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Why Quadratic Gravity?

• Fundamental interactions described by the Standard Model: renormaliz-
able quantum field theories!

• All such interactions needed “extra” ingredients to be fully understood
(gauge invariance, asymptotic freedom, spontaneous symmetry breaking...).

• Quantum gravity as a renormalizable quantum field theory will also need
a particular “variation”.

• Can one find any fundamental obstruction? So far our exploration has
provided a negative answer to this question!

• Our exploration: Donoghue and Menezes, PRD 97, 056022 (2018); PRD
97, 126005 (2018); PRD 99, 065017 (2019); PRD 100, 105006 (2019); PRL
123, 171601 (2019); JPPNP 115, 103812 (2020); PRD 104, 045010 (2021);
JHEP 11, 010 (2021); Il Nuovo Cimento 45C, 26 (2022). Menezes, JHEP
03, 074 (2022); 2111.11570 [hep-th]; Universe 8, 326 (2022).



The distinctive feature of a renormalizable QFT treatment of gravity

• Loops involving matter fields coupled to the metric yield divergences pro-
portional to the second power of the curvatures.

• The fundamental action must have R2 terms in order to renormalize the
theory.

• Curvatures involve second derivatives of the metric, so that quadratic
gravity involves metric propagators which are quartic in the momentum.

• In other words, the “variation” quoted above is related to the presence of
quartic propagators.



Quadratic gravity: An overviewQuadratic gravity: An overview
• Early explorers: Stelle, Fradkin-Tsetlyn, Adler, Zee, Smilga, Tomboulis,

Hasslacher-Mottola, Lee-Wick, Coleman, Boulware-Gross...

• Current explorers: Einhorn-Jones, Salvio-Strumia, Holdom-Ren, Donoghue-
Menezes, Mannheim, Anselmi, Odintsov-Shapiro, Narain-Anishetty...

• Related work: Lu-Perkins-Pope-Stelle, ‘t Hooft, Grinstein-O’Connell-Wise...

• Action (2 = 32⇡G):
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Here Nq = 199/3 and Ne↵, is a number that depends on the number
of light degrees of freedom with the usual couplings to gravity, Ne↵ =
NV + 1

4NF + 1
6NS + 21/6. With the Standard Model fields plus gravity,

Ne↵ = 325/12.

Donoghue and GM, PRD 97, 126005 (2018) 
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Lee-Wick theories
• In theories with fundamental curvature-squared terms, the graviton prop-

agator will be quartic in the momentum. This is generally considered to

be problematic. With a quartic propagator in free field theory one expects

negative norm ghost states, using for example (µ2 > 0)

1

q2 � q4

µ2

=
1

q2
� 1

q2 � µ2

• This is also the case of the so-called Lee-Wick theories (e.g., a higher-

derivative QED). Interactions in such theories make the heavy state un-

stable, with a width which can be calculated in perturbation theory. This

feature is a crucial modification as it removes the ghost from the asymp-
totic spectrum.

• Past experience with Lee-Wick theories indicates that they can be stable

and unitary, although causality does seem to be violated on microscopic

scales of order the width of the resonance.

• The massive states for the Lee-Wick QED model must be heavier than en-

ergies probed by the LHC. The associated micro-causality violation would

then be associated with a time scale of ⇠⇠ 10
�25

seconds. In the gravi-

tational case, the micro-causality violation would be proportional to the

Planck time, 10
�43

seconds.

@designbyhumans



Stability and energy flow

• Fourier transform of the scalar part of the spin-two graviton propagator:

iD2(x) =

Z
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PRD 100, 105006 (2019)

See also:  
- Salvio, PRD (2019) 
- Fabris, Pelinson, Salles, Shapiro, JCAP (2012) 
- Reis, Shapiro, Shapiro, PRD (2019) 
- Alessia Platania, arXiv:2206.04072.



Feynman propagator

• Write the propagator as

D2(t, ~x) = ⇥(t)Dfor(x) +⇥(�t)Dback(x)

(x0 = t)

• Forward propagator
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• Propagation backwards in time (t < 0)
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• In both contributions we see exponential decay, and the reversal of the
energy flow between the two terms.



