J and on the
type of correlation function (advanced or retarded), but
the key point is that h is the product of a dimensionless
function fh and a power-law distance behavior. This is a
fairly general feature in QG, since it is based only on the
scaling properties of the measure and the kinetic term.

Gravitational waves. We now extend these results to
GWs propagating over cosmological distances. Work-
ing on a conformally flat FLRW background, t → τ
is conformal time, r is the comoving distance of the
GW source from the observer, and r is multiplied by
the scale factor a0 = a(τ0 ) in the right-hand side of
Eq. (3). To express Eq. (3) in terms of an observ-
able, we consider GW sources with an electromagnetic
counterpart. The luminosity distance of an object emit-
ting electromagnetic radiation is defined as the power
L per flux unit F, demL :=

√
L/(4πF), and it is mea-

sured photometrically. On a flat FLRW background,
demL = (1 + z)

∫ τ0
τ(z) dτ = a20 r/a, where z = a0/a −1 is

the redshift. We assume that QG corrections to demL are
negligible at large scales. Absorbing redshift factors and
all the details of the source (chirp mass, spin, and so on)
into the dimensionless function fh(z), Eq. (3) becomes

h(z) ∼ fh(z)

[
ℓ∗

demL (z)

]Γ
. (4)

The final step is to generalize relation (4), valid only
for a plateau in dimensional flow, to all scales. An exact
calculation is extremely difficult except in special cases,
but a model-independent approximate generalization is
possible because the system is multiscale (it has at least
an IR and a UV limit, Γ → 1 and Γ → ΓUV). In fact,
multiscale systems such as those in multifractal geometry,
chaos theory, transport theory, financial mathematics, bi-
ology and machine learning are characterized by at least
two critical exponents Γ1 and Γ2 combined together as a
sum of two terms rΓ1 + ArΓ2 + . . . , where A and each
subsequent coefficients contain a scale (hence the term
multiscale). In QG, lengths have exactly this behavior,
which has been proven to be universal [40– 44] in the flat-
space limit: it must hold also for the luminosity distance
because one should recover such multiscaling feature in

the subcosmological limit demL → r. Thus,

h ∝ 1

dgwL
,

dgwL
demL

= 1 + ε

(
demL
ℓ∗

) γ−1

, (5)

with ε = O(1), and γ ̸= 0. In the presence of only one
fundamental length scale ℓ∗ = O(ℓPl), Eq. (5) is exact
[42] and γ = ΓUV takes the values in Tab. I. Conversely,
if ℓ∗ is a mesoscopic scale, then Eq. (5) is valid only near
the IR, close to the end of the flow, and γ = Γmeso ≈ 1.
The coefficient ε cannot be determined universally,

since it depends on the details of the transient regime,
but we can set ε = O(1) without loss of generality be-
cause also ℓ∗ is a free parameter. However, the case with
γ ≈ 1 is subtle as we cannot recover GR unless ε van-
ishes. This implies that ε must have a γ dependence: the
simplest choice such that ε(γ ̸= 1) = O(1), ε(γ = 1) = 0,
and recovering the pure power law (4) on any plateau is
ε = γ−1. The sign of ε is left undetermined to allow for
all possible cases. The result is Eq. (5) with ε = ±|γ−1|.
Equation (5) is our key result for analyzing the phe-

nomenological consequences of QG dimensional flow for
the propagation of GWs. Its structure resembles the
GW luminosity-distance relation expected in some mod-
els with large extra-dimensions [9, 45– 47], where gravity
classically “leaks” into a higher dimensional space. How-
ever, we emphasize that Eq. (5) is based on a feature of
most QG proposals, dimensional flow, and does not rely
on realizations in terms of classical extra dimensions.
The left-hand side of Eq. (5) is the strain measured

in a GW interferometer. The right-hand side features
the luminosity distance measured for the optical coun-
terpart of the standard siren. Therefore, observations
can place constraints on the two parameters ℓ∗ and γ
in a model-independent way, by constraining the ratio
dgwL (z)/demL (z) as a function of the redshift of the source.
Our analysis is based on two standard sirens (with asso-
ciated EM counterpart): the binary neutron-star merger
GW170817 observed by LIGO-Virgo and the Fermi tele-
scope [8], and a simulated z = 2 supermassive black hole
merging event that could be observed by LISA [48– 50].
There are three cases to consider:
(a) 0 > γ−1 leads to an upper bound on ℓ∗ of cosmo-

logical size, namely ℓ∗ < (101 −104 )Mpc. Hence, when
γ = ΓUV, we cannot constrain the deep UV limit of quan-
tum gravity, since ℓ∗ = O(ℓPl). This is expected in QG
theories with ΓUV < 1 (Tab. I) on the tenet that devia-
tions from classical geometry occur at microscopic scales
unobservable in astrophysics.
(b) 0 < γ −1 = O(1): there is a lower bound on ℓ∗ of

cosmological size. Therefore, if Eq. (5) is interpreted as
valid at all scales of dimensional flow and γ = ΓUV, this
result rules out the three models not included in the pre-
vious case: κ-Minkowski spacetime with ordinary mea-
sure and the bicross-product or relative-locality Lapla-
cians and Padmanabhan’s nonlocal model of black holes.

The GW amplitude is determined by the convolution of 
the source with the retarded Green function
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dϱJ G of the source with the retarded Green func-

tion obeying KG = δϱ, where δϱ is the Dirac delta gen-
eralized to a nontrivial measure ϱ. In radial coordinates
in the local wave zone (a region of space larger than the
system size, but smaller than any cosmological scale),
G(t, r) ∼ fG(t, r) r−Γ, where fG is dimensionless. This
yields the scaling of h,

h(t, r) ∼ fh(t, r) (ℓ∗/r)
Γ , [fh] = 0 . (3)

Equation (3) describes the distance scaling of the ampli-
tude of GW radiation emitted by a binary system and
observed in the local wave zone, in any regime where
Γ ≈ const. fh depends on the source J and on the
type of correlation function (advanced or retarded), but
the key point is that h is the product of a dimensionless
function fh and a power-law distance behavior. This is a
fairly general feature in QG, since it is based only on the
scaling properties of the measure and the kinetic term.

Gravitational waves. We now extend these results to
GWs propagating over cosmological distances. Work-
ing on a conformally flat FLRW background, t → τ
is conformal time, r is the comoving distance of the
GW source from the observer, and r is multiplied by
the scale factor a0 = a(τ0 ) in the right-hand side of
Eq. (3). To express Eq. (3) in terms of an observ-
able, we consider GW sources with an electromagnetic
counterpart. The luminosity distance of an object emit-
ting electromagnetic radiation is defined as the power
L per flux unit F, demL :=
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L/(4πF), and it is mea-

sured photometrically. On a flat FLRW background,
demL = (1 + z)
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τ(z) dτ = a20 r/a, where z = a0/a −1 is

the redshift. We assume that QG corrections to demL are
negligible at large scales. Absorbing redshift factors and
all the details of the source (chirp mass, spin, and so on)
into the dimensionless function fh(z), Eq. (3) becomes
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[
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The final step is to generalize relation (4), valid only
for a plateau in dimensional flow, to all scales. An exact
calculation is extremely difficult except in special cases,
but a model-independent approximate generalization is
possible because the system is multiscale (it has at least
an IR and a UV limit, Γ → 1 and Γ → ΓUV). In fact,
multiscale systems such as those in multifractal geometry,
chaos theory, transport theory, financial mathematics, bi-
ology and machine learning are characterized by at least
two critical exponents Γ1 and Γ2 combined together as a
sum of two terms rΓ1 + ArΓ2 + . . . , where A and each
subsequent coefficients contain a scale (hence the term
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which has been proven to be universal [40– 44] in the flat-
space limit: it must hold also for the luminosity distance
because one should recover such multiscaling feature in
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with ε = O(1), and γ ̸= 0. In the presence of only one
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[42] and γ = ΓUV takes the values in Tab. I. Conversely,
if ℓ∗ is a mesoscopic scale, then Eq. (5) is valid only near
the IR, close to the end of the flow, and γ = Γmeso ≈ 1.
The coefficient ε cannot be determined universally,

