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In the standard formulation of a gauge theory one starts with a space-time dependent
matter field W(x) which satisfies some matter field equation (e.g. Schrodinger equation,
Klein-Gordon equation, Dirac equation) and requires that this matter field satisfy a local
phase symmetry of the form W¥(z) — e~@W(z). The gauge function, A(x), can depend
on space and time. Along with this local phase symmetry of the matter field. one needs
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to introduce the kinetic momentum/gauge covariant derivative p; — p; — eA;(x) or —

—1eA;(x), where the vector potential obeys A;(x) — A;(x) — édé‘f).
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5 This standard
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construction is done in position space: the matter field, W is a function of position, the
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momentum operator is given as a derivative of position (p; = —i5 - and we take h = 1), and
T

the vector potential and gauge function are functions of space and time coordinates.



However, quantum mechanics can be carried out in momentum space as well with the
matter field being a function of momentum, W(p), and the position operator being given by

r; = i5—. In this construction the momentum operator is just multiplication by p; just as

dpz
the position operator in position space is multiplication by z;. The momentum space gauge

transformation of the matter field should be
U(p) — e "N (p) . (1)

The equivalent of the generalized position/gauge covariant derivative is

w 0 )
Ti—> Ty — g(z (p) or 8}) dp (p) (2)

We have used x; = i a‘; , g is some momentum-space coupling, and Cj(p) is a momentum-
T

space gauge function which must satisfy

1 On(p)
Ci(p) = Ci(p) + ——— (3)
g Ipi
Finally one can construct a momentum-space field strength tensor which is invariant under
i Y & f
just (3). namely ! dC; o dC’j (4)
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This is the p;p; component of the momentum gauge field, field strength tensor. It is the
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analog of x;xr; component of the standard gauge field, field strength tensor £;; =
The 4-vector version of the standard gauge potential and field strength tensor are A; —+ A,
and Fj; — F,,. One needs to make a similar 4-vector /4-tensor extension for the momentum
gauge field and associated field strength tensor via Ci(p) = Cyu(p) and Gy — G .

II. CONNECTION TO NON-COMMUTATIVE SPACE-TIME

A. Constant non-commutativity parameter

In this subsection we point out the connection of the above momentum gauge theory with

non-commutative geometry, by which we mean coordinates obeying

i, x| =10, . (7)

where ©;; is an anti-symmetric, constant rank-2 tensor



The construction from the previous section leads
exactly to this kind of non-commutativity between the coordinates. We begin with equation

(2) and define a generalized, gauge invariant coordinate X; = x; — gC;(p) = 19, —gC;(p). In
its first form this looks like coordinate translation by gC;(p). Calculating the commutator
of X; and X gives

X, X = igGyj . (8)

with the momentum-space field strength G;; defined in (4). Equation (8) is of the form (7)
with ©;; = gGy;.

The result in (8) is reminiscent of the non-commutativity of the covariant derivative
for regular, minimally coupled fields, m; = p; — eA;(z) = —id,, — eA;(x). Calculating the

commutator of m; with 7; gives
[’rTz'? ?Tj] = ’i{iﬂFij = ?-.E’.EijkBk \ (9)

where B¥ = 1 (0, Aj =0, Ai) = —Fk” Fij is the regular magnetic field. Comparing (8) with



(9) one can define a momentum gauge field “magnetic field” as B* = 3¢9, C; — 9, () =

%Ekij G;j. This in turn defines the non-commutation parameter of the spatial coordinates on

the right hand side of (8) to be constant only if the momentum “magnetic” field is constant.
One can easily arrange for such a constant “magnetic” field solution via

. | R
C'=0 ., C'=_tBpt (10)

with B’ being a constant. Taking the curl of (10), using momentum derivatives, and doing
. . . X T " ¢ . 5y - . .

index gymnastics vields e™oP" C* = B — one gets a constant “magnetic” field. This gives
a constant non-commutative tensor 0;; = gG;; = geij;ch i.e. in this way one recovers a

constant non-commutative parameter which is the most common assumption in the literature



A fully 4-vector version of the spatial coordinate non-commutativity in (7) is accomplished

by promoting the 3-Latin indices to 4-Greek indices giving
Ty, 1] =10, | (11)

where ©,, is an anti-symmetric 4-tensor. In conjunction with (11) the 4-tensor version of
(8) becomes

[Xu: XV] — lé'gG,U‘V ; (12)

In order to get a constant ©,, for a component with one space index (e.g. p = 7) and one
time index (i.e. ¥ = 0) we need to have a constant momentum gauge field, “electric” field.

