Quantum properties of U(1)-like gauge theory on κ -Minkowski

Kilian HERSENT

July, 14th 2022 COST CA18108 Third Annual Conference - Napoli (Italy)

K. Hersent, P. Mathieu, J.-C. Wallet, "Quantum instability of gauge theories on κ-Minkowski space", Phys. Rev. D 105 (2021) 106013, 10.1103/PhysRevD.105.106013, arXiv:2107.14462

July, 14th 2022

1 / 23

Hersent Kilian COST CA18108 Third Annual Conference - Napoli

Table of Contents

1) The κ -Minkowski space-time

- \bullet The $\kappa\text{-Poincaré}$ algebra
- From the symmetries to the space-time

2 Star product structure on κ -Minkowski

- 3 Gauge theories on κ -Minkowski
 - The twisted derivations
 - Twisted gauge potential and its field strength
 - The gauge invariant action

The one-loop tadpole computation

2 / 23

Table of Contents

1 The κ -Minkowski space-time

- \bullet The $\kappa\mathchar`-Poincaré algebra$
- From the symmetries to the space-time

2) Star product structure on κ -Minkowski

- 3) Gauge theories on κ -Minkowski
 - The twisted derivations
 - Twisted gauge potential and its field strength
 - The gauge invariant action

The one-loop tadpole computation

3 / 23

 \rightarrow Good candidate for a quantum space underlying the description of quantum gravity, at least in some regime.

4 / 23

Hersent Kilian COST CA18108 Third Annual Conference - Napoli July, 14th 2022

¹A. Addazi et al., "Quantum gravity phenomenology at the dawn of the multi-messenger era - A review", Prog. in Part. and Nuc. Phys. **125** (2022) 103948, 10.1016/j.ppnp.2022.103948, arXiv:2111.05659

²L. Freidel and E. R. Livine, "3D Quantum Gravity and Effective Noncommutative Quantum Field Theory", Phys. Rev. Lett. 96 (2006), 10.1103/PhysRevLett.96.221301 parXiv@hep-th#05121#3> = ?) <

 \rightarrow Good candidate for a quantum space underlying the description of quantum gravity, at least in some regime.

Motivations of studying κ -Minkowski:

- Its low energy limit $(\kappa \to +\infty)$ is the Minkowski space.
- A κ-Poincaré-invariant NCFT on κ-Minkowski would easily satisfy Poincaré-invariance at low energies.
- κ -Poincaré realises a Doubly Special Relativity (DSR) giving a testable framework.¹
- In 2+1 dimensions, an effective NCFT containing matter must be $\kappa\text{-Poincaré invariant.}^2$

Hersent Kilian COST CA18108 Third Annual Conference - Napoli July, 14th 2022

¹A. Addazi et al., "Quantum gravity phenomenology at the dawn of the multi-messenger era - A review", Prog. in Part. and Nuc. Phys. **125** (2022) 103948, 10.1016/j.ppnp.2022.103948, arXiv:2111.05659

²L. Freidel and E. R. Livine, "3D Quantum Gravity and Effective Noncommutative Quantum Field Theory", Phys. Rev. Lett. 96 (2006), 10.1103/PhysRevLett.96.221301 CarXiv@hep-th#05121#3 S

<u>Generators:</u>

 $P_0 \text{ (Time translation)}$ $(P_j)_{1 \leq j \leq d} \text{ (Space translations)}$ $(M_j)_{1 \leq j \leq d}$ (Rotations) $(N_j)_{1 \leq j \leq d}$ (Boosts)

5/23

<u>Generators:</u>

 $\begin{array}{ll} P_0 \mbox{ (Time translation)} & (M_j)_{1 \leq j \leq d} \mbox{ (Rotations)} \\ (P_j)_{1 \leq j \leq d} \mbox{ (Space translations)} & (N_j)_{1 \leq j \leq d} \mbox{ (Boosts)} \end{array}$