Retarded propagator

q0

xx

• Such features can also be seen in the retarded propagator: One has the

usual contribution

Dret(t > 0, ~x) = D(0)
ret (t > 0, ~x)

as well as an unusual term for t < 0
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• The choice of the latter as a classical Green’s function giving the response

to an external source corresponds to the propagation of the e↵ect back-

wards in time:

hµ⌫(t, x) =

Z
d3x0

Z t
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• The energy flow associated with the ghost-like terms in the propagator

is di↵erent from the usual case. What we normally refer to as “positive

energy” is seen to be propagating backwards in time rather than the usual

forward propagation – the Merlin modes. Microcausality violation on

scales of order of the resonance width.
crystalinks.com
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Ostrogradsky instabilities?
• Let us explore the following toy model:

L =
1
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and use path integrals to study the theory (� is a normal light field).

• Introduce an auxiliary field ⌘ and define a new field � = h � ⌘. The

Lagrangian becomes:
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Remnant of the original higher-
derivative term (i —> -i)

Donoghue and GM, PRD 104, 045010 (2021) 



Avoiding Ostrogradsky
• The second path integral is an acceptable path integral on its own right.

It is just the complex conjugate of the usual path integral for a massive
particle.

• Interpretation: A time-reversed version of the standard path integral.

• That form of quantization is designed to also produce positive energy for
the free particle states for these modes.

• The ghost is a positive energy particle!

• Integrating out the ghost:

ei
R
d4xd4y 1

2 g�
2(x)iD�F (x�y)g�2(y)

• Low-energy limit: A shift
g2

2M2
�4

in the coupling ��4. It is suppressed by 1/M2 and so cannot overwhelm
the original coupling for large M (Applequist-Carrazonne theorem).

• The low-energy e↵ective Lagrangian just contains h and �, and is a normal
field theory. Since h is massless, it will have a normal classical theory.



Ghost resonances

Merlin modes!

• The theories which we are studying have propagators of the form

iD(q) =
i

q2 + i✏� q4

M2 + ⌃(q)
.

The pole at q2 = 0 is the stable particle of the theory.

• At one-loop order, the self-energy typically has the form
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for some calculable quantity � with dimensions of mass squared.

• A massive resonance for timelike values of q2 appears. Expanding near

that resonance:

iD(q)

����
q2⇠M2

⇠ �i
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.

Observe the minus sign in the numerator – a ghost like resonance. In

addition, the width also comes with the opposite sign from normal.



Formal discussion of unitarity
• Unitarity:

hf |T |ii � hf |T †|ii = i
X

j

hf |T †|jihj|T |ii

• In processes that involve loop diagrams, the sum over real intermediate
states can by accomplished by the Cutkosky cutting rules.

• What we usually do: look first at the free field theory to identify the free
particles.

• Turn on interactions: some of these particles become unstable and no
longer appear as the asymptotic states of the theory. The free field limit

has mislead us.

• Should one include such unstable particles in the sums over states required
for unitarity? Veltman says no!

• Veltman: unitarity is indeed satisfied by the inclusion of only the asymp-
totically stable states. Cuts are not to be taken through the unstable
particles, and unstable particles are not to be included in unitarity sums.

• However, in the narrow-width approximation, the o↵-resonance produc-
tion becomes small and only resonance production is important. In this
limit a cut taken through the unstable particle with its width set to zero
reproduces the same result as a cut through the decay products.

Unitarity:

Who counts in unitarity relation?
- Veltman 1963 
- only stable particles count

- they form asymptotic Hilbert space
- do not make any cuts on unstable resonances

This looks funny from free-field quantization
- interaction removes states from the Hilbert space

Also, we know some states are almost stable 
- can treat them as essentially stable
- Narrow Width Approximation (NWA) 

Nevertheless, Veltman is correct



• Unitarity works with the stable particles as external states in the unitarity

sum.

• The ghost resonance does not occur as an external state.

• Normal resonances and ghost resonances can be described in the same

propagator using the coupling to the stable states described by the same

⌃(q).