This is accomplished by selecting the momentum gauge field as

CV=-&p . CT=0 (13)

-

The momentum gauge “electric” field is given by Go; = dppC; — 0,:;Cy = E' which is the
sought after constant momentum gauge field “electric” field. Using equations (11) and (12)
this gives the connection between the non-commutativity parameter and momentum gauge

field electric field of ©y = Gy = g&;.



B. Variable non-commutativity parameter

In the previous subsection we looked at momentum gauge field configuration with con-
stant “magnetic” and constant “electric fields” in equations (10) and (13) respectively. In
this subsection we examine momentum gauge field configurations which are variable. These
variable momentum gauge fields then imply a varying of the non-commutativity parameter
via the connection ©,, o< G .

We first write down two common, ordinary gauge field solutions which have gauge fields
that vary with space and time and then construct the varying momentum gauge field analogs.

The two ordinary gauge field solutions we consider are a plane wave and a static points

charge. The Lagrange density for standard gauge fields is Lp = —iF w FHY with FHY =

i .f-'t' 'S 15 | - s
0" AV — 0% AF. The equations of motion from Lg are

‘ Ny AV Ty ALY vV Ny AV s 2 v vy
Oy, (OFF AV — O™ AM) = ATV () — Oy, 0™ AV = AV (1) — V2AY = 4x%(x) ,  (14)



with J¥(x) being a conserved 4-current coming from some matter source, and V2 is the
Laplacian with respect to the position coordinates. In the last line we have taken the
Lorenz gauge 9,,A™ = 0. Let us look at two common solutions to (14): the plane wave

vacuum solution and the point charge solution.

e In vacuum (J¥ = 0) (14) has the solution A” o e!P*=E0V5(p2 — E2/c?) where the

) . . 2 ) . .
o-function enforces the mass shell condition ‘% — 2 and 27 is the polarization vector.

e For a point charge at rest one has the current J¥ = (¢d3(r),0,0.0), which has the

4 and A= 0. since V2 (%) = 4mo(r) .

solution A°

We now examine how the above plays out for the momentum gauge fields. The momentum
cgange field Lagrange density is Lg = —iG’WG“I" with GM = oPrC" — oP»C*. The equations

of motions that follow from this Lagrange density are

Op (O C = O™ CH) = AmJ" (p) = Op, O C¥ = 4nJ"(p) = V,C" = 4nJ"(p) ,  (15)



with J%(p) being a 4-current matter source that is a function of p, and Vj% is the Laplacian
with respect to the momentum. In the last expression we use the momentum space equivalent
of the Lorenz gauge d,, CP* = 0. The current conservation in momentum space reads
aﬁ# Jp# - O-‘

We now repeat the two types of solutions listed above for the standard gauge theory, but

for the momentum gauge theory.

e In vacuum (7% = 0) (15) has solution C¥ oc !P*=E0v§ (22 — 2t2) where the d-function

: " 2 . L
enforces the light-cone condition % = c?, and =¥ is the polarization vector.

e The momentum gauge equivalent of the charge at rest is given by J¥ = (g6(p). 0.0.0),

with C° = % and C' = 0. since V?, (%) = 4md(p).

Notice that the point source in momentum space. that is J” = (g6*(p).0,0.0) is a totally

homogeneous solution in coordinate space, since it is concentrated at zero momentuim, which



means indeed the assumption of a totally homogeneous state. More generally, it is interest-
ing to observe that any current of the form J” = (f(p).0,0,0) , with J° = f(p) being p°
independent, will satisfy the current conservation law of d,, J# = 0. Doing a Fourier trans-
formation on this to coordinate space vields x uj # = (), where J* is the Fourier transforma-
tion of J#. The equivalent statements for a a regular 4-source would be J” = (f(¥),0,0,0),
which satisfies the conservation law 9, J# = 0 or Fourier transforming to momentum space
p#j” = 0.

