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Why Quadratic Gravity?

Fundamental interactions described by the Standard Model: renormaliz-
able quantum field theories!

All such interactions needed “extra” ingredients to be fully understood
(gauge invariance, asymptotic freedom, spontaneous symmetry breaking...).

Quantum gravity as a renormalizable quantum field theory will also need
a particular “variation”.

Can one find any fundamental obstruction? So far our exploration has
provided a negative answer to this question!

Our exploration: Donoghue and Menezes, PRD 97, 056022 (2018); PRD
97, 126005 (2018); PRD 99, 065017 (2019); PRD 100, 105006 (2019); PRL
123, 171601 (2019); JPPNP 115, 103812 (2020); PRD 104, 045010 (2021);
JHEP 11, 010 (2021); 11 Nuovo Cimento 45C, 26 (2022). Menezes, JHEP
03, 074 (2022); 2111.11570 |[hep-th|; Universe 8, 326 (2022).



The distinctive feature of a renormalizable QFT treatment of gravity

e Loops involving matter fields coupled to the metric yield divergences pro-
portional to the second power of the curvatures.

e The fundamental action must have R? terms in order to renormalize the
theory.

e Curvatures involve second derivatives of the metric, so that quadratic
gravity involves metric propagators which are quartic in the momentum.

e In other words, the “variation” quoted above is related to the presence of
quartic propagators.



Quadratic gravity: An overview

Early explorers: Stelle, Fradkin-Tsetlyn, Adler, Zee, Smilga, Tomboulis,
Antoniadis, Hasslacher-Mottola, Lee-Wick, Coleman, Boulware-Gross...

Current explorers: Einhorn-Jones, Salvio-Strumia, Holdom-Ren, Donoghue-
Menezes, Mannheim, Anselmi, Odintsov, Shapiro, Accioly, F. F. Faria,
Narain-Anishetty...

Related work: Lu-Perkins-Pope-Stelle, 't Hooft, Grinstein-O’Connell-Wise...
Action (k? = 327G):
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Here N, = 199/3 and Ngg, is a number that depends on the number
of light degrees of freedom with the usual couplings to gravity, Neg =
Ny + iN r+ %NS + 21/6. With the Standard Model fields plus gravity,
Neg = 325/12.



Lee-Wick theories

e In theories with fundamental curvature-squared terms, the graviton prop-
agator will be quartic in the momentum. This is generally considered to
be problematic. With a quartic propagator in free field theory one expects
negative norm ghost states, using for example (u? > 0) ‘

200!

1 1 1
4 T 2 2 2 .
@designbyhumans

e This is also the case of the so-called Lee-Wick theories (e.g., a higher-
derivative QED). Interactions in such theories make the heavy state un-
stable, with a width which can be calculated in perturbation theory. This
teature is a crucial modification as it removes the ghost from the asymp-
totic spectrum.

e Past experience with Lee-Wick theories indicates that they can be stable
and unitary, although causality does seem to be violated on microscopic
scales of order the width of the resonance.

e The massive states for the Lee-Wick QED model must be heavier than en-
ergies probed by the LHC. The associated micro-causality violation would
then be associated with a time scale of ~~ 1072° seconds. In the gravi-
tational case, the micro-causality violation would be proportional to the
Planck time, 10~*3 seconds.



Stability and energy ﬂow PRD 100, 105006 (2019)

e Fourier transform of the scalar part of the spin-two graviton propagator:

iDs(x) = / (5754 e "Dy (q)

e In the weak coupling limit ¢ < 1

o 28 E(w)Nerr (!Wﬁ!) _ 28 (my)

" K2 320m2k2 e

2 Neff

2
7= 0




Feynman propagator

e Write the propagator as

Dy(t, @) = O(t) Dior () + O(—#) Dppex ()

(0 = 1)

e Forward propagator
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e Propagation backwards in time (¢ < 0)

Bq [elwat=a3)  i(Byt-g7)

Dback(taf) — _7'/ —
(27)3 2w, 2(E,

e In both contributions we see exponential decay, and the reversal of the

energy flow between the two terms.