• Veltman’s work: normal resonances satisfy unitarity to all orders. Hence

any discontinuity calculated with normal resonances in the intermediate

states, can be converted into a discontinuity with ghost resonances by

using:

6

We can take this last model and add an auxiliary field in order to accomplish at the Lagrangian level the factorization
of the propagator that one sees using partial fraction relations. To do this we introduce the auxiliary field ⌘, using
the Lagrangian
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Integrating out ⌘ returns us to our original Lagrangian, Eq. 20. Now if we perform a field redefinition � = h � ⌘, a
little algebra turns this into
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Note in particular the overall minus sign in the second line.
From these examples, one is able to see that all theories with four derivative kinetic energies, ⇠ 2�2� will fall

into the class of theories which we are discussing, as long as one avoids the tachyonic pole at space-like momenta. The
logic is as follows. Ordinary resonances arise when there is a coupling to the light states of the theory. The structure
of the resonance propagator is

iDr(q) =
i

q2 �m2 + ⌃(q)
. (24)

The imaginary part of the self energy must be positive, that is

Im[⌃(q)] = �(q), ✓(q2) > 0 (25)

such that the resonance mass m2�Re[⌃]� iIm[⌃] = (M � i�/2)2. Now if the Lagrangian is modified with a 22 term,
the propagator gets modified to be

iD(q) =
i

q2 �m2 + ⌃(q)� q4/⇤2
(26)

where the sign on the new term has been chosen to avoid the tachyonic pole. If we set ⇤ ! 1, we get a normal
resonance where the near the pole the propagator has the structure given in Eq. 6 with Z = +1. However for large
finite ⇤ there is inevitably a high mass resonance, when q2 ⇠ ⇤2. For illustration we can neglect m2 and Re[⌃], and
look at the structure near this resonance, such that

iD(q) =
i
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⇤2 [⇤2 � q2 + i�(q)(⇤2/q2)]
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The residue at this pole is always negative - it is ghost-like. In addition, the sign of the width is always opposite from
normal. That is, we find the correlated negative signs which we described in Eq. 6 with Z = �1. Indeed, for both
finite m and ⇤, there will be resonances of both types contained in the same propagator. In both cases, the imaginary
part of the self-energy arising from the coupling to stable states is the same, yet it manifests itself di↵erently near the
resonance because of the sign of the q4 term.

3. STABILITY AND ENERGY FLOW

Because of the change in sign in front of the width in the denominator of the propagator, one might worry that
there are exponentially growing modes. We show here that this is not the case. The stability of quadratic gravity
has also been addressed using the equations of motion in curved backgrounds, although without including the decay
width. The conclusion of [39] has been that the theory is stable in a curved background, at least for curvatures that
are below the ghost mass. In [40] this was extended as at least metastability to curvatures beyond the scale of the

• If the normal resonance satisfies the unitarity relation, the ghost resonance
will also!

Donoghue and GM, PRD 100, 105006 (2019)

Donoghue and GM, PRD 99, 065017 (2019) 



Causality in higher-derivative theories

• Causality in quantum field theory is defined by the vanishing of field com-

mutators for space-like separations.

• However, this does not imply a direction for causal e↵ects. Hidden in our

conventions for quantization is a connection to the definition of an arrow

of causality.

• Mixing quantization conventions within the same theory, we get a violation

of microcausality. In such a theory with mixed conventions the dominant

definition of the arrow of causality is determined by the stable states.

• In some quantum gravity theories, such as quadratic gravity and possibly

asymptotic safety, such a mixed causality condition occurs.

Donoghue and GM, PRL 123, 171601 (2019) (Editor’s suggestion)

Donoghue and GM, Progress in Particle and Nuclear Physics 115, 103812 (2020)

Donoghue and GM, JHEP 11, 010 (2021)

Alessia Platania, arXiv:2206.04072



All gravitational theories display some causal uncertainty due to their spacetime 
fluctuations!
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General relativity as an efFective field theory: The leading quantum cerrectiens

John F. Donoghue
Department of Physics and Astronomy, University of Massachusetts, Amherst, Massachusetts 0100'.