 $\begin{array}{ll} \underbrace{[M_j,M_k]=i\epsilon_{jk}{}^lM_l, & [M_j,N_k]=i\epsilon_{jk}{}^lN_l, \\ \underline{\text{Commutation relations:}} & [M_j,P_k]=i\epsilon_{jk}{}^lP_l, & [M_j,P_0]=0, \\ & [N_j,N_k]=-i\epsilon_{jk}{}^lM_l, & [P_j,P_k]=0, \end{array}$

$$[P_j, P_0] = 0, \quad [N_j, P_0] = -iP_j, [N_j, P_k] = -i\delta_{jk}P_0.$$

5/23

Hersent Kilian COST CA18108 Third Annual Conference - Napoli July, 14th 2022

The κ -Poincaré algebra

The κ -Poicaré algebra³ with Majid-Ruegg basis⁴:

<u>Generators:</u> $\begin{array}{c} \mathcal{E} = e^{-P_0/\kappa} & (M_j)_{1 \leq j \leq d} \\ (P_j)_{1 \leq j \leq d} & (N_j)_{1 \leq j \leq d} \end{array}$

COST CA18108 Third Annual Conference - Napoli July, 14th 2022 Hersent Kilian 6 / 23

³J. Lukierski, H. Ruegg, A. Nowicki and V. N. Tolstoy, "q-deformation of Poincaré algebra", Phys. Lett. B 264 (1991) 331-338, 10,1016/0370-2693(91)90358-W

⁴S. Majid and H. Ruegg, "Bicrossproduct structure of κ -Poincaré group and non-commutative geometry", Phys. Lett. B 334 (1994) 348-354, 10.1016/0370-2693(94)90699-8 marXiv thep-th #94051297 (0)

The κ -Poincaré algebra

The κ -Poicaré algebra³ with Majid-Ruegg basis⁴:

$$\underbrace{ \begin{array}{l} \underline{\text{Generators:}} \\ \underline{\text{Generators:}} \end{array}}_{\substack{ \substack{ \mathcal{E} = e^{-P_0/\kappa} \\ (P_j)_{1 \leqslant j \leqslant d} \end{array}} \\ (N_j)_{1 \leqslant j \leqslant d} \\ \underline{\text{(}N_j)_{1 \leqslant j \leqslant d}} \\ \underline{\text{(}N_j, M_k] = i\epsilon_{jk}{}^l M_l, \\ \underline{\text{Commutation relations:}} \\ \underline{\text{(}M_j, P_k] = i\epsilon_{jk}{}^l P_l, \\ [N_j, N_k] = -i\epsilon_{jk}{}^l M_l, \end{array}} \\ \begin{array}{l} \underline{\text{(}M_j, N_k] = i\epsilon_{jk}{}^l N_l, \\ \underline{\text{(}N_j, N_k] = -i\epsilon_{jk}{}^l M_l, \end{array}} \\ \end{array}$$

$$[P_j, \mathcal{E}] = 0, \quad [M_j, \mathcal{E}] = 0, \quad [N_j, \mathcal{E}] = -\frac{i}{\kappa} P_j \mathcal{E},$$
$$[N_j, P_k] = -\frac{i}{2} \delta_{jk} \left(\kappa (1 - \mathcal{E}^2) + \frac{1}{\kappa} \vec{P}^2 \right) + \frac{i}{\kappa} P_j P_k.$$

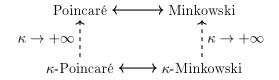
with $\vec{P}^2 = P^k P_k$ and κ a real parameter of mass dimension 1.