One can construct other conserved current sources for momentuimn gauge fields that satisty
:ztﬁj H = 0. Starting with any 4-vector V¥, we construct j =V — 1?”1*’”17y/;r2 which is
casily seen to satisfy ;r.uj H = 0. That is, we can start with any vector and subtract its

component in the z# direction and we get a conserved current.



ITI. GENERALIZED LANDAU LEVELS

In this section we work on the case of generalized Landau levels with a particle of mass
m in a constant ordinary magnetic field and constant momentum “magnetic” field. We take
both the ordinary and momentum magnetic field to point in the 3/z-direction. We want to
take these magnetic fields and minimally couple them to the free particle in equation (6).
Applying minimal coupling for both coordinate gauge fields and momentum gauge fields,
leads to p; — p; —eA;, and x; — r; — ¢gC;. Having a constant. ordinary magnetic field and a
constant, momentum magnetic fields in the 3/z-direction can be obtained in the symmetric

gauge with A; and As given by,
| 1 1 _
A=0 . A=ty 4 =ips (16)
2 2
and with €7 and (5 also in the symmetric gauge given by,

1 1



The constant values of the ordinary magnetic field and momentum magnetic field from (16)
and (17) are B and B respectively.

So the equation of motion for the double gauged harmonic oscillator reads,

1 e By 2 1 eBr\>
H = —|p: +— Py — —
2m (p N 2 ) 2m (py 2 )

2 2 2 2 2 2
mw Bp mw Bp mw )
+ = (:r+92“’) +— (y—g“) + L2y 22 (18)

— )

or (we drop the part of the Hamiltonian associated with the kinetic energy and harmonic

oscillator in the z-direction)

= (1 N (WB]Q) (pﬁ * 5 )+(1 T (EBJQ) T 2 4 2) 4 L~ B gaB) . (19)

4 2m  2m Am2w? 2
- . o L . . B . o . S ESI L _ e .
Here L, = xpy — ype, this the angular momentum in the z-direction. and g, = 5 and
go = &5~ are the coupling strengths of the angular momentum to the coordinate magnetic

field 5 and the momentum magnetic field B respectively.



The coupling between B and L, is exactly what one has from the standard analysis of
Landau levels. The coupling between L, and B is a new feature arising from the momentum
gauge fields, but the two coupling terms to L, have a dual symmetry between the regular
magnetic field. B, and momentum gauge “magnetic” field, B.

The first term in (19) shows that the system has now developed a new, effective mass
given by

m

Meff = — . (20)
eff 1+ (gm:B]Q

The effective mass depends on the momentum “magnetic” field and is always less than m

i.e. mepr < m. In addition the second terms in (19) implies a new effective frequency.
2

Taking into account the effective mass in (20) to write this second term in the form #

gives a new effective frequency of

, o (gmwB)*\ [ c? B2 o

Using this new effective frequency and the new effective mass one can define an effective

magnetic field as a mixture between the B and the B fields — B+ g8

Befs =
VIi + 95




This resembles the definition of the physical photon or ZY fields as rotations of two fields
in the standard electroweak model [2-4]. The coupling between this effective magnetic field
and the z-component of angular momentum is now v/ gi + g3 BessL,. The total Hamiltonian

is then,
1

H =
2:‘meff

1
(P + 1) + 5@ergmers (v° +7) + ) 97 + 63 Beyr L (23)

Following [11] one can define creation/annihilation operators in terms of p,. p, and x.y as

h ; h :
ro= _ (a.l + a.l) ;Y =/ ((12 T ag)
2f.u'eff Meff Zaldeff'fn-eff

and (24)

heoerrm : Peoerpm - -
P, — 2.\/ ef_r; eff (a’{_a{) : py:?-\/ ef_; eff (ag_ag)

The creation and annihilation operators obey the usual relationship [a;, a}] = 0;;. With these

definitions we find L, = xp, — yp, = -z'.h(ala; — apa) and the Hamiltonian in (23) becomes

H = hw, ff(a.'{al + a%ag +1) +th\/g} + g3 B.¢ f(ala.; — a.ga{). The first two terms can be seen