Retarded propagator

e Such features can also be seen in the retarded propagator: One has the
usual contribution

Dyet(t > 0,%) = DO (¢ > 0, 7)

ret

as well as an unusual term for ¢t < 0
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e The choice of the latter as a classical Green’s function giving the response
to an external source corresponds to the propagation of the effect back-
wards in time:
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e The energy flow associated with the ghost-like terms in the propagator
is different from the usual case. What we normally refer to as “positive . Gl
energy’ 18 seen to be propagating backwards in time rather than the usual e
forward propagation — the Merlin modes. Microcausality violation on [
scales of order of the resonance width.
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Ostrogradsky instabilities?

e Let us explore the following toy model: Donoghue and GM, PRD 104, 045010 (2021)

OO — gox
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and use path integrals to study the theory (x is a normal light field).

e Introduce an auxiliary field » and define a new field ¢ = h — n. The
Lagrangian becomes:

1
L = 5@1@% — ghx2]
1 1
= |50umdn — oM n® — gnx2]

Remnant of the original higher-

e Hence: /' derivative term (i —> -i)
[ = /Dheish/Dne_iS?7
where
4 1 ) 2
S, = | d°x 5(‘9th9 h — ghy
and

1 1
Sy = /4433 (25’w73“77 - §M2772 - gnx2> :



Avoiding Ostrogradsky

The second path integral is an acceptable path integral on its own right.
It is just the complex conjugate of the usual path integral for a massive
particle.

Interpretation: A time-reversed version of the standard path integral.

That form of quantization is designed to also produce positive energy for
the free particle states for these modes.

The ghost is a positive energy particle!
Integrating out the ghost:

ot [ dizd*y 5 gx®(2)iD_r(z—y)9x*(y)

Low-energy limit: A shift

92

2M?

in the coupling \x*. It is suppressed by 1/M? and so cannot overwhelm
the original coupling for large M (Applequist-Carrazonne theorem).

X4

The low-energy effective Lagrangian just contains h and y, and is a normal
field theory. Since h is massless, it will have a normal classical theory.



Ghost resonances

e The theories which we are studying have propagators of the form
?

1D(q) = -
¢ +ie — L5 4+ %(q)

The pole at ¢° = 0 is the stable particle of the theory.
e At one-loop order, the self-energy typically has the form

(q) = — log <_q2 — ie) = {—llog (’q—?) +i79(q2)}
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for some calculable quantity v with dimensions of mass squared.

e A massive resonance for timelike values of ¢° appears. Expanding near

that resonance: |
—1
m
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Observe the minus sign in the numerator — a ghost like resonance. In
addition, the width also comes with the opposite sign from normal.



Formal discussion of unitarity

Unitarity:
(FITLG) = (FIT i)y = i Y (AT (GIT i)

J

In processes that involve loop diagrams, the sum over real intermediate
states can by accomplished by the Cutkosky cutting rules.

What we usually do: look first at the free field theory to identify the free
particles.

Turn on interactions: some of these particles become unstable and no
longer appear as the asymptotic states of the theory. The free field limit
has maslead us.

Should one include such unstable particles in the sums over states required
for unitarity? Veltman says no!

Veltman: unitarity is indeed satisfied by the inclusion of only the asymp-
totically stable states. Cuts are not to be taken through the unstable
particles, and unstable particles are not to be included in unitarity sums.

However, in the narrow-width approximation, the off-resonance produc-
tion becomes small and only resonance production is important. In this
limit a cut taken through the unstable particle with its width set to zero
reproduces the same result as a cut through the decay products.