³J. Lukierski, H. Ruegg, A. Nowicki and V. N. Tolstoy, "q-deformation of Poincaré algebra", Phys. Lett. B **264** (1991) 331-338, 10.1016/0370-2693(91)90358-W

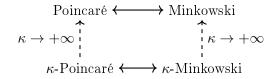
6 / 23

Hersent Kilian COST CA18108 Third Annual Conference - Napoli July, 14th 2022

The κ -Minkowski \mathcal{M}_{κ} space is built as the space having κ -Poincaré \mathcal{P}_{κ} as symmetry group⁵:



The κ -Minkowski \mathcal{M}_{κ} space is built as the space having κ -Poincaré \mathcal{P}_{κ} as symmetry group⁵:



 \mathcal{M}_{κ} is generated by the x^{μ} 's, $0 \leq \mu \leq d$, through

$$[x^j, x^k] = 0, \qquad [x^0, x^j] = \frac{i}{\kappa} x^j. \qquad 1 \leqslant j, k \leqslant d$$

⁵S. Majid and H. Ruegg, "Bicrossproduct structure of κ-Poincaré group and non-commutative geometry", Phys. Lett. B **334** (1994) 348-354, 10.1016/0370-2693(94)906699-& mrXivthep-th≢9405197 → α

Table of Contents

D The κ -Minkowski space-time

- The κ -Poincaré algebra
- From the symmetries to the space-time

2 Star product structure on κ -Minkowski

3) Gauge theories on κ -Minkowski

- The twisted derivations
- Twisted gauge potential and its field strength
- The gauge invariant action

The one-loop tadpole computation

8 / 23

To model a quantum version of a finite dimensional manifold \mathcal{M} , we work at the level of coordinates $f \in \mathcal{C}^{\infty}(\mathcal{M})$ rather than points $x \in \mathcal{M}$. The quantum space is then a general algebra of functions \mathcal{A} with a noncommutative product \star .

To model a quantum version of a finite dimensional manifold \mathcal{M} , we work at the level of coordinates $f \in \mathcal{C}^{\infty}(\mathcal{M})$ rather than points $x \in \mathcal{M}$. The quantum space is then a general algebra of functions \mathcal{A} with a noncommutative product \star .

We take the star product on κ -Minkowski given by⁶

$$(f \star g)(x^{0}, \vec{x}) = \int \mathrm{d}p_{0} \mathrm{d}y^{0} \ e^{-iy^{0}p_{0}} f(x^{0} + y^{0}, \vec{x})g(x^{0}, e^{-p_{0}/\kappa}\vec{x}),$$
$$f^{\dagger}(x^{0}, \vec{x}) = \int \mathrm{d}p_{0} \mathrm{d}y^{0} \ e^{-iy^{0}p_{0}}\overline{f}(x^{0} + y^{0}, e^{-p_{0}/\kappa}\vec{x}).$$

⁶T. Poulain, J.-C. Wallet, "κ-Poincaré invariant quantum field theories with KMS weight", Phys. Rev. D 98 (2018) 025002, 10.1103/PhysRevD.98.025002, arXiv:1801.02215 < □ > < ≥ > < ≥ > > ≥ ∽ Ω

Properties of the star product

Non-cyclic trace

$$\int \mathrm{d}^{d+1}x \ f \star g = \int \mathrm{d}^{d+1}x \ (\mathcal{E}^d \triangleright g) \star f$$

Hersent Kilian COST CA18108 Third Annual Conference - Napoli July, 14th 2022 10 / 23

Properties of the star product

Non-cyclic trace

$$\int \mathrm{d}^{d+1}x \ f \star g = \int \mathrm{d}^{d+1}x \ (\mathcal{E}^d \triangleright g) \star f$$

Gauge invariant action is not straightforward anymore:

$$S = \int \mathrm{d}^{d+1}x \; F^{\dagger} \star F$$

with F the curvature transforming as $F^g = g^{\dagger} \star F \star g$ and $g^{\dagger} \star g = 1$. Then,

$$S^{g} = \int d^{d+1}x \ (F^{g})^{\dagger} \star F^{g} = \int d^{d+1}x \ g^{\dagger} \star F^{\dagger} \star g \star g^{\dagger} \star F \star g$$
$$= \int d^{d+1}x \ (\mathcal{E}^{d} \triangleright g) \star g^{\dagger} \star F^{\dagger} \star F \neq S$$