(Received 26 May 1994)

I describe the treatment of gravity as a quantum effective field theory. This allows a natural
separation of the (known) low energy quantum efFects from the (unknown) high energy contributions.
Within this framework, gravity is a well-behaved quantum field theory at ordinary energies. In
studying the class of quantum corrections at low energy, the dominant effects at large distance can
be isolated, as these are due to the propagation of the massless particles (including gravitons) of
the theory and are manifested in the nonlocai and/ or nonanalytic contributions to vertex functions
and propagators. These leading quantum corrections are parameter-free and represent necessary
consequences of quantum gravity. The methodology is illustrated by a calculation of the leading
quantum corrections to the gravitational interaction of two heavy masses.

PACS number(s): 04.60.Ds, 11.10.Lm

I. INTRODUCTION
We are used to the situation where our theories are

only assumed to be provisional. They have been tested
and found to be valid over a limited range of energies
and distances. However, we do not know that they hold
in more extreme situations. There are many examples of
theories which have been superseded by new theories at
higher energies, and we expect this process to continue.
It is interesting to look at the incompatibility of general
relativity and quantum mechanics in this light. It would
not be surprising if there are new ingredients at high
energy in order to have a satisfactory theory of quantum
gravity. However, are there any conaicts between gravity
and quantum mechanics at the energy scales that are
presently accessible? If there are, it would be a major
concern because it would mean our present theories are
wrong in ways which cannot be blamed on new physics
at high energy.
There is an apparent technical obstacle to addressing

the compatibility of quantum mechanics and gravity at
present energies, i.e., the nonrenormalizability of quan-
tum gravity. Quantum Huctuations involve all energy
scales, not just the energy of the external particles. Per-
haps our lack of knowledge of the true high energy theory
will prevent us &om calculating quantum effects at low
energy. In the class of renormalizable field theories, low-
energy physics is shielded &om this problem because the
high-energy effects occur only in the shifting of a small
number of parameters. When these parameters are mea-
sured experimentally, and results expressed in terms the
measured values, all evidence of high-energy scales dis-
appears or is highly suppressed [1]. However in some
nonrenormalizable theories, the infIuence of high energy
remains. For example, in the old Fermi theory of weak
interactions, the ratio of the neutron decay rate to that of
the muon has a contribution which diverges logarithmi-
cally at one loop. It is not the divergence itself which is
the problem, as the ratio becomes finite in the standard
model (with a residual efFect of order n ln M&~). More

bothersome is the sensitivity to the high-energy theory-
the low-energy ratio depends on whether the scale of the
new physics is Mz or 1Q GeV.
However, quantum predictions can be made in non-

renormalizable theories. The techniques are those of ef-
fective field theory, which has been assuming increasing
importance as a calculational methodology. The calcu-
lations are organized in a systematic expansion in the
energy. Effects of the high-energy theory again appear in
the form of shifts in parameters which however are deter-
mined &om experiment. To any given order in the energy
expansion there are only a finite number of parameters,
which can then be used in making predictions. Using the
techniques of effective field theory, it is easy to separate
the effects due to low-energy physics &om those of the
(unknown) high-energy theory. Indeed, even the phras-
ing of the question raised in the opening paragraph is a
by-product of the way of thinking about effective field
theory.
General relativity fits naturally into the &amework of

effective field theory. The gravitational interactions are
proportional to the energy, and are easily organized into
an energy expansion. The theory has been quantized
on smooth enough background metrics [2—4]. We will
explore quantum gravity as an effective field theory and
find no obstacle to its successful implementation.
In the course of our study we will find a class of quan-

tum predictions which are parameter-Bee (other than
Newton's constant G) and which dominates over other
quantum predictions in the low-energy limit. These
"leading quantum corrections" are the first modifications
due to quantum mechanics, in powers of the energy or
inverse factors of the distance. Because they are inde-
pendent of the eventual high-energy theory of gravity,
depending only on the massless degrees of &eedom and
their low-energy couplings, these are true predictions of
quantum general relativity.
The plan of the paper is as follows. In Sec. II, we

briefIy review general relativity and its quantization. Sec.
III is devoted to the treatment of general relativity as an