since it depends on the details of the transient regime,
but we can set ε = O(1) without loss of generality be-
cause also ℓ∗ is a free parameter. However, the case with
γ ≈ 1 is subtle as we cannot recover GR unless ε van-
ishes. This implies that ε must have a γ dependence: the
simplest choice such that ε(γ ̸= 1) = O(1), ε(γ = 1) = 0,
and recovering the pure power law (4) on any plateau is
ε = γ−1. The sign of ε is left undetermined to allow for
all possible cases. The result is Eq. (5) with ε = ±|γ−1|.
Equation (5) is our key result for analyzing the phe-
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the propagation of GWs. Its structure resembles the
GW luminosity-distance relation expected in some mod-
els with large extra-dimensions [9, 45– 47], where gravity
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ever, we emphasize that Eq. (5) is based on a feature of
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on realizations in terms of classical extra dimensions.
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terpart of the standard siren. Therefore, observations
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Our analysis is based on two standard sirens (with asso-
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merging event that could be observed by LISA [48– 50].
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In this Letter, we consider a long-range nonperturba-
tive mechanism, dimensional flow, namely the change of
spacetime dimensionality found in most QG candidates
[17–19]. We argue that this feature of QG, already used
as a direct agent in QG inflationary models [20–23], can
also have important consequences for the propagation of
GWs over cosmological distances. We identify QG pre-
dictions shared by different quantization schemes, and
determine a model-independent expression, Eq. (5), for
the luminosity distance of GWs propagating in a di-
mensionally changing spacetime in QG. Testing this ex-
pression against current LIGO-Virgo data, mock LISA
data, and solar-system tests, allows us to constrain the
spacetime dimensionality of a representative number of
QG theories. We mainly focus on the spin-2 GW sec-
tor and on specific opportunities of GW experiments to
test QG scenarios, assuming that the other dynamical
sectors (e.g. spin-0 and spin-1) are not modified by QG
corrections. Our results suggest that group field the-
ory/spin foams/loop quantum gravity (GFT/SF/LQG),
known to affect both the UV limit of gravity and cos-
mological inflationary scales, can also modify late-time
GWs, due to effects that have not been previously con-
sidered. We also compare our results with complemen-
tary constraints on modified dispersion relations, and dis-
cuss possible implications of the Hulse–Taylor pulsar. Fi-
nally, we also take into consideration some different type
of model-dependent bounds to QG theories, particularly
from solar-system experiments.

Dimensional flow. The fact that the dimensionality of
spacetime experienced by a quantum field might depend
on the energy scale has important implications for the
field dynamics. We illustrate this phenomenon by consid-
ering a metric perturbation propagating on a QG space-
time, effectively emerging from some fundamental dy-
namics that we not need to specify here. In Isaacson
shortwave approximation [28], a gravitational wave is a
high-frequency spin-2 perturbation hµν = h+e+µν+h×e×µν
over a background metric g(0)µν = gµν − hµν and is de-
scribed by the two polarization modes h+,× (with e+,×

µν

being the polarization tensors). We make the following
technical assumptions, valid for the main QG theories,
that will be the basis for our arguments.
(i) There is a continuum limit of the QG theory to a
spacetime with a continuous integrodifferential structure.
(ii) The effective dynamics of a high frequency GW over
a spacetime distorted by QG effects can be characterized
by a spacetime measure dϱ(x) and a kinetic term K(∂).
Both can be deformed by QG effects unrelated to pertur-
bative curvature corrections. The perturbed action for a

small perturbation hµν over a background g(0)µν is

S =
1

2ℓ2Γ
∗

∫

dϱ
√

−g(0)
[

hµνKhµν+O(h2
µν ) + J µνhµν

]

,(1)

where the prefactor makes the action dimensionless, J µν

is a generic source term, and the O(h2
µν ) terms play no

role at small scales. The modes h+,×/ℓΓ∗ , where ℓ∗ is
a characteristic scale of the geometry, are dimensionally
and dynamically equivalent to a scalar field.
The measure defines a geometric observable, the Haus-

dorff dimension dH(ℓ) := d ln ϱ(ℓ)/d ln ℓ, describing how
volumes scale with their linear size ℓ. In a classical space-
time, dH = 4.
(iii) Spacetime is dual to a well-defined momentum space
characterized by a measure ϱ̃(k) with Hausdorff dimen-
sion dkH, in general different from dH. The kinetic term
is related to dkH and to another geometric observable,
the spectral dimension dS(ℓ) := −d lnP(ℓ)/d ln ℓ, where
P(ℓ) ∝

∫

ϱ̃(k) exp[−ℓ2K̃(−k2)] and the function K̃ is the
dispersion relation K rescaled by a length power. It is
not difficult to see that dS = 2dkH/[K] [24], with square
brackets indicating the scaling dimension.
(iv) dS ≠ 0 at all scales. The case of geometries where
dS = 0 at short scales must be treated separately [27].

We now have the tools to express the scaling of ϕ in
terms of geometric observables: [h+,×/ℓΓ∗ ] = Γ(ℓ), where

Γ(ℓ) :=
dH(ℓ)

2
−

dkH(ℓ)

dS(ℓ)
. (2)

In the GR limit, dH = dkH = dS = 4 and Γ = 1. Equation
(2) applies to many concrete proposals for QG, each with
its own characteristic motivation and level of theoretical
robustness. The predictions of representative theories at
small (ΓUV) and intermediate scales (Γmeso) are found
in Tab. I. Scales at which QG corrections are important
belong to the UV regime, whereas intermediate scales
where the corrections to GR are small but non-negligible
belong to the mesoscopic one.

ΓUV Γmeso ! 1

GFT/SF/LQG [29–31] [−3, 0) yes

Causal dynamical triangulations [32] −2/3

κ-Minkowski (other) [33, 34] [−1/2, 1]

Stelle gravity [35, 36] 0

String theory (low-energy limit) [37, 38] 0

Asymptotic safety [39] 0

Hořava–Lifshitz gravity [40] 0

κ-Minkowski bicross-product ∇
2 [34] 3/2 yes

κ-Minkowski relative-locality ∇
2 [34] 2 yes

Padmanabhan nonlocal model [41, 42] 2 yes

TABLE I. The value of ΓUV for different QG theories. Theo-
ries with a near-IR parameter Γmeso ! 1 are indicated in the
second column.

Given a spacetime measure ϱ, a kinetic operator K,
and a compact source J , the Green function G(r) of
the modes h (subscripts omitted) in radial coordinates
and Euclidean signature in the absence of curvature is
G(r) = ⟨h(r)h(0)⟩ ∼ (ℓ2

∗
/r2)Γ. This scaling is consistent
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GWs over cosmological distances. We identify QG pre-
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determine a model-independent expression, Eq. (5), for
the luminosity distance of GWs propagating in a di-
mensionally changing spacetime in QG. Testing this ex-
pression against current LIGO-Virgo data, mock LISA
data, and solar-system tests, allows us to constrain the
spacetime dimensionality of a representative number of
QG theories. We mainly focus on the spin-2 GW sec-
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known to affect both the UV limit of gravity and cos-
mological inflationary scales, can also modify late-time
GWs, due to effects that have not been previously con-
sidered. We also compare our results with complemen-
tary constraints on modified dispersion relations, and dis-
cuss possible implications of the Hulse–Taylor pulsar. Fi-
nally, we also take into consideration some different type
of model-dependent bounds to QG theories, particularly
from solar-system experiments.