Hersent Kilian

July, 14th 2022

10 / 23

Table of Contents

D The κ -Minkowski space-time

- The κ -Poincaré algebra
- From the symmetries to the space-time

2) Star product structure on κ -Minkowski

- 3 Gauge theories on κ -Minkowski
 - The twisted derivations
 - Twisted gauge potential and its field strength
 - The gauge invariant action

The one-loop tadpole computation

Noncommutative geometry based on derivations

Differential Geometry	Noncommutative geometry
M	×
$\mathcal{C}^{\infty}(\mathcal{M},\mathbb{R})$	Noncommutative algebra \mathcal{A}
$T_x(\mathcal{M})$ × x $\Gamma(\mathcal{M})$	$\operatorname{Derivations}\operatorname{Der}(\mathcal{A})$

Hersent Kilian COST CA18108 Third Annual Conference - Napoli July, 14th 2022 12 / 23

Derivations

$$X \in \operatorname{Der}(\mathcal{M}_{\kappa})$$
 linear and satisfies the Leibniz rule :
 $X(f \star g) = X(f) \star g + f \star X(g), f, g \in \mathcal{M}_{\kappa}.$

Non-cyclic trace

$$\int \mathrm{d}^{d+1}x \ f \star g = \int \mathrm{d}^{d+1}x \ (\mathcal{E}^d \triangleright g) \star f$$

Hersent Kilian COST CA18108 Third Annual Conference - Napoli July, 14th 2022 13 / 23

æ

Twisted derivations

 $X \in \mathfrak{Der}(\mathcal{M}_{\kappa})$ linear and satisfies the twisted Leibniz rule : $X(f \star g) = X(f) \star g + (\mathcal{E} \triangleright f) \star X(g), f, g \in \mathcal{M}_{\kappa}.$

Non-cyclic trace

$$\int \mathrm{d}^{d+1}x \ f \star g = \int \mathrm{d}^{d+1}x \ (\mathcal{E}^d \triangleright g) \star f$$

Hersent Kilian COST CA18108 Third Annual Conference - Napoli July, 14th 2022 13 / 23

Twisted derivations

 $X \in \mathfrak{Der}(\mathcal{M}_{\kappa})$ linear and satisfies the twisted Leibniz rule : $X(f \star g) = X(f) \star g + (\mathcal{E} \triangleright f) \star X(g), f, g \in \mathcal{M}_{\kappa}.$

Twisted derivations of κ -Minkowski

$$X_0 = \kappa(1 - \mathcal{E}), X_j = P_j, 1 \leq j \leq d.$$

Note: $X_0 = P_0$ at the commutative limit $\kappa \to +\infty$.

The construction of this gauge theory on κ -Minkowski with twisted derivations can be found in: P. Mathieu, J.-C. Wallet, "Gauge theories on κ -Minkowski spaces: Twist and modular operators", JHEP 05 (2020) 115, 10.1007/JHEP05(2020)112, arXiv:2002.02309

Noncommutative geometry based on derivations

Differential Geometry	Noncommutative geometry
$\begin{array}{c c} & \uparrow & \Gamma_x(\mathcal{E}) & \uparrow & \Gamma(\mathcal{E}) \\ & \uparrow & \uparrow & & & \\ & \uparrow & & & & \\ & \uparrow & & & &$	Module $\mathbb E$ over $\mathcal A$
$\Omega^{ullet}(\mathcal{M})$	$\Omega^{ullet}(\mathcal{A})$

15 / 23

Connection and curvature

Consider the module $\mathbb{E} = \mathcal{M}_{\kappa}$, with action $m \triangleleft f = m \star f$.

Expression of a connection and its curvature

$$\nabla_{X_{\mu}}(f) = X_{\mu}(f) + A_{\mu} \star f$$
$$F_{\mu\nu} = X_{\mu}(A_{\nu}) - X_{\nu}(A_{\mu}) + A_{\mu} \star A_{\nu} - A_{\nu} \star A_{\mu}$$

Connection and curvature

Consider the module $\mathbb{E} = \mathcal{M}_{\kappa}$, with action $m \triangleleft f = m \star f$.