0556-2821/94/50(6)/3874(15)/$06. 00 SO 3874 1994 The American Physical Society
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The light bending analysis is now straightforward and involves determining the sta-

tionary phase of the exponent, which can be argued to dominate the momentum space

integration, via

∂

∂b
(−q · b+ χ1(b) + χ2(b) + · · · ) = ∂

∂b
(q b+ χ1(b) + χ2(b) + · · · ) = 0 . (5.29)

Using q = 2E sin(θ/2) this condition reads

2 sin
θ

2
" θ = − 1

E

∂

∂b
(χ1(b) + χ2(b)) , (5.30)

and yields
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b
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(
8buS + 9− 48 log
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2b0

)
!G2

NM

πb3
+ . . . . (5.31)

Here 1/b0 in the logarithm is the infrared cutoff which removes the IR singularities of the

amplitude. We see that the eikonal approximation leads to the expected classical general

relativity contributions, in agreement with the next-to-leading correction of [55] and [57],

as well as producing the leading quantum correction. Treating the quantum effect using

the eikonal procedure, we recover the results of [22] derived with a semiclassical potential

method.

The quantum effect has the power-law dependence in impact parameter as the classi-

cal post-post-Newtonian contribution. This second post-Newtonian contribution of order

G3
NM

3/b3 arises as a classical piece from two-loop amplitudes with momentum dependence

q0/!. These two contributions lead to very distinct analytic structure to the S-matrix and

are easily separated. The classical corrections is much larger than the quantum effect by

the ratio the square of the Schwarzschild radius to the Planck length G2
NM

2 # !GN.

5.4 Bending via geometrical optics

There is an equivalence between the eikonal method described above and the semiclassical

potential method which we used in [22]. In order to elucidate this, it is useful to consider

the bending in terms of a wave picture of light propagation. Since the wavelength of the

light is much smaller than size of the massive scalar object (Sun or black hole) around

which the bending occurs, the analysis can be done using the methods of geometrical (ray)

optics. This formalism is developed in many places, e.g. [58], and leads to the equation

d

ds
n
dr

ds
= ∇n , (5.32)

where n is the index of refraction and r(s) is the trajectory as a function of the path length

s. For light we can write ds " cdt so that eq. (5.32) becomes

1

c2
d2r

dt2
=

1

n
∇n . (5.33)

In our case, at leading order, the index of refraction is determined from the general

relativity/optical-mechanical analogy [59] which, for a line element

ds2 = A(r)dt2 −B(r) dr2 + r2(dθ2 + sin2 θdφ2) , (5.34)

– 15 –

• All interaction vertices of GR are energy–dependent and hence organize

an EFT energy expansion. The focus is on the IR.

• Light bending (Bjerrum-Bohr, Donoghue, Holstein, Planté, Vanhove):

Non-universal!

See also: Huber, Brandhuber, De Angelis and Travaglini, arXiv:2006.02375v1 [hep-th]  

Donoghue and Menezes, in preparation



The lightcone is not a quantum gravity concept

• The causal structure of events is based on the geometric construction of

light cones. If these undergo quantum fluctuations, so will the causal

structure of the spacetime!

• The phenomenon discussed earlier cannot be described by geodesic motion

as di↵erent massless species respond di↵erently. It is then not equivalent to

a quantum modification to the metric. The trajectory of massless particles

is used in flat space to define the lightcone. That cannot be done in this

background again due to the species dependence. Moreover, the quantum

evolution samples the gravitational field over many points in space, not

just along a local geodesic.

• Overall, the non-locality implies that the motion is not purely a geodesic.



Fluctuations in the effective causal structure
JHEP 11 010 (2021)

• When we study the signs of coe�cients of local terms in an e↵ective La-

grangian, we observe that the theory at low energies does not have a

causality problem.

• However, the e↵ect of Merlin modes at low energy is to produce a negative

shift in such coe�cients!

• An analysis of the Pauli-Jordan function reveals that it does not vanish for

spacelike separations – a consequence of the non-analyticity of scattering

amplitudes in the presence of Merlin modes.

Pauli-Jordan function:
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Phenomenology
Vertex displacements (Alvarez, Da Roid, Schat, Szynkman)

• Look for final state emergence.

• Before beam colision.