Dimensional flow. The fact that the dimensionality of
spacetime experienced by a quantum field might depend
on the energy scale has important implications for the
field dynamics. We illustrate this phenomenon by consid-
ering a metric perturbation propagating on a QG space-
time, effectively emerging from some fundamental dy-
namics that we not need to specify here. In Isaacson
shortwave approximation [28], a gravitational wave is a
high-frequency spin-2 perturbation hµν = h+e+µν+h×e×µν
over a background metric g(0)µν = gµν − hµν and is de-
scribed by the two polarization modes h+,× (with e+,×

µν

being the polarization tensors). We make the following
technical assumptions, valid for the main QG theories,
that will be the basis for our arguments.
(i) There is a continuum limit of the QG theory to a
spacetime with a continuous integrodifferential structure.
(ii) The effective dynamics of a high frequency GW over
a spacetime distorted by QG effects can be characterized
by a spacetime measure dϱ(x) and a kinetic term K(∂).
Both can be deformed by QG effects unrelated to pertur-
bative curvature corrections. The perturbed action for a

small perturbation hµν over a background g(0)µν is

S =
1

2ℓ2Γ
∗

∫

dϱ
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−g(0)
[

hµνKhµν+O(h2
µν ) + J µνhµν
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where the prefactor makes the action dimensionless, J µν

is a generic source term, and the O(h2
µν ) terms play no

role at small scales. The modes h+,×/ℓΓ∗ , where ℓ∗ is
a characteristic scale of the geometry, are dimensionally
and dynamically equivalent to a scalar field.
The measure defines a geometric observable, the Haus-

dorff dimension dH(ℓ) := d ln ϱ(ℓ)/d ln ℓ, describing how
volumes scale with their linear size ℓ. In a classical space-
time, dH = 4.
(iii) Spacetime is dual to a well-defined momentum space
characterized by a measure ϱ̃(k) with Hausdorff dimen-
sion dkH, in general different from dH. The kinetic term
is related to dkH and to another geometric observable,
the spectral dimension dS(ℓ) := −d lnP(ℓ)/d ln ℓ, where
P(ℓ) ∝

∫

ϱ̃(k) exp[−ℓ2K̃(−k2)] and the function K̃ is the
dispersion relation K rescaled by a length power. It is
not difficult to see that dS = 2dkH/[K] [24], with square
brackets indicating the scaling dimension.
(iv) dS ≠ 0 at all scales. The case of geometries where
dS = 0 at short scales must be treated separately [27].

We now have the tools to express the scaling of ϕ in
terms of geometric observables: [h+,×/ℓΓ∗ ] = Γ(ℓ), where

Γ(ℓ) :=
dH(ℓ)

2
−

dkH(ℓ)

dS(ℓ)
. (2)

In the GR limit, dH = dkH = dS = 4 and Γ = 1. Equation
(2) applies to many concrete proposals for QG, each with
its own characteristic motivation and level of theoretical
robustness. The predictions of representative theories at
small (ΓUV) and intermediate scales (Γmeso) are found
in Tab. I. Scales at which QG corrections are important
belong to the UV regime, whereas intermediate scales
where the corrections to GR are small but non-negligible
belong to the mesoscopic one.

ΓUV Γmeso ! 1

GFT/SF/LQG [29–31] [−3, 0) yes

Causal dynamical triangulations [32] −2/3

κ-Minkowski (other) [33, 34] [−1/2, 1]

Stelle gravity [35, 36] 0

String theory (low-energy limit) [37, 38] 0

Asymptotic safety [39] 0

Hořava–Lifshitz gravity [40] 0

κ-Minkowski bicross-product ∇
2 [34] 3/2 yes

κ-Minkowski relative-locality ∇
2 [34] 2 yes

Padmanabhan nonlocal model [41, 42] 2 yes

TABLE I. The value of ΓUV for different QG theories. Theo-
ries with a near-IR parameter Γmeso ! 1 are indicated in the
second column.

Given a spacetime measure ϱ, a kinetic operator K,
and a compact source J , the Green function G(r) of
the modes h (subscripts omitted) in radial coordinates
and Euclidean signature in the absence of curvature is
G(r) = ⟨h(r)h(0)⟩ ∼ (ℓ2
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/r2)Γ. This scaling is consistent
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in the local wave zone (a region of space larger than the
system size, but smaller than any cosmological scale),
G(t, r) ⇠ fG(t, r) r��, where fG is dimensionless. This
yields the scaling of h,

h(t, r) ⇠ fh(t, r) (`⇤/r)
� , [fh] = 0 . (3)

Equation (3) describes the distance scaling of the ampli-
tude of GW radiation emitted by a binary system and
observed in the local wave zone, in any regime where
� ⇡ const. fh depends on the source J and on the
type of correlation function (advanced or retarded), but
the key point is that h is the product of a dimensionless
function fh and a power-law distance behavior. This is a
fairly general feature in QG, since it is based only on the
scaling properties of the measure and the kinetic term.

Gravitational waves. We now extend these results to
GWs propagating over cosmological distances. Work-
ing on a conformally flat FLRW background, t ! ⌧
is conformal time, r is the comoving distance of the
GW source from the observer, and r is multiplied by
the scale factor a0 = a(⌧0) in the right-hand side of
Eq. (3). To express Eq. (3) in terms of an observ-
able, we consider GW sources with an electromagnetic
counterpart. The luminosity distance of an object emit-
ting electromagnetic radiation is defined as the power
L per flux unit F, demL :=

p
L/(4⇡F), and it is mea-

sured photometrically. On a flat FLRW background,
demL = (1 + z)

R ⌧0
⌧(z) d⌧ = a2

0
r/a, where z = a0/a � 1 is

the redshift. We assume that QG corrections to demL are
negligible at large scales. Absorbing redshift factors and
all the details of the source (chirp mass, spin, and so on)
into the dimensionless function fh(z), Eq. (3) becomes

h(z) ⇠ fh(z)


`⇤

demL (z)

��
. (4)

The final step is to generalize relation (4), valid only
for a plateau in dimensional flow, to all scales. An exact
calculation is extremely di�cult except in special cases,
but a model-independent approximate generalization is
possible because the system is multiscale (it has at least
an IR and a UV limit, � ! 1 and � ! �UV). In fact,
multiscale systems such as those in multifractal geometry,
chaos theory, transport theory, financial mathematics, bi-
ology and machine learning are characterized by at least
two critical exponents �1 and �2 combined together as a
sum of two terms r�1 + Ar�2 + . . . , where A and each
subsequent coe�cients contain a scale (hence the term
multiscale). In QG, lengths have exactly this behavior,
which has been proven to be universal [40–44] in the flat-
space limit: it must hold also for the luminosity distance
because one should recover such multiscaling feature in
the subcosmological limit demL ! r. Thus,

h /
1

dgwL
,

dgwL
demL

= 1 + "

✓
demL
`⇤

◆��1

, (5)

with " = O(1), and � 6= 0. In the presence of only one
fundamental length scale `⇤ = O(`Pl), Eq. (5) is exact
[42] and � = �UV takes the values in Tab. I. Conversely,
if `⇤ is a mesoscopic scale, then Eq. (5) is valid only near
the IR, close to the end of the flow, and � = �meso ⇡ 1.

The coe�cient " cannot be determined universally,
since it depends on the details of the transient regime,
but we can set " = O(1) without loss of generality be-
cause also `⇤ is a free parameter. However, the case with
� ⇡ 1 is subtle as we cannot recover GR unless " van-
ishes. This implies that " must have a � dependence: the
simplest choice such that "(� 6= 1) = O(1), "(� = 1) = 0,
and recovering the pure power law (4) on any plateau is
" = �� 1. The sign of " is left undetermined to allow for
all possible cases. The result is Eq. (5) with " = ±|��1|.

Equation (5) is our key result for analyzing the phe-
nomenological consequences of QG dimensional flow for
the propagation of GWs. Its structure resembles the
GW luminosity-distance relation expected in some mod-
els with large extra-dimensions [9, 45–47], where gravity
classically “leaks” into a higher dimensional space. How-
ever, we emphasize that Eq. (5) is based on a feature of
most QG proposals, dimensional flow, and does not rely
on realizations in terms of classical extra dimensions.