Expression of a connection and its curvature

$$\nabla_{X_{\mu}}(f) = X_{\mu}(f) + A_{\mu} \star f$$
$$F_{\mu\nu} = X_{\mu}(A_{\nu}) - X_{\nu}(A_{\mu}) + A_{\mu} \star A_{\nu} - A_{\nu} \star A_{\mu}$$

Gauge transformation

$$A^g_{\mu} = g^{\dagger} \star A_{\mu} \star g + g^{\dagger} \star X_{\mu}(g) \qquad \qquad F^g_{\mu\nu} = g^{\dagger} \star F_{\mu\nu} \star g$$

Connection and curvature

Consider the module $\mathbb{E} = \mathcal{M}_{\kappa}$, with action $m \triangleleft f = m \star f$.

Expression of a connection and its curvature

$$\nabla_{X_{\mu}}(f) = X_{\mu}(f) + A_{\mu} \star f$$
$$F_{\mu\nu} = X_{\mu}(A_{\nu}) - X_{\nu}(A_{\mu}) + A_{\mu} \star A_{\nu} - A_{\nu} \star A_{\mu}$$

Gauge transformation

$$A^g_{\mu} = g^{\dagger} \star A_{\mu} \star g + g^{\dagger} \star X_{\mu}(g) \qquad \qquad F^g_{\mu\nu} = g^{\dagger} \star F_{\mu\nu} \star g$$

Unitary gauge group

$$\mathcal{U}(1) = \left\{ g \in \mathbb{E}^{\times}, g^{\dagger} \star g = g \star g^{\dagger} = 1 \right\}.$$

Hersent Kilian

July, 14th 2022 16 / 23

Twisted connection and curvature

Consider the module $\mathbb{E} = \mathcal{M}_{\kappa}$, with action $m \triangleleft f = m \star f$.

Expression of a twisted connection and its curvature

$$\nabla_{X_{\mu}}(f) = X_{\mu}(f) + A_{\mu} \star f$$
$$F_{\mu\nu} = X_{\mu}(A_{\nu}) - X_{\nu}(A_{\mu}) + (\mathcal{E} \triangleright A_{\mu}) \star A_{\nu} - (\mathcal{E} \triangleright A_{\nu}) \star A_{\mu}$$

Twisted connection and curvature

Consider the module $\mathbb{E} = \mathcal{M}_{\kappa}$, with action $m \triangleleft f = m \star f$.

Expression of a twisted connection and its curvature

$$\nabla_{X_{\mu}}(f) = X_{\mu}(f) + A_{\mu} \star f$$

$$F_{\mu\nu} = X_{\mu}(A_{\nu}) - X_{\nu}(A_{\mu}) + (\mathcal{E} \triangleright A_{\mu}) \star A_{\nu} - (\mathcal{E} \triangleright A_{\nu}) \star A_{\mu}$$

Twisted gauge transformation

$$A^{g}_{\mu} = (\mathcal{E} \triangleright g^{\dagger}) \star A_{\mu} \star g + (\mathcal{E} \triangleright g^{\dagger}) \star X_{\mu}(g) \quad F^{g}_{\mu\nu} = (\mathcal{E}^{2} \triangleright g^{\dagger}) \star F_{\mu\nu} \star g$$

Twisted connection and curvature

Consider the module $\mathbb{E} = \mathcal{M}_{\kappa}$, with action $m \triangleleft f = m \star f$.