Early arrival of wave packets (Lee-Wick; Coleman; Grinstein, O’Connell,

Wise)

• Wavepacket description of scattering processes.

• Some components arrive at detector early.

Resonance Wigner time delay reversal

• Normal resonances counterclockwise on Argand diagram.

• Merlin modes are clockwise resonance.

For gravity, all such e↵ects are Planck scale!

Phenomenology
Lee, Wick
Coleman
Grinstein, O’Connell, Wise
Alvarez, Da Roid, Schat, Szynkman

Vertex displacements: (ADSS)
- look for final state emergence
- before beam collision

Form wavepackets – early arrival (LW, GOW)
- wavepacket description of scattering process
- some components arrive at detector early

Resonance Wigner time delay reversal
- normal resonaces counterclockwise on Argand diagram

- Merlin modes are clockwise resonance

For gravity, all are Planck scale
- no conflict with experiment



Causality uncertainty

5

observation, as they are proportional to the Planck scale,
which as a time unit is tp ⇠ 10�43 sec.

FIG. 2: The first scattering process on the left contains some
causality violation, which limits our ability to be precise about
the causal properties of the second scattering process on the
right.

Moreover, there is an intrinsic causal uncertainty in
these tests also. The ideas of wavepackets or precisely de-
fined beams and detectors are idealized concepts. Form-
ing a wavepacket or producing a beam are themselves
done by previous scattering processes. In a theory with
mixed causal arrows, these will also have their causal
mismatches. An example is illustrated in Fig. 2. Much
like the usual uncertainty principle limits our ability to
see the early vertex in Fig. 1b, the previous mixed
causal processes will limit our ability to produce a sharp
wavepacket or beam to test the nature of causality vio-
lation.

The arrow of causality is a more precise concept than
the arrow of time. Causality is a specific microscopic
phenomenon, a property of the fundamental scattering
amplitudes. Discussions of the arrow of time often state
that the microscopic laws of physics are the same with
time running forwards or backwards. That is true for the
basis of classical physics, which follows from the mini-
mization of a Lagrangian. However as discussed above it
is not true for quantum physics if you also include the
quantization procedure in the phrase “laws of physics”.
If we define our quantum theory by a path integral with
e
iS this defines the direction of the arrow of causality. To
reverse the arrow of causality, we would have to define
a di↵erent quantum theory using e

�iS . This is because
the time reversal operation is anti-unitary. Reversing the
arrow of causality will also reverse the thermodynamic
arrow of time because the increase of entropy occurs in
the direction that causal processes occur.

Moreover, it is important to recognize that the arrow
of causality can potentially be violated. In theories with
higher derivatives, there can be modes which briefly prop-
agate against the dominant arrow of causality, which is
set by the stable states of the theory. Gravity represents
the most likely situation for this to occur. While the
acausal properties of gravitational scattering are beyond
reach of observation, it would be interesting to study the
e↵ect of the causal uncertainty in the early universe.
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• Wavepackets are an idealization.

• Likewise beam construction from previous scattering (and measurement
due to final scattering).

• The timing of scattering will become uncertain!

All gravitational theories display some causal uncertainty due to their space-
time fluctuations.



CK duality, BCJ relations and double copy
Bern, Carrasco, Chiodaroli, Johansson and Roiban, 2019

Kawai, Lewellen and Tye, 1986

Bern, Carrasco and Johansson, 2008

• Gravity amplitudes are notoriously complicated!

• In the mid-80s it was realized that tree-level closed string amplitudes can
be written as sums of products of tree-level open-string amplitudes, the
Kawai-Lewellen-Tye (KLT) relations. In the limit of infinite string tension,
this becomes the field theory statement that the graviton tree amplitudes
can be obtained as a sum of products of gluon scattering amplitudes:

Gravity = Gauge Theory2.

This is the so-called double copy.

• Tree-level gauge theory amplitudes of gluon scattering could be written in
a form where certain kinematic numerators obey the same Jacobi identities
as the algebraic color factors of the non-abelian gauge group of the theory.
This is called color-kinematics duality. Moreover, if one replaces the color
factors in this representation of the amplitude with the kinematic factors
of gauge theory, remarkably the result is the gravity tree amplitude! This
is the BCJ (Bern, Carrasco, and Johansson) double copy.