The left-hand side of Eq. (5) is the strain measured
in a GW interferometer. The right-hand side features
the luminosity distance measured for the optical coun-
terpart of the standard siren. Therefore, observations
can place constraints on the two parameters `⇤ and �
in a model-independent way, by constraining the ratio
dgwL (z)/demL (z) as a function of the redshift of the source.
Our analysis is based on two standard sirens (with asso-
ciated EM counterpart): the binary neutron-star merger
GW170817 observed by LIGO-Virgo and the Fermi tele-
scope [8], and a simulated z = 2 supermassive black hole
merging event that could be observed by LISA [48–50].
There are three cases to consider:

(a) 0 > � � 1 leads to an upper bound on `⇤ of cosmo-
logical size, namely `⇤ < (101 � 104)Mpc. Hence, when
� = �UV, we cannot constrain the deep UV limit of quan-
tum gravity , since `⇤ = O(`Pl). This is expected in QG
theories with �UV < 1 (Tab. I) on the tenet that devia-
tions from classical geometry occur at microscopic scales
unobservable in astrophysics.

(b) 0 < � � 1 = O(1): there is a lower bound on `⇤ of
cosmological size. Therefore, if Eq. (5) is interpreted as
valid at all scales of dimensional flow and � = �UV, this
result rules out the three models not included in the pre-
vious case: -Minkowski spacetime with ordinary mea-
sure and the bicross-product or relative-locality Lapla-
cians and Padmanabhan’s nonlocal model of black holes.

(c) 0 < � � 1 ⌧ 1: Eq. (5) is valid in a near-IR regime
and � = �meso is very close to 1 from above. Using a
Bayesian analysis identical to that of [9] (page 11) where
`⇤ is fixed and the constraint on � is inferred [48], the
resulting upper bound on � is shown in Fig. 1. For the
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and artificial intelligence display correlation functions with anomalous scalings described by
the same mathematics. These systems are characterized by two or more critical exponents �1,
�2, and so on (corresponding to dimensions, in QG and fractal geometry) combined together
as a generalized polynomial `�1 +A`�2 + . . . , where A and each subsequent coe�cient contains
a scale. As far as we know, this is the standard result and there is no need nor evidence for
replacing a finite set of critical exponents �1, �2, . . . , with a one-parameter exponent �(`) and
the polynomial with a single power law `�(`). This can be done for the sake of phenomenology,
but in the context of QG we can do better.

GT:lets discuss toegether the arguments above. also, not too clear whether
dEM is modified or not with respect to standard case

In the case of the luminosity distance, the length formula (5.14) is precisely of the
polynomial form expected in multi-scale systems and it can give a guidance to rewrite d�L in
(5.21) as the sum of an IR and a UV contribution. Reinstating the superscript in dL,

h /
1

dgwL
, dgwL = demL

"
1 + "

✓
demL
`⇤

◆��1
#
, � 6= 0 , (5.23)

h /
1

`⇤
ln

✓
1 +

`⇤
demL

◆
, � = 0 , (5.24)

where the parameters ✏ = O(1), � and `⇤ > l⇤ will be discussed shortly. First, we comment
on the range of validity of (5.23) when � takes values far away (say, 50% or more) from 1.
Assume, then, that |� � 1| > 0.5. Equation (5.23) captures the scaling of the GW amplitude
on two di↵erent regimes, one where dgwL ' demL (IR/GR regime, negligible correction) and
one where dgwL ' "`⇤(demL /`⇤)� (UV/QG regime, dominant correction). Depending on the
magnitude of �, one regime corresponds to the scale of the observer, while the other to
cosmological scales arbitrarily far away from us. If � < 1, then the GR regime is realized for
optical source with demL � `⇤, while if � > 1 it is realized when demL ⌧ `⇤. Whether the GR
regime corresponds to cosmological or local (i.e., solar system, laboratory or atomic) scales
depends on how dimensional flow a↵ects the cosmological observable (5.23). Ultimately, this
question reduces to determining whether � = �UV or � = �meso. The magnitude of the
quantum-gravity correction in (5.23) can change considerably depending on the regime and
on the geometry.

• � = �UV. A binomial such as (5.23) is valid at all scales only if `⇤ is the only intrinsic
scale in spacetime geometry, in which case `⇤ is expected to be very small, certainly
smaller than the electroweak scale and possibly close, or equal to, the Planck length
`Pl. Therefore, for `⇤ = l⇤ = O(`Pl), � = �UV is the critical exponent in the UV and
cosmologically distant sources (demL � `⇤) fall into the IR regime of dimensional flow
(GR limit) if � < 1 and into the UV regime (QG limit) if � > 1. Thus, interesting
deviations from GR are expected only when � > 1. Note that we cannot conclude,
from this reasoning, that at sub-cosmological scales (solar system, laboratory, and so
on) one reaches the UV regime if � < 1 and the IR regime if � > 1, because (5.23)
is a cosmological formula and dL = 0 corresponds to zero redshift or local scales, not
sub-Planckian scales. In particular, a theory with � < 1 does not necessarily predict
strong QG at solar-system or laboratory scales. The case � = 0 is special because
it corresponds to a logarithmic correlation function. Equation (5.24) reproduces this
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with the one in ordinary spacetime with D directions,
where Γ = D/2 − 1. It is valid for any length range
where Γ is approximately constant. Around a homoge-
neous background, for each polarization mode we obtain

h(t, r) ∼ fh(t, r) (ℓ∗/r)
Γ , [fh] = 0 . (3)

Equation (3) schematically describes the distance scaling
of the amplitude of GW radiation emitted by a binary
system and observed in the local wave zone, a region
of space larger than the system size, but smaller than
any cosmological scale. The function fh depends on the
source and on the type of correlation function (advanced
or retarded), but the key point is that we can express h as
the product of a dimensionless function fh and a power-
law distance behavior which is fairly general in QG, since
it is based only on the scaling properties of the measure
and the kinetic term.

Gravitational waves. We now apply these results fo-
cussing on the specific case of gravitational waves prop-
agating over cosmological distances. To investigate the
propagation of GWs on a flat FLRW background, we
work on a conformally flat metric, where t → τ is con-
formal time and r is the comoving distance of the GW
source from the observer. Therefore, we multiply r by the
scale factor a0 = a(τ0) in the right-hand side of Eq. (3).
In order to express Eq. (3) in terms of a physical observ-
able, we assume that the source has an electromagnetic
counterpart. Recall that the luminosity distance of an
object emitting electromagnetic radiation is defined as
the power per flux unit, demL :=

√

L/(4πF) and, on a flat
FLRW background, demL = (1+z)

∫ τ0
τ(z) dτ = a20r/a, where

z = a0/a − 1 is the redshift. We assume that QG cor-
rections to demL are negligible at large scales. Absorbing
redshift factors into fh, we express Eq. (3) as

h(z) ∼ fh(z)

[

ℓ∗
demL (z)

]Γ

. (4)

The details (chirp mass, spin, etc) of the source are all
encoded into the dimensionless function fh(z).
The final step is to generalize relation (4), which is

only valid for a plateau in dimensional flow, to all scales.
We argue that the correct expression to adopt is

h ∝
1

dgwL
, dgwL = demL

[

1 + ε

(

demL
ℓ∗

)γ−1
]

, (5)

with ε = O(1), and γ ≠ 0 is a scale parameter.
In fact, suppose that QG introduces only one funda-

mental length scale ℓ∗ close to the Planck scale. This
is sufficient to trigger a nontrivial dimensional flow and
the scaling of distances takes a universal form of the type
of Eq. (5). In this case, γ = ΓUV. For a scale close to
the end of the flow, the modified relation has again two
contributions [44]: however, in this case γ = Γmeso is a
mesoscopic-scale parameter close to one.