IV. MOMENTUM DEPENDENT NON-COMMUTATIVITY PARAMETER

In this section we examine two simple examples where the non-commutativity parameter,
Oy, 1s not a constant but depends on the momentum. Recently, other authors [12] have
considered momentum dependent non-commutative parameters. However, in this work the
inspiration is quite different as it exploits some geometry in momentum space. Also the
non-commutativity parameter in [12] depends on both momentum and position, while our
in our construction below the non-commutativity parameter depends only on momentum,
which is closer to the energy-momentum dependence of masses and couplings in QFT that
one finds from the renormalization group.

The examples we choose are the momentum gauge field version of a capacitor and solenoid,

with the momentum gauge fields being piece-wise constant in different momentum ranges,

leading to different, ©,,’s in these different ranges.



A. Capacitor-type momentum electric field configuration
The standard, infinite parallel plate capacitor has a 4-current source of
J" =(f(2),0,0,0) with f(z)=0[0(z+a)—d(z —a)] (25)

T'his source represents two infinite planes of surface charge o placed perpendicular to the

z-axis at z = Fa. This source gives an electric field of
E,=4r0 for —a<z<a and FE,=0 for |a|] <|z|, (26)

i..e. non-zero between the planes and zero outside the planes,
The momentum gauge field analog of this standard capacitor system has a constant
momentum “electric” field similar to that in equation (13), but it should be restricted in

momentum rather than position as is the case in equation (26). Actually for the momentum



gauge field system we want the inverse of the above standard capacitor — we want the
momentum “electric” field to be zero between the planes (i.e at small momentum) and non-
zero outside the planes (i.e at large momentum). The capacitor-like configuration for the

momentum gauge fields that we want has a 4-current source of

s ) L . o v ) 'S Lord

J" = (f(p),0,0,0) with f(p) = X[(p: + pa) + (pz = pa)]. (27)

The planes are symmetrically placed at p, = £p, and, in contrast to the sources for the

standard capacitor in (25), the momentum planes now have the same “surface charge”, ..

This same “surface charge” set up leads to a momentum “electric” field in the p, direction
given by

E, = Ay for p, > p, . & = —4nX for p, < —pa,
and &, = 0 for —p, <p, < pa. (28)
The momentum “electric” field of (28) is zero between the plates and non-zero outside the

plates, which is the inverse of the standard capacitor (26).



The reason for building our momentum gauge field capacitor system as the inverse of the
normal capacitor is due to the connection between the non-commutativity parameter, ©,,
and the momentum gauge field tensor, G, as given equations (11) and (12) i.e. ©,, = ¢gG,,,.
We want to have a normal position-position commutator (z.e. [X,, X,] = 0) for momenta
near zero (i.e. for —p, < p, < p,) but we want non-commutative space-time effects for
large momenta i.e. we want 0, x G, # 0 for large momenta, |p,| < [p,|. This is
different from the usual non-commutative space-time approach where the non-commutative
parameter is “turned on” for all momentum. Here the non-commutativity, at least for the

Op; components, is turned on only for z-momentum magnitude satistving |p.| < [p:|.



B. Current sheet-type momentum magnetic field

In this subsection we carry out a similar construction as in the preceding subsection,
but for the space/space components of ©,, and & ,,. In this case the standard gauge field
system we want to build a momentum gauge field analog of is two infinite plane sheet
currents located at z = £a. These current sheets are symmetrically placed on the z-axis

around z = 0. The explicit surface currents are

K=+Jy at z=7Fa (29)

This leads a regular magnetic field of
B=4rJ% for —a<:<a and B=0 for |a| < |z] (30)

i.e. the magnetic field is a non-zero constant between the sheets and zero outside the sheets.



The momentum gauge field analog of this is two momentum gauge field current sheets
at the momentum planes, p, = 4+p,. These planes are symmetric around the origin through

the p,-axis. Explicitly the “momentum” current sheets are
K=Jy at p,==%p, (31)

Note that here we have the currents in the same direction, rather than opposite direction
as for the regular gauge field current sheets of (29). The reason for this is the same as for
the momentum gauge field, capacitor-like system of the preceding subsection: we want the

non-commutativity parameter to be zero for momentum in the range —p, < p. < p, and

we want a non-zero non-commutativity parameter for momentum in the range |p,| < |p.|.