Quadratic gravity amplitudes
• Work in the Einstein frame (Einstein-Weyl theory):

S =

Z
d4x

p
�g


2

2
R� 1

2⇠2
Cµ⌫↵�C

µ⌫↵�

�

where 2
= 32⇡G.

• Employ the map:

(Higher-derivative YM)⌦YM = Weyl-Einstein

• Spectrum: Besides the graviton, dilaton and axion, we also have additional

five physical degrees of freedom associated with a gravitational Merlin,

three states associated with a Merlin 2-form field and a Merlin scalar!

• Projection to pure gravity: Simply correlate the helicities in the two gauge-

theory copies. This works in a similar fashion for quadratic gravity: In

order to work with only gravitational Merlins, we take the symmetric

tensor product of gauge-theory Merlins.

See also: Bob Holdom, 2021

See also: H. Johansson and J. Nohle, 2017; H. Johansson, G. Mogull and F. Teng, 2018

YM: spontaneously broken!

GM, JHEP 03 (2022) 074



3-point amplitudes and propagator
• Propagator:

Dµ⌫⇢�(p) =
1

2p2

⇣
⌘µ⇢⌘⌫�+⌘µ�⌘⌫⇢�⌘µ⌫⌘⇢�

⌘
� 1

2(p2 �M2 � iM�)

⇣
⌘µ⇢⌘⌫�+⌘µ�⌘⌫⇢�

2

3
⌘µ⌫⌘⇢�

⌘
.

• 3-particle amplitudes involving only physical gravitons do not display con-
tributions coming from higher-order derivative terms:

M (4)

3
[1h1 , 2h2 , 3h3 ] = M2M (2)

3
[1h1 , 2h2 , 3h3 ]

and this result generalizes to an arbitrary number of gravitons by using
BCFW recursion relations.

• Amplitudes involving a single gravitational Merlin particle vanishes:

M (4)

n+1
(1h1 , 2h2 , . . . , nhn ,k) = 0

• 3-particle amplitude involving two gravitational Merlin particles:

M3(1
++,2,3) = iAtree, HD

3
[1+,2,3]Atree,YM

3
[1+,2,3] = �2i

hr|3|1
⇤2

M4hr1i2 h32i
4

M3(1
��,2,3) = iAtree, HD

3
[1�,2,3]Atree,YM

3
[1�,2,3] = �2i

⇥
r|3|1i2

M4
⇥
1r
⇤2
⇥
32

⇤4
.



Tree-level Compton Amplitudes: graviton-Merlin scattering

• Amplitudes involving gravitons and Merlins:

M tree

4
(2, 1++, 4++,3) = �is23A

tree, HD

4
[2, 1+, 4+,3]Atree, YM

4
[2, 4+, 1+,3]

= 4i

⇥
14

⇤4

s23

h32i4

(s12 �M2)(s13 �M2)

M tree

4
(2, 1��, 4++,3) = �is23A

tree, HD

4
[2, 1�, 4+,3]Atree, YM

4
[2, 4+, 1�,3]

= 4i
1

s23(s12 �M2)(s13 �M2)

⇣⇥
43

⇤
h12i+ h13i

⇥
42

⇤⌘4

See also: H. Johansson and A. Ochirov, 2019



Triple graviton vertex, brute-force calculation from quadratic gravity (Jordan frame)



Tree-level Compton Amplitudes: scalar-Merlin scattering

• To evaluate Compton scattering amplitude involving two gravitational
Merlin particles and two matter particles, we apply the BCJ double-copy
prescription:

M(1s, 2, 3, 4s) = i
X

k

n(s1)
k ñ(s2)

k

sk

where s = s1+ s2, 2, 3 are graviton or Merlin particles, ñk are numerators
belonging to the spontaneously broken gauge theory of the double copy
described earlier and sk are inverse propagators (they could be massive).