Although the structure of Eq. (5) is expected to be
generic in QG, the coefficient ε cannot be determined uni-
versally, since it depends on the details of the transient
regime. In general, it can be either a random variable
with zero average (in “fuzzy” spacetimes with intrinsic
measurements uncertainty) or a number. Suppose it is
a number: since also ℓ∗ is a free parameter, we can set
the coefficient to be ε = O(1) without loss of general-
ity. However, the case with γ ≈ 1 is subtle since we can
not recover GR unless ε vanishes. This implies that ε
must have a γ dependence: the simplest choice such that
ε(γ ≠ 1) = O(1), ε(γ = 1) = 0, and recovering the pure
power law Eq. (4) on any plateau with γ = Γ, is ε = γ−1.
If we also allow for a sign ambiguity for ε, we are able
to encompass also the case of fuzzy spacetimes where ε
randomly fluctuates around zero (from observations one
can get only upper or lower bounds on the quantum cor-
rection). The net result is Eq. (5) with ε = ±(γ − 1).
Equation (5) is our key result for analyzing the phe-

nomenological consequences of QG dimensional flow for
the propagation of GWs. Its structure resembles the
GW luminosity-distance relation expected in some mod-
els with large extra-dimensions [9, 45, 46], where gravity
classically “leaks” into a higher dimensional space. How-
ever, we emphasize that Eq. (5) is based on a feature of
most QG proposals, dimensional flow, and does not rely
on realizations in terms of classical extra dimensions.
The left-hand side of Eq. (5) is the strain measured

in a GW interferometer. The right-hand side features
the luminosity distance measured for the optical coun-
terpart of the standard siren. Therefore, observations
can place constraints on the two parameters ℓ∗ and γ
in a model-independent way, by constraining the ratio
dgwL (z)/demL (z) as a function of the redshift of the source.
Our analysis is based on two standard sirens, the binary
neutron-star merger GW170817 observed by LIGO-Virgo
and the Fermi telescope [8], and a simulated z = 2 super-
massive black hole merging event that could be observed
by LISA [24–26]. There are three cases to consider:
(a) 0 > γ − 1 leads to an upper bound on ℓ∗ of cos-

mological size, namely ℓ∗ < (101 − 104)Mpc. Hence we
cannot constrain the deep UV limit of quantum gravity,
since ℓ∗ = O(ℓPl). This is expected in QG theories with
ΓUV < 1 (Tab. I) on the tenet that deviations from clas-
sical geometry occur at microscopic scales unobservable
in astrophysics.
(b) 0 < γ − 1 = O(1): there is a lower bound on ℓ∗ of

cosmological size. Therefore, if Eq. (5) is interpreted as
valid at all scales of dimensional flow and γ = ΓUV, this
result rules out the three models not included in the pre-
vious case: κ-Minkowski spacetime with ordinary mea-
sure and the bicross-product or relative-locality Lapla-
cians and Padmanabhan’s nonlocal model of black holes.
(c) 0 < γ − 1 ≪ 1: Eq. (5) is valid in a near-IR regime

and γ = Γmeso is very close to 1 from above. The result-
ing upper bound on γ is shown in Fig. 1. For the smallest

If there is only one fundamental scale,                             , the equation is exact and 

If           is a mesoscopic scale, then the equation is valid only near the IR regime and 
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in the local wave zone (a region of space larger than the
system size, but smaller than any cosmological scale),
G(t, r) ⇠ fG(t, r) r��, where fG is dimensionless. This
yields the scaling of h,

h(t, r) ⇠ fh(t, r) (`⇤/r)
� , [fh] = 0 . (3)

Equation (3) describes the distance scaling of the ampli-
tude of GW radiation emitted by a binary system and
observed in the local wave zone, in any regime where
� ⇡ const. fh depends on the source J and on the
type of correlation function (advanced or retarded), but
the key point is that h is the product of a dimensionless
function fh and a power-law distance behavior. This is a
fairly general feature in QG, since it is based only on the
scaling properties of the measure and the kinetic term.

Gravitational waves. We now extend these results to
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GW source from the observer, and r is multiplied by
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The final step is to generalize relation (4), valid only
for a plateau in dimensional flow, to all scales. An exact
calculation is extremely di�cult except in special cases,
but a model-independent approximate generalization is
possible because the system is multiscale (it has at least
an IR and a UV limit, � ! 1 and � ! �UV). In fact,
multiscale systems such as those in multifractal geometry,
chaos theory, transport theory, financial mathematics, bi-
ology and machine learning are characterized by at least
two critical exponents �1 and �2 combined together as a
sum of two terms r�1 + Ar�2 + . . . , where A and each
subsequent coe�cients contain a scale (hence the term
multiscale). In QG, lengths have exactly this behavior,
which has been proven to be universal [40–44] in the flat-
space limit: it must hold also for the luminosity distance
because one should recover such multiscaling feature in
the subcosmological limit demL ! r. Thus,
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with " = O(1), and � 6= 0. In the presence of only one
fundamental length scale `⇤ = O(`Pl), Eq. (5) is exact
[42] and � = �UV takes the values in Tab. I. Conversely,
if `⇤ is a mesoscopic scale, then Eq. (5) is valid only near
the IR, close to the end of the flow, and � = �meso ⇡ 1.

The coe�cient " cannot be determined universally,
since it depends on the details of the transient regime,
but we can set " = O(1) without loss of generality be-
cause also `⇤ is a free parameter. However, the case with
� ⇡ 1 is subtle as we cannot recover GR unless " van-
ishes. This implies that " must have a � dependence: the
simplest choice such that "(� 6= 1) = O(1), "(� = 1) = 0,
and recovering the pure power law (4) on any plateau is
" = �� 1. The sign of " is left undetermined to allow for
all possible cases. The result is Eq. (5) with " = ±|��1|.

Equation (5) is our key result for analyzing the phe-
nomenological consequences of QG dimensional flow for
the propagation of GWs. Its structure resembles the
GW luminosity-distance relation expected in some mod-
els with large extra-dimensions [9, 45–47], where gravity
classically “leaks” into a higher dimensional space. How-
ever, we emphasize that Eq. (5) is based on a feature of
most QG proposals, dimensional flow, and does not rely
on realizations in terms of classical extra dimensions.

The left-hand side of Eq. (5) is the strain measured
in a GW interferometer. The right-hand side features
the luminosity distance measured for the optical coun-
terpart of the standard siren. Therefore, observations
can place constraints on the two parameters `⇤ and �
in a model-independent way, by constraining the ratio
dgwL (z)/demL (z) as a function of the redshift of the source.
Our analysis is based on two standard sirens (with asso-
ciated EM counterpart): the binary neutron-star merger
GW170817 observed by LIGO-Virgo and the Fermi tele-
scope [8], and a simulated z = 2 supermassive black hole
merging event that could be observed by LISA [48–50].
There are three cases to consider:

(a) 0 > � � 1 leads to an upper bound on `⇤ of cosmo-
logical size, namely `⇤ < (101 � 104)Mpc. Hence, when
� = �UV, we cannot constrain the deep UV limit of quan-
tum gravity , since `⇤ = O(`Pl). This is expected in QG
theories with �UV < 1 (Tab. I) on the tenet that devia-
tions from classical geometry occur at microscopic scales
unobservable in astrophysics.

(b) 0 < � � 1 = O(1): there is a lower bound on `⇤ of
cosmological size. Therefore, if Eq. (5) is interpreted as
valid at all scales of dimensional flow and � = �UV, this
result rules out the three models not included in the pre-
vious case: -Minkowski spacetime with ordinary mea-
sure and the bicross-product or relative-locality Lapla-
cians and Padmanabhan’s nonlocal model of black holes.

(c) 0 < � � 1 ⌧ 1: Eq. (5) is valid in a near-IR regime
and � = �meso is very close to 1 from above. Using a
Bayesian analysis identical to that of [9] (page 11) where
`⇤ is fixed and the constraint on � is inferred [48], the
resulting upper bound on � is shown in Fig. 1. For the
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and artificial intelligence display correlation functions with anomalous scalings described by
the same mathematics. These systems are characterized by two or more critical exponents �1,
�2, and so on (corresponding to dimensions, in QG and fractal geometry) combined together
as a generalized polynomial `�1 +A`�2 + . . . , where A and each subsequent coe�cient contains
a scale. As far as we know, this is the standard result and there is no need nor evidence for
replacing a finite set of critical exponents �1, �2, . . . , with a one-parameter exponent �(`) and
the polynomial with a single power law `�(`). This can be done for the sake of phenomenology,
but in the context of QG we can do better.