Expression of a twisted connection and its curvature

$$\nabla_{X_{\mu}}(f) = X_{\mu}(f) + A_{\mu} \star f$$

$$F_{\mu\nu} = X_{\mu}(A_{\nu}) - X_{\nu}(A_{\mu}) + (\mathcal{E} \triangleright A_{\mu}) \star A_{\nu} - (\mathcal{E} \triangleright A_{\nu}) \star A_{\mu}$$

Twisted gauge transformation

$$A^g_{\mu} = (\mathcal{E} \triangleright g^{\dagger}) \star A_{\mu} \star g + (\mathcal{E} \triangleright g^{\dagger}) \star X_{\mu}(g) \quad F^g_{\mu\nu} = (\mathcal{E}^2 \triangleright g^{\dagger}) \star F_{\mu\nu} \star g$$

Unitary gauge group

$$\mathcal{U}(1) = \left\{ g \in \mathbb{E}^{\times}, g^{\dagger} \star g = g \star g^{\dagger} = 1 \right\}.$$

Hersent Kilian

July, 14th 2022 17 / 23

Noncommutative $\mathcal{U}(1)$ -Yang-Mills-like action

$$S = \int \mathrm{d}^5 x \; F \star F^\dagger$$

which requires that the space-time dimension is 5.

This action satisfies the following properties:

- 1. κ -Poincaré invariance,
- 2. Gauge invariance under the unitary gauge group $\mathcal{U}(1)$,
- 3. The commutative limit $\kappa \to +\infty$ coincide with standard Abelian gauge theory (in (d+1)-dimensional Minkowski space).

Table of Contents

1) The κ -Minkowski space-time

- The κ -Poincaré algebra
- From the symmetries to the space-time

2) Star product structure on κ -Minkowski

- 3) Gauge theories on κ -Minkowski
 - The twisted derivations
 - Twisted gauge potential and its field strength
 - The gauge invariant action

The one-loop tadpole computation

Non-vanishing tadpole

At first, we assume that A is real-valued, *i.e.* $\overline{A} = A$.

$$S = \int K^{\mu\nu} A_{\mu} A_{\nu} + V^{\mu\nu\rho}_{(3)} A_{\mu} A_{\nu} A_{\rho} + V^{\mu\nu\rho\sigma}_{(4)} A_{\mu} A_{\nu} A_{\rho} A_{\sigma}$$

We use the Fadeev-Popov procedure with BRST gauge fixing.

Deformed Lorenz gauge Parametrized temporal gauge
$$X^{\mu}A_{\mu} = 0,$$
 $A_0 = \lambda,$

Comments on the tadpole

Comments:

- Good commutative limit: the tadpole vanish when $\kappa \to +\infty$.
- The tapole is still non-vanishing when relaxing $\overline{A} = A$.
- If matter is added, it does not contribute.
- Non-vanishing tadpole has already been encountered in other quantum spaces like for massless gauge theory⁷ on \mathbb{R}^3_{λ} or for matrix gauge theory on the Moyal plane⁸ \mathbb{R}^2_{θ} .
- The gauge (BRST) symmetry is broken.
- The temporal gauge $A_0 = 0$ is recovered taking $\lambda \to 0$. Doing so the ghosts decouples $\Gamma_1^{\text{gh}}(A_0) = 0$ and the tadpole vanish.

⁷A. Géré, P. Vitale, J.-C. Wallet, "Quantum gauge theories on noncommutative 3-d space", Phys. Rev. D 90 (2014) 045019, 10.1103/PhysRevD.90.045019, arXiv:1312.6145

⁸ P. Martinetti, P. Vitale, J.-C. Wallet, "Noncommutative gauge theories on \mathbb{R}^2_{θ} as matrix models", JHEP 09 (2013) 051, 10.1007/JHEP09(2013)051, arXiv:1303.7185

The vacuum expectation value of the gauge potential is non-vanishing: $\langle A_{\mu} \rangle \neq 0.$

₩

The classical vacuum is unstable against quantum fluctuations (through linear term in A_{μ}).

∜

The theory is expended around a new vacuum $A_{\mu} = \langle A_{\mu} \rangle + \alpha_{\mu}$, with a new field variable α_{μ} , through 1-loop renormalization.

Thanks for your attention !

Hersent Kilian COST CA18108 Third Annual Conference - Napoli July, 14th 2022 23 / 23