UNITARITY AND CAUSALITY IN A RENORMALIZABLE
FIELD THEORY WITH UNSTABLE PARTICLES

M. VELTMAN %)



e Unitarity works with the stable particles as external states in the unitarity
sum.

e The ghost resonance does not occur as an external state.

e Normal resonances and ghost resonances can be described in the same
propagator using the coupling to the stable states described by the same

¥(q).

e Veltman’s work: normal resonances satisty unitarity to all orders. Hence
any discontinuity calculated with normal resonances in the intermediate
states, can be converted into a discontinuity with ghost resonances by
using:

. i
WDia) = ¢> —m?+3(q) — ¢* /A

e If the normal resonance satisfies the unitarity relation, the ghost resonance

will also!
Donoghue and GM, PRD 100, 105006 (2019)

Donoghue and GM, PRD 99, 065017 (2019)



Causality in higher-derivative theories
Donoghue and GM, PRL 123, 171601 (2019) (Editor’s suggestion)
Donoghue and GM, Progress in Particle and Nuclear Physics 115, 103812 (2020)

Donoghue and GM, JHEP 11, 010 (2021)

Causality in quantum field theory is defined by the vanishing of field com-
mutators for space-like separations.

However, this does not imply a direction for causal effects. Hidden in our
conventions for quantization is a connection to the definition of an arrow
of causality.

Mixing quantization conventions within the same theory, we get a violation
of microcausality. In such a theory with mixed conventions the dominant
definition of the arrow of causality is determined by the stable states.

In some quantum gravity theories, such as quadratic gravity and possibly
asymptotic safety, such a mixed causality condition occurs.



All gravitational theories display some causal uncertainty due to their spacetime
fluctuations!

Donoghue and Menezes, in preparation

PHYSICAL REVIEW D VOLUME 50, NUMBER 6 15 SEPTEMBER 1994

General relativity as an effective field theory: The leading quantum corrections

John F. Donoghue
Department of Physics and Astronomy, University of Massachusetts, Amherst, Massachusetts 01002
(Received 26 May 1994)

I describe the treatment of gravity as a quantum effective field theory. This allows a natural
separation of the (known) low energy quantum effects from the (unknown) high energy contributions.
Within this framework, gravity is a well-behaved quantum field theory at ordinary energies. In
studying the class of quantum corrections at low energy, the dominant effects at large distance can
be isolated, as these are due to the propagation of the massless particles (including gravitons) of
the theory and are manifested in the nonlocal and/or nonanalytic contributions to vertex functions
and propagators. These leading quantum corrections are parameter-free and represent necessary
consequences of quantum gravity. The methodology is illustrated by a calculation of the leading
quantum corrections to the gravitational interaction of two heavy masses.

e All interaction vertices of GR are energy—dependent and hence organize
an EFT energy expansion. The focus is on the IR.

e Light bending (Bjerrum-Bohr, Donoghue, Holstein, Planté, Vanhove):

g~ AGNM L5 G4 M?n
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+ ... Non-universal!
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See also: Huber, Brandhuber, De Angelis and Travaglini, arXiv:2006.02375v1 [hep-th]



The lightcone 1s not a quantum gravity concept

e The causal structure of events is based on the geometric construction of
light cones. If these undergo quantum fluctuations, so will the causal
structure of the spacetime!

e The phenomenon discussed earlier cannot be described by geodesic motion
as different massless species respond differently. It is then not equivalent to
a quantum modification to the metric. The trajectory of massless particles
is used in flat space to define the lightcone. That cannot be done in this
background again due to the species dependence. Moreover, the quantum
evolution samples the gravitational field over many points in space, not
just along a local geodesic.

e Overall, the non-locality implies that the motion is not purely a geodesic.



Fluctuations in the effective causal structure

JHEP 11 010 (2021)

e When we study the signs of coeflicients of local terms in an effective La-
grangian, we observe that the theory at low energies does not have a
causality problem.

e However, the effect of Merlin modes at low energy is to produce a negative
shift in such coefficients! (n”” L Cg(x)gu(;v>auay¢ =0

e An analysis of the Pauli-Jordan function reveals that it does not vanish for
spacelike separations — a consequence of the non-analyticity of scattering
amplitudes in the presence of Merlin modes.

Pauli-Jordan function:
GW/CVB (CE7 .CC/) — G:VQB( ) G;VQB (ZU CC,)
2
G sz — ') + 7255)@5 (0x)
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Phenomenology

Vertex displacements (Alvarez, Da Roid, Schat, Szynkman)

e Look for final state emergence.

e Before beam colision.