GT:lets discuss toegether the arguments above. also, not too clear whether
dEM is modified or not with respect to standard case

In the case of the luminosity distance, the length formula (5.14) is precisely of the
polynomial form expected in multi-scale systems and it can give a guidance to rewrite d�L in
(5.21) as the sum of an IR and a UV contribution. Reinstating the superscript in dL,
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where the parameters ✏ = O(1), � and `⇤ > l⇤ will be discussed shortly. First, we comment
on the range of validity of (5.23) when � takes values far away (say, 50% or more) from 1.
Assume, then, that |� � 1| > 0.5. Equation (5.23) captures the scaling of the GW amplitude
on two di↵erent regimes, one where dgwL ' demL (IR/GR regime, negligible correction) and
one where dgwL ' "`⇤(demL /`⇤)� (UV/QG regime, dominant correction). Depending on the
magnitude of �, one regime corresponds to the scale of the observer, while the other to
cosmological scales arbitrarily far away from us. If � < 1, then the GR regime is realized for
optical source with demL � `⇤, while if � > 1 it is realized when demL ⌧ `⇤. Whether the GR
regime corresponds to cosmological or local (i.e., solar system, laboratory or atomic) scales
depends on how dimensional flow a↵ects the cosmological observable (5.23). Ultimately, this
question reduces to determining whether � = �UV or � = �meso. The magnitude of the
quantum-gravity correction in (5.23) can change considerably depending on the regime and
on the geometry.

• � = �UV. A binomial such as (5.23) is valid at all scales only if `⇤ is the only intrinsic
scale in spacetime geometry, in which case `⇤ is expected to be very small, certainly
smaller than the electroweak scale and possibly close, or equal to, the Planck length
`Pl. Therefore, for `⇤ = l⇤ = O(`Pl), � = �UV is the critical exponent in the UV and
cosmologically distant sources (demL � `⇤) fall into the IR regime of dimensional flow
(GR limit) if � < 1 and into the UV regime (QG limit) if � > 1. Thus, interesting
deviations from GR are expected only when � > 1. Note that we cannot conclude,
from this reasoning, that at sub-cosmological scales (solar system, laboratory, and so
on) one reaches the UV regime if � < 1 and the IR regime if � > 1, because (5.23)
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with the one in ordinary spacetime with D directions,
where Γ = D/2 − 1. It is valid for any length range
where Γ is approximately constant. Around a homoge-
neous background, for each polarization mode we obtain

h(t, r) ∼ fh(t, r) (ℓ∗/r)
Γ , [fh] = 0 . (3)

Equation (3) schematically describes the distance scaling
of the amplitude of GW radiation emitted by a binary
system and observed in the local wave zone, a region
of space larger than the system size, but smaller than
any cosmological scale. The function fh depends on the
source and on the type of correlation function (advanced
or retarded), but the key point is that we can express h as
the product of a dimensionless function fh and a power-
law distance behavior which is fairly general in QG, since
it is based only on the scaling properties of the measure
and the kinetic term.

Gravitational waves. We now apply these results fo-
cussing on the specific case of gravitational waves prop-
agating over cosmological distances. To investigate the
propagation of GWs on a flat FLRW background, we
work on a conformally flat metric, where t → τ is con-
formal time and r is the comoving distance of the GW
source from the observer. Therefore, we multiply r by the
scale factor a0 = a(τ0) in the right-hand side of Eq. (3).
In order to express Eq. (3) in terms of a physical observ-
able, we assume that the source has an electromagnetic
counterpart. Recall that the luminosity distance of an
object emitting electromagnetic radiation is defined as
the power per flux unit, demL :=

√

L/(4πF) and, on a flat
FLRW background, demL = (1+z)

∫ τ0
τ(z) dτ = a20r/a, where

z = a0/a − 1 is the redshift. We assume that QG cor-
rections to demL are negligible at large scales. Absorbing
redshift factors into fh, we express Eq. (3) as

h(z) ∼ fh(z)

[

ℓ∗
demL (z)

]Γ

. (4)

The details (chirp mass, spin, etc) of the source are all
encoded into the dimensionless function fh(z).
The final step is to generalize relation (4), which is

only valid for a plateau in dimensional flow, to all scales.
We argue that the correct expression to adopt is

h ∝
1

dgwL
, dgwL = demL

[

1 + ε

(

demL
ℓ∗

)γ−1
]

, (5)

with ε = O(1), and γ ≠ 0 is a scale parameter.
In fact, suppose that QG introduces only one funda-

mental length scale ℓ∗ close to the Planck scale. This
is sufficient to trigger a nontrivial dimensional flow and
the scaling of distances takes a universal form of the type
of Eq. (5). In this case, γ = ΓUV. For a scale close to
the end of the flow, the modified relation has again two
contributions [44]: however, in this case γ = Γmeso is a
mesoscopic-scale parameter close to one.

Although the structure of Eq. (5) is expected to be
generic in QG, the coefficient ε cannot be determined uni-
versally, since it depends on the details of the transient
regime. In general, it can be either a random variable
with zero average (in “fuzzy” spacetimes with intrinsic
measurements uncertainty) or a number. Suppose it is
a number: since also ℓ∗ is a free parameter, we can set
the coefficient to be ε = O(1) without loss of general-
ity. However, the case with γ ≈ 1 is subtle since we can
not recover GR unless ε vanishes. This implies that ε
must have a γ dependence: the simplest choice such that
ε(γ ≠ 1) = O(1), ε(γ = 1) = 0, and recovering the pure
power law Eq. (4) on any plateau with γ = Γ, is ε = γ−1.
If we also allow for a sign ambiguity for ε, we are able
to encompass also the case of fuzzy spacetimes where ε
randomly fluctuates around zero (from observations one
can get only upper or lower bounds on the quantum cor-
rection). The net result is Eq. (5) with ε = ±(γ − 1).
Equation (5) is our key result for analyzing the phe-

nomenological consequences of QG dimensional flow for
the propagation of GWs. Its structure resembles the
GW luminosity-distance relation expected in some mod-
els with large extra-dimensions [9, 45, 46], where gravity
classically “leaks” into a higher dimensional space. How-
ever, we emphasize that Eq. (5) is based on a feature of
most QG proposals, dimensional flow, and does not rely
on realizations in terms of classical extra dimensions.
The left-hand side of Eq. (5) is the strain measured

in a GW interferometer. The right-hand side features
the luminosity distance measured for the optical coun-
terpart of the standard siren. Therefore, observations
can place constraints on the two parameters ℓ∗ and γ
in a model-independent way, by constraining the ratio
dgwL (z)/demL (z) as a function of the redshift of the source.
Our analysis is based on two standard sirens, the binary
neutron-star merger GW170817 observed by LIGO-Virgo
and the Fermi telescope [8], and a simulated z = 2 super-
massive black hole merging event that could be observed
by LISA [24–26]. There are three cases to consider:
(a) 0 > γ − 1 leads to an upper bound on ℓ∗ of cos-

mological size, namely ℓ∗ < (101 − 104)Mpc. Hence we
cannot constrain the deep UV limit of quantum gravity,
since ℓ∗ = O(ℓPl). This is expected in QG theories with
ΓUV < 1 (Tab. I) on the tenet that deviations from clas-
sical geometry occur at microscopic scales unobservable
in astrophysics.
(b) 0 < γ − 1 = O(1): there is a lower bound on ℓ∗ of

cosmological size. Therefore, if Eq. (5) is interpreted as
valid at all scales of dimensional flow and γ = ΓUV, this
result rules out the three models not included in the pre-
vious case: κ-Minkowski spacetime with ordinary mea-
sure and the bicross-product or relative-locality Lapla-
cians and Padmanabhan’s nonlocal model of black holes.
(c) 0 < γ − 1 ≪ 1: Eq. (5) is valid in a near-IR regime

and γ = Γmeso is very close to 1 from above. The result-
ing upper bound on γ is shown in Fig. 1. For the smallest
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randomly fluctuates around zero (from observations one
can get only upper or lower bounds on the quantum cor-
rection). The net result is Eq. (5) with ε = ±(γ − 1).
Equation (5) is our key result for analyzing the phe-