• For the scalar case:

M4(`A,1,2, `B) =
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Loops and Generalized Unitarity

• The strategy of calculating gluon amplitudes of standard Yang-Mills the-

ory from Grassmann integrations of N = 4 SYM does not work at loop

level. Now the gluon amplitudes di↵er in both theories. However, the

tree-level method will still be useful since we are going to use tree-level

amplitudes to reconstruct loop-level amplitudes. This is the so-called gen-

eralized unitarity method

• The knowledge of tree amplitudes can be recycled into information about

loop integrands. The operation of taking loop propagators on-shell is

called a unitarity cut. It originates from the unitarity constraint of the S-

matrix. To see how, recall the unitarity demands that generalized optical

theorem holds, that is, for an arbitrary process a ! b one has that

iA(a ! b)�iA⇤
(b ! a) = �

X

f

Z
d⇧fA⇤

(b ! f)A(a ! f)(2⇡)4�4(a�f)

and there is an overall delta function assuring energy-momentum conser-

vation.

Bern, Dixon, Dunbar and Kosower, 1994, 1995

Golden goal: Understand deeply the analytic properties of the S-matrix!



How to implement the unitarity method in the presence of unstable particles  

• In order to implement the technique in a straightforward way, one must

ensure that external momentum configurations of an amplitude allows the

unstable propagator to become resonant. In this case the cut unstable

propagator will have the correct cut structure to guarantee that unitarity

is satisfied.

• On the other hand, there is also other situation that the method can be

applied without further issues: In the narrow-width approximation! Near

the resonance, we can treat the resonant particle as being on-shell. This

means that in this limit a cut taken through the unstable particle with its

width set to zero reproduces the same result as a cut through the decay

products.

• In other words, for unstable particles the present practice of the unitarity

method is valid if the assumption of a resonant unstable propagator is

warrant. This can happen depending on external momentum configura-

tions or else one should verify whether the narrow-width approximation

holds in the particular case under studied.

GM, arXiv:2111.11570 [hep-th]



Color-ordered one-loop amplitude associated with the process g+g+ ! g+g+

Unitarity method produces

A1�loop
4 (1+, 2+, 3+, 4+) = � 2i

(4⇡)2�✏

s12s23
h12ih23ih34ih41i

h
I4[µ

4]+8I4[(M2 + µ2)2]
i

One-loop amplitude for the graviton scattering process h++h++ ! h++h++

Unitarity method produces

M1�loop
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GM, JHEP 03 (2022) 074



Leading Singularities
• Generalized unitarity explores discontinuities and these can be realized

as contour integrals. Every time a residue is computed one explores a
higher codimension singularity. The maximal number of residues at L-
loop order in four dimensions is 4L. Taking 4L residues gives rise to
the highest codimension singularity and its discontinuity is known as the
leading singularity.

• Leading singularities are computed using only compact contours and are
therefore finite. Also, just as unitarity cuts, leading singularities only
involve physical states and are gauge invariant!

• Leading singularities, which are computed as multidimensional residues,
generically have support outside the physical region of integration. There-
fore they are not naturally located on any of the regions mentioned above.

But they can also be useful to study observables associated with classical scattering!
See: Cachazo and Guevara, 2017; Guevara, 2017; Guevara, Ochirov and Vines, 2019; GM and Sergola, arXiv:2205.11701

https://arxiv.org/abs/2205.11701


Leading singularities in higher-derivative theories
GM, Universe 8, 326 (2022)

• Since leading singularities are generalizations of unitarity cuts, the pres-
ence of unstable Merlin modes in higher-derivative theories could engender
issues.

• In any case, leading singularities are still well defined and accordingly
they are able to capture relevant information on the analytic structure of
amplitudes in such higher-derivative theories.

• Scattering of identical matter particles �� ! �� interacting gravitation-
ally:

LS(s)h =
X

h1,h3=++,��
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for gravitons running in the loop, whereas for Merlins we find that

LS(s)M =
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where m is the mass of the scalar particles.



Outlook
Quadratic gravity is a renormalizable quantum field theory that makes sense!

Essential features:

• Massless graviton identified through pole in propagator.

• Ghost resonance is unstable – it does not appear in spectrum.

• Formal quantization schemes exist but not needed.

• Stable under perturbations.

• Unitarity with only stable asymptotic states.

• LW contour as shortcut via narrow width approximation.

• Causality uncertainty near Planck scale.