Early arrival of wave packets (Lee-Wick; Coleman; Grinstein, O’Connell,
Wise)

e Wavepacket description of scattering processes.

e Some components arrive at detector early.

Resonance Wigner time delay reversal

. : L)
e Normal resonances counterclockwise on Argand diagram. At ~ 55~ 0
O ,

e Merlin modes are clockwise resonance.

For gravity, all such effects are Planck scale!



Causality uncertainty

e Wavepackets are an idealization.

e Likewise beam construction from previous scattering (and measurement
due to final scattering).

e The timing of scattering will become uncertain!

W

All gravitational theories display some causal uncertainty due to their space-
time fluctuations.



CK duality, BCJ relations and double copy

Bern, Carrasco, Chiodaroli, Johansson and Roiban, 2019

e Gravity amplitudes are notoriously complicated!

e In the mid-80s it was realized that tree-level closed string amplitudes can
be written as sums of products of tree-level open-string amplitudes, the
Kawai-Lewellen-Tye (KLT) relations. In the limit of infinite string tension,
this becomes the field theory statement that the graviton tree amplitudes
can be obtained as a sum of products of gluon scattering amplitudes:

. 2
GraVIty — Gauge TheOl“y . Kawai, Lewellen and Tye, 1986

This is the so-called double copy.

e Tree-level gauge theory amplitudes of gluon scattering could be written in
a form where certain kinematic numerators obey the same Jacobi identities
as the algebraic color factors of the non-abelian gauge group of the theory.
This is called color-kinematics duality. Moreover, if one replaces the color
factors in this representation of the amplitude with the kinematic tfactors
of gauge theory, remarkably the result is the gravity tree amplitude! This
is the BCJ (Bern, Carrasco, and Johansson) double copy.

Bern, Carrasco and Johansson, 2008



Quadratic gravity amplitudes

See also: Bob Holdom, 2021 GM, JHEP 03 (2022) 074
Work in the Einstein frame (Einstein-Weyl theory):

1

2 ryo
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where k* = 327G.

Employ the map:

YM: spontaneously broken!

(Higher-derivative YM) ® YM = Weyl-Einstein
See also: H. Johansson and J. Nohle, 2017; H. Johansson, G. Mogull and F. Teng, 2018

Spectrum: Besides the graviton, dilaton and axion, we also have additional
five physical degrees of freedom associated with a gravitational Merlin,
three states associated with a Merlin 2-form field and a Merlin scalar!

Projection to pure gravity: Simply correlate the helicities in the two gauge-
theory copies. This works in a similar fashion for quadratic gravity: In
order to work with only gravitational Merlins, we take the symmetric
tensor product of gauge-theory Merlins.



3-point amplitudes and propagator

Propagator:

1

1 2
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3-particle amplitudes involving only physical gravitons do not display con-
tributions coming from higher-order derivative terms:

MO 22 3hs] = M2 MEP 1M 202 3hs]

and this result generalizes to an arbitrary number of gravitons by using
BCFW recursion relations.

Amplitudes involving a single gravitational Merlin particle vanishes:

@
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3-particle amplitude involving two gravitational Merlin particles:
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Tree-level Compton Amplitudes: graviton-Merlin scattering

e Amplitudes involving gravitons and Merlins:

Moo (2,171 47+ 3)

M (2,177,471, 3)
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See also: H. Johansson and A. Ochirov, 2019



Triple graviton vertex, brute-force calculation from quadratic gravity (Jordan frame)
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Tree-level Compton Amplitudes: scalar-Merlin scattering

e To evaluate Compton scattering amplitude involving two gravitational
Merlin particles and two matter particles, we apply the BCJ double-copy

prescription:

M(14,2,3,4) =iy -
k

(Sl)ﬁ(82)

k k
Sk

where s = s1 + s9, 2,3 are graviton or Merlin particles, n; are numerators
belonging to the spontaneously broken gauge theory of the double copy
described earlier and s are inverse propagators (they could be massive).

e For the scalar case:
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Loops and Generalized Unitarity