nomenological consequences of QG dimensional flow for
the propagation of GWs. Its structure resembles the
GW luminosity-distance relation expected in some mod-
els with large extra-dimensions [9, 45, 46], where gravity
classically “leaks” into a higher dimensional space. How-
ever, we emphasize that Eq. (5) is based on a feature of
most QG proposals, dimensional flow, and does not rely
on realizations in terms of classical extra dimensions.
The left-hand side of Eq. (5) is the strain measured

in a GW interferometer. The right-hand side features
the luminosity distance measured for the optical coun-
terpart of the standard siren. Therefore, observations
can place constraints on the two parameters ℓ∗ and γ
in a model-independent way, by constraining the ratio
dgwL (z)/demL (z) as a function of the redshift of the source.
Our analysis is based on two standard sirens, the binary
neutron-star merger GW170817 observed by LIGO-Virgo
and the Fermi telescope [8], and a simulated z = 2 super-
massive black hole merging event that could be observed
by LISA [24–26]. There are three cases to consider:
(a) 0 > γ − 1 leads to an upper bound on ℓ∗ of cos-

mological size, namely ℓ∗ < (101 − 104)Mpc. Hence we
cannot constrain the deep UV limit of quantum gravity,
since ℓ∗ = O(ℓPl). This is expected in QG theories with
ΓUV < 1 (Tab. I) on the tenet that deviations from clas-
sical geometry occur at microscopic scales unobservable
in astrophysics.
(b) 0 < γ − 1 = O(1): there is a lower bound on ℓ∗ of

cosmological size. Therefore, if Eq. (5) is interpreted as
valid at all scales of dimensional flow and γ = ΓUV, this
result rules out the three models not included in the pre-
vious case: κ-Minkowski spacetime with ordinary mea-
sure and the bicross-product or relative-locality Lapla-
cians and Padmanabhan’s nonlocal model of black holes.
(c) 0 < γ − 1 ≪ 1: Eq. (5) is valid in a near-IR regime

and γ = Γmeso is very close to 1 from above. The result-
ing upper bound on γ is shown in Fig. 1. For the smallest

3

with the one in ordinary spacetime with D directions,
where Γ = D/2 − 1. It is valid for any length range
where Γ is approximately constant. Around a homoge-
neous background, for each polarization mode we obtain

h(t, r) ∼ fh(t, r) (ℓ∗/r)
Γ , [fh] = 0 . (3)

Equation (3) schematically describes the distance scaling
of the amplitude of GW radiation emitted by a binary
system and observed in the local wave zone, a region
of space larger than the system size, but smaller than
any cosmological scale. The function fh depends on the
source and on the type of correlation function (advanced
or retarded), but the key point is that we can express h as
the product of a dimensionless function fh and a power-
law distance behavior which is fairly general in QG, since
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in the local wave zone (a region of space larger than the
system size, but smaller than any cosmological scale),
G(t, r) ⇠ fG(t, r) r��, where fG is dimensionless. This
yields the scaling of h,

h(t, r) ⇠ fh(t, r) (`⇤/r)
� , [fh] = 0 . (3)

Equation (3) describes the distance scaling of the ampli-
tude of GW radiation emitted by a binary system and
observed in the local wave zone, in any regime where
� ⇡ const. fh depends on the source J and on the
type of correlation function (advanced or retarded), but
the key point is that h is the product of a dimensionless
function fh and a power-law distance behavior. This is a
fairly general feature in QG, since it is based only on the
scaling properties of the measure and the kinetic term.

Gravitational waves. We now extend these results to
GWs propagating over cosmological distances. Work-
ing on a conformally flat FLRW background, t ! ⌧
is conformal time, r is the comoving distance of the
GW source from the observer, and r is multiplied by
the scale factor a0 = a(⌧0) in the right-hand side of
Eq. (3). To express Eq. (3) in terms of an observ-
able, we consider GW sources with an electromagnetic
counterpart. The luminosity distance of an object emit-
ting electromagnetic radiation is defined as the power
L per flux unit F, demL :=

p
L/(4⇡F), and it is mea-

sured photometrically. On a flat FLRW background,
demL = (1 + z)

R ⌧0
⌧(z) d⌧ = a2

0
r/a, where z = a0/a � 1 is

the redshift. We assume that QG corrections to demL are
negligible at large scales. Absorbing redshift factors and
all the details of the source (chirp mass, spin, and so on)
into the dimensionless function fh(z), Eq. (3) becomes

h(z) ⇠ fh(z)


`⇤

demL (z)

��
. (4)

The final step is to generalize relation (4), valid only
for a plateau in dimensional flow, to all scales. An exact
calculation is extremely di�cult except in special cases,
but a model-independent approximate generalization is
possible because the system is multiscale (it has at least
an IR and a UV limit, � ! 1 and � ! �UV). In fact,
multiscale systems such as those in multifractal geometry,
chaos theory, transport theory, financial mathematics, bi-
ology and machine learning are characterized by at least
two critical exponents �1 and �2 combined together as a
sum of two terms r�1 + Ar�2 + . . . , where A and each
subsequent coe�cients contain a scale (hence the term
multiscale). In QG, lengths have exactly this behavior,
which has been proven to be universal [40–44] in the flat-
space limit: it must hold also for the luminosity distance
because one should recover such multiscaling feature in
the subcosmological limit demL ! r. Thus,

h /
1

dgwL
,

dgwL
demL

= 1 + "

✓
demL
`⇤

◆��1

, (5)

with " = O(1), and � 6= 0. In the presence of only one
fundamental length scale `⇤ = O(`Pl), Eq. (5) is exact
[42] and � = �UV takes the values in Tab. I. Conversely,
if `⇤ is a mesoscopic scale, then Eq. (5) is valid only near
the IR, close to the end of the flow, and � = �meso ⇡ 1.

The coe�cient " cannot be determined universally,
since it depends on the details of the transient regime,
but we can set " = O(1) without loss of generality be-
cause also `⇤ is a free parameter. However, the case with
� ⇡ 1 is subtle as we cannot recover GR unless " van-
ishes. This implies that " must have a � dependence: the
simplest choice such that "(� 6= 1) = O(1), "(� = 1) = 0,
and recovering the pure power law (4) on any plateau is
" = �� 1. The sign of " is left undetermined to allow for
all possible cases. The result is Eq. (5) with " = ±|��1|.

Equation (5) is our key result for analyzing the phe-
nomenological consequences of QG dimensional flow for
the propagation of GWs. Its structure resembles the
GW luminosity-distance relation expected in some mod-
els with large extra-dimensions [9, 45–47], where gravity
classically “leaks” into a higher dimensional space. How-
ever, we emphasize that Eq. (5) is based on a feature of
most QG proposals, dimensional flow, and does not rely
on realizations in terms of classical extra dimensions.

The left-hand side of Eq. (5) is the strain measured
in a GW interferometer. The right-hand side features
the luminosity distance measured for the optical coun-
terpart of the standard siren. Therefore, observations
can place constraints on the two parameters `⇤ and �
in a model-independent way, by constraining the ratio
dgwL (z)/demL (z) as a function of the redshift of the source.
Our analysis is based on two standard sirens (with asso-
ciated EM counterpart): the binary neutron-star merger
GW170817 observed by LIGO-Virgo and the Fermi tele-
scope [8], and a simulated z = 2 supermassive black hole
merging event that could be observed by LISA [48–50].
There are three cases to consider:

(a) 0 > � � 1 leads to an upper bound on `⇤ of cosmo-
logical size, namely `⇤ < (101 � 104)Mpc. Hence, when
� = �UV, we cannot constrain the deep UV limit of quan-
tum gravity , since `⇤ = O(`Pl). This is expected in QG
theories with �UV < 1 (Tab. I) on the tenet that devia-
tions from classical geometry occur at microscopic scales
unobservable in astrophysics.