Putting this all together the momentum gauge field “magnetic” field is

B = 47 J% for Po < p, and B=—47J% for P, < —Pa

M
I

and 0 for —pa<p, <pa. (32)



The momentum gauge “magnetic” field is a non-zero, constant outside the current sheets
and zero between the current sheets. This implies that the space/space non-commutativity
parameter, ©;;. 1s zero for momenta in the range —p, < p, < pq, while for large magnitude
momenta (i.e. |ps < |pz|) the space/space component 0, = ¢G,, = g€y..B, = £gB is a
non-zero constant. Both this simple example and the example from the preceding subsection
show that one can construct non-commutative space-times where the non-commutativity

only “turns” on at some large enough momentum, rather than being on all the time.



Momentum Gauge Theory and braneworlds
we have considered only

the momentum gauge field version of it. For simplicity let us just consider however the

momentum Klein Gordon equation.
e + mg = () (33)

We now lFourier transform (33) to energy-momentum space, in order to make the connection

with brane-world maodels. the Fourier transform of (33) is
Tt —mtp =10 . (34)
where ¢ is the Fourier transformed scalar field. Fquation (40) is solved by

el !

&= 8z — m* ) (x) (3]



which suggests use of these solutions for brane world scenarios, taking p to run over more
than four dimensions, eq. (35) tells us that nevertheless the wavelunction is restricted
to a lower dimensional surface, like in the brane-world scenarios [18 28] . There will he
restoration of translation type symmetries, since surfaces like z,2* — m* = 0 embeded in a
flat Minkowski space have maximal symmetry and some of these transformations, the quasi
translations, allow us to get us from one point in the manifold to any other point in the

manifold, for example can take the origin #* = 0 to any other point a* |29].

BE. The non-commutative Massive Klein (Gordon Momentum Field Theories

Braneworlds

In order to make the braneworld coordinates non commutative, we minimally couple the

Klein Gordon momentum equation of motion (33) to a momentum gauge field, so that

il i
Ty —+ T, —gChin) =X, or — — — +ig(,(p). (36)
¥ i ! ,I:I i 'ﬁp,u 3;3'-'“ ¥ {p]
S0 now the braneworld manifold becomes
X Xt —m* =10 (37)

With X, being the noncommutative space time coordinate as defined in (36) , Equation

(37) is meant to be understood in a weak sense, that is that (X, X" —m?)¢ = 0.



. The Massive Ihirac Momentum Field Theories Braneworlds

We could use the Dirac momentum equation instead ol the Klein Gordon momentum

equation, that is

(29", —m)ir =10 (38)
multiplying both sides of (38) by (iv#d, + m) and taking into account the +* algebra we

obtain

O, F 1) + mi =10 (39)
which in coordinate space translates into
x, Y — mAh = 1) (40))

which is solved by
¥ = d(za” —m*)F(x) (41)

which again leads to a Brane World scenario.



3., The Non Commutative Massive Dhirac Momentum Field Theories and associ-

ated split Brane worlds

In order to consider the non commutative situation for Dirac Branes, we consider now

the ganged version of (38)

(ty"(a,, +igC,(p)) —m)y =0 (42)

multiplying both sides of (38) by (iv*(d,, + igCL(p)) + m) and taking into account the +*
algebra lollowing similar steps to those usually done with the squaring of the ordinary Dirac

equation, we obtain now,
: . i .
(P, + igCu(p))(F" 4+ igC™ (p) i + Ege:r'”’f Yl +mip =0 (43)

I'rom this, from the presence of the ':—gnf'"f;,“,'t,-i‘ term, we obtain that the brane world now
splits into many braneworlds which depend on the spin state of the Dirae field, so if we were
to look at a given brane world some polarizations or spin states of the Dirac held may be
lost. We notice that the lield strength (7, is the noncommutativity tensor ol the spacetime
coordinates, so that we [ound a coupling that splits the braneworlds which is the coupling

between the noncommutativity tensor and spin.
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