Bern, Dixon, Dunbar and Kosower, 1994, 1995

e The strategy of calculating gluon amplitudes of standard Yang-Mills the-
ory from Grassmann integrations of N' = 4 SYM does not work at loop
level. Now the gluon amplitudes differ in both theories. However, the
tree-level method will still be useful since we are going to use tree-level
amplitudes to reconstruct loop-level amplitudes. This is the so-called gen-
eralized unitarity method

e The knowledge of tree amplitudes can be recycled into information about
loop integrands. The operation of taking loop propagators on-shell is
called a unitarity cut. It originates from the unitarity constraint of the S-
matrix. To see how, recall the unitarity demands that generalized optical
theorem holds, that is, for an arbitrary process a — b one has that

iA(a = b)—i A7 (b a) = — Z/dHfA*(b — F)A(a = )(2r)*6* (a— f)
f

and there is an overall delta function assuring energy-momentum conser-

vation.
Golden goal: Understand deeply the analytic properties of the S-matrix!



How to implement the unitarity method in the presence of unstable particles
GM, arXiv:2111.11570 [hep-th]

e In order to implement the technique in a straightforward way, one must
ensure that external momentum configurations of an amplitude allows the
unstable propagator to become resonant. In this case the cut unstable
propagator will have the correct cut structure to guarantee that unitarity
is satisfied.

e On the other hand, there is also other situation that the method can be
applied without further issues: In the narrow-width approximation! Near
the resonance, we can treat the resonant particle as being on-shell. This
means that in this limit a cut taken through the unstable particle with its
width set to zero reproduces the same result as a cut through the decay
products.

e In other words, for unstable particles the present practice of the unitarity
method is valid if the assumption of a resonant unstable propagator is
warrant. This can happen depending on external momentum configura-
tions or else one should verify whether the narrow-width approximation
holds in the particular case under studied.



Color-ordered one-loop amplitude associated with the process gt gt — gT g™

GM, JHEP 03 (2022) 074

Unitarity method produces
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One-loop amplitude for the graviton scattering process h™Th™t — ATThATT

Unitarity method produces
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Leading Singularities

e Generalized unitarity explores discontinuities and these can be realized
as contour integrals. Every time a residue is computed one explores a
higher codimension singularity. The maximal number of residues at L-
loop order in four dimensions is 4L. Taking 4L residues gives rise to
the highest codimension singularity and its discontinuity is known as the
leading singularity.

e Leading singularities are computed using only compact contours and are
therefore finite. Also, just as unitarity cuts, leading singularities only
involve physical states and are gauge invariant!

e Leading singularities, which are computed as multidimensional residues,
generically have support outside the physical region of integration. There-
fore they are not naturally located on any of the regions mentioned above.

But they can also be useful to study observables associated with classical scattering!

See: Cachazo and Guevara, 2017; Guevara, 2017; Guevara, Ochirov and Vines, 2019; GM and Sergola, arXiv:2205.11701


https://arxiv.org/abs/2205.11701

Leading singularities in higher-derivative theories

GM, Universe 8, 326 (2022)

e Since leading singularities are generalizations of unitarity cuts, the pres-
ence of unstable Merlin modes in higher-derivative theories could engender
1Ssues.

e In any case, leading singularities are still well defined and accordingly
they are able to capture relevant information on the analytic structure of
amplitudes in such higher-derivative theories.

e Scattering of identical matter particles ¢ — @@ interacting gravitation-
ally:

1

d40
sl 7{
h hl,h3§+,-_ r (2m)* (02 —m?) (£ + p})*(£ — p1)?

X Ms(1,0, 00 My(—€,1, —03) My (2,057 07, 2")

for gravitons running in the loop, whereas for Merlins we find that
d* —1 —1

Ls§) = 7{
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where m is the mass of the scalar particles.



Outlook

Quadratic gravity is a renormalizable quantum field theory that makes sense!

Essential features:

e Massless graviton identified through pole in propagator.

e Ghost resonance is unstable — it does not appear in spectrum.
e Formal quantization schemes exist but not needed.

e Stable under perturbations.

e Unitarity with only stable asymptotic states.

e LW contour as shortcut via narrow width approximation.

e Causality uncertainty near Planck scale.