(b) 0 < � � 1 = O(1): there is a lower bound on `⇤ of
cosmological size. Therefore, if Eq. (5) is interpreted as
valid at all scales of dimensional flow and � = �UV, this
result rules out the three models not included in the pre-
vious case: -Minkowski spacetime with ordinary mea-
sure and the bicross-product or relative-locality Lapla-
cians and Padmanabhan’s nonlocal model of black holes.

(c) 0 < � � 1 ⌧ 1: Eq. (5) is valid in a near-IR regime
and � = �meso is very close to 1 from above. Using a
Bayesian analysis identical to that of [9] (page 11) where
`⇤ is fixed and the constraint on � is inferred [48], the
resulting upper bound on � is shown in Fig. 1. For the
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smallest QG scales, the bound saturates to

0 < �meso � 1 < 0.02 . (6)

Examining Eq. (2), we conclude that case (c) is realized
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FIG. 1. Upper bounds on � for `⇤ fixed between 1Mpc and
the Planck scale `Pl = 5 ⇥ 10�58 Mpc for the LIGO-Virgo
observed binary neutron-star merger GW170817 (BNS) and
a simulated LISA supermassive black hole (SMBH) merger.

only for geometries with a spectral dimension reaching
dS ! 4 from above. The only theories in our list that do
so are those where �UV > �meso > 1 (the last three
in Tab. I: -Minkowski spacetime with ordinary mea-
sure and bicross-product or relative-locality Laplacians
and Padmanabhan’s model [48]) or �meso > 1 > �UV

(GFT/SF/LQG [27]). However, we exclude observability
of the models with �UV > �meso > 1, since they predict
�meso � 1 ⇠ (`Pl/demL )2 < 10�116 [48]. Thus, only GFT,
SF or LQG could generate a signal detectable with stan-
dard sirens. Here dS runs from small values in the UV,
but before reaching the limit dIR

S
= 4 it overshoots the

asymptote and decreases again: hence �meso > 1 > �UV.
It would be interesting to find realistic quantum states of
geometry giving rise to such a signal, with the construc-
tion of simplicial complexes as in Ref. [27].

Complementary constraints. Dimensional flow is also
influenced by modifications of the dispersion relation

K(�k2) = �`
2�2dk

H
/dS

⇤ k2 + k2d
k
H
/dS of the spin-2 gravi-

ton field, and this fact has been used to impose con-
straints on QG theories exhibiting dimensional flow us-
ing the LIGO-Virgo merging events [11, 13, 14]. How-
ever, the limits obtained this way are weaker than the
ones we have found here because the GW frequency is
much lower than the Planck frequency. One gets either
very weak bounds on `⇤ or, setting `�1

⇤ > 10TeV (LHC
scale), a bound n = dH�2�2� < 0.76 [14], for dmeso

H
⇡ 4

corresponding to �meso � 1 > �0.38. This can constrain
models such as the second and third in Tab. I, but not
those such as GFT/SF/LQG for which Eq. (6) holds.

Additional constraints on the spin-2 sector can arise
from observations of the Hulse–Taylor pulsar [51]. If the
spacetime dimension deviates from four roughly below
scales lpulsar = 106 km ⇡ 10�13 Mpc, then the GW emis-
sion from this source is expected to be distinguishable
from GR. However, it is di�cult to analyze the binary
dynamics and GW emission in higher-dimensional space-
times [52] and it is consequently more complicated to set
bounds from binary pulsar systems. We will thus leave
these investigations for future work. We point out, how-
ever, that at scales below `⇤ = lpulsar (the vertical line in
Fig. 1), our results could be largely improved by stronger
constraints from the dynamics of compact objects.

Finally, stronger but model-dependent bounds can
arise in scenarios that a↵ect other sectors besides the
dynamics of the spin-2 graviton field. To have an idea of
the constraints that can arise when other sectors become
dynamical in QG, we consider a case where the e↵ective
scalar Newtonian potential � ⇠ h00 experiences QG di-
mensional flow: then the bound (6) can be strengthened
by solar-system tests. In fact, Eq. (3) can describe � in a
regime where � is approximately constant, while choos-
ing subhorizon distances demL = r in Eq. (5) we get a
multiscale expression. Thus, in four dimensions
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r
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This result, di↵erent from but complementary [48] to
what found in the e↵ective field theory approach to QG,
applies to the nonperturbative GFT/SF/LQG theories
with � > 1 at mesoscopic scales. Assuming that pho-
ton geodesics are not modified at those scales, GR tests
within the solar system using the Cassini bound impose
��/� < 10�5 [53, 54], implying

0 < �meso � 1 < 10�5, (8)

which is stronger than the limit obtained from GWs.
However, this result relies on model-dependent assump-
tions on the scalar sector, independent of our previous
arguments on the propagation of spin-2 GWs, and should
be taken cum grano salis. We emphasize that in QG the
dynamics of spin-0 fields and the Newtonian potential �
can be far from trivial. Precisely for GFT/SF/LQG, the
classical limit of the graviton propagator is known [55],
but corrections to it and to the Newtonian potential are
not [56]. Therefore, we cannot compare Eq. (7) with the
full theory, nor do we know whether quantum states exist
giving rise to such a correction.

Conclusions. Quantum gravity can modify both the
production and the propagation of gravitational waves.
We obtained the general equation (5) describing model-
independent modifications due to nonperturbative QG
on the GW luminosity distance associated with long dis-
tance propagation of GWs. We have then shown that,
while the deep UV regime of QG cannot be probed by
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smallest QG scales, the bound saturates to
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in Tab. I: -Minkowski spacetime with ordinary mea-
sure and bicross-product or relative-locality Laplacians
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ever, the limits obtained this way are weaker than the
ones we have found here because the GW frequency is
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corresponding to �meso � 1 > �0.38. This can constrain
models such as the second and third in Tab. I, but not
those such as GFT/SF/LQG for which Eq. (6) holds.

Additional constraints on the spin-2 sector can arise
from observations of the Hulse–Taylor pulsar [51]. If the
spacetime dimension deviates from four roughly below
scales lpulsar = 106 km ⇡ 10�13 Mpc, then the GW emis-
sion from this source is expected to be distinguishable
from GR. However, it is di�cult to analyze the binary
dynamics and GW emission in higher-dimensional space-
times [52] and it is consequently more complicated to set
bounds from binary pulsar systems. We will thus leave
these investigations for future work. We point out, how-
ever, that at scales below `⇤ = lpulsar (the vertical line in
Fig. 1), our results could be largely improved by stronger
constraints from the dynamics of compact objects.

Finally, stronger but model-dependent bounds can
arise in scenarios that a↵ect other sectors besides the
dynamics of the spin-2 graviton field. To have an idea of
the constraints that can arise when other sectors become
dynamical in QG, we consider a case where the e↵ective
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by solar-system tests. In fact, Eq. (3) can describe � in a
regime where � is approximately constant, while choos-
ing subhorizon distances demL = r in Eq. (5) we get a
multiscale expression. Thus, in four dimensions

� / �
1

r

✓
1±

��

�

◆
,

��

�
= |� � 1|

✓
r

`⇤

◆��1

. (7)

This result, di↵erent from but complementary [48] to
what found in the e↵ective field theory approach to QG,
applies to the nonperturbative GFT/SF/LQG theories
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ton geodesics are not modified at those scales, GR tests
within the solar system using the Cassini bound impose
��/� < 10�5 [53, 54], implying
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which is stronger than the limit obtained from GWs.
However, this result relies on model-dependent assump-
tions on the scalar sector, independent of our previous
arguments on the propagation of spin-2 GWs, and should
be taken cum grano salis. We emphasize that in QG the
dynamics of spin-0 fields and the Newtonian potential �
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but corrections to it and to the Newtonian potential are
not [56]. Therefore, we cannot compare Eq. (7) with the
full theory, nor do we know whether quantum states exist
giving rise to such a correction.

Conclusions. Quantum gravity can modify both the
production and the propagation of gravitational waves.
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independent modifications due to nonperturbative QG
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tance propagation of GWs. We have then shown that,
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