

Laboratori Nazionali del Gran Sasso

TESTING LORENTZ INVARIANCE WITH UHECRS IN EXTRAGALACTIC SPACE AND EARTH'S ATMOSPHERE WITH THE PIERRE AUGER OBSERVATORY

Denise Boncioli, on behalf of the Pierre Auger Collaboration

Quantum Gravity Phenomenology in the Multi-messenger Approach 13-15 July 2022, Naples, Italy

Università degli Studi dell'Aquila and INFN-LNGS denise.boncioli@univaq.it

MAIN REFERENCES

- The Pierre Auger Collaboration, "Testing effects of Lorentz invariance violation in the propagation of astroparticles with the Pierre Auger Observatory", JCAP 2022
 - D. Boncioli et al, "Future prospects of testing Lorentz invariance with UHECRs" ICRC2015
 - D. Boncioli for the Pierre Auger Collaboration, "Probing Lorentz symmetry with the Pierre Auger Observatory" ICRC 2017
 - R. G. Lang for the Pierre Auger Collaboration, "Testing Lorentz Invariance Violation at the Pierre Auger Observatory" ICRC2019
- C. Trimarelli for the Pierre Auger Collaboration, "Constraining Lorentz Invariance Violation using the muon content of extensive air showers measured at the Pierre Auger Observatory", ICRC2021

THE COSMIC-RAY ENERGY SPECTRUM

UHECRs in the Earth's atmosphere

- modified by violation of Lorentz invariance
 - Suppression of pion production in propagation
 - Suppression of nuclear disintegration in propagation
 - Suppression of UHE photon absorption by photons of the background
 - Suppression of pion decay in atmosphere
- Data measured at Earth can contain imprints of LIV

UHECRs and Lorentz Invariance Violation

• The extragalactic propagation of UHECRs as well as the development of the cascade in the atmosphere can be

 $E_i^2 - p_i^2 = m_i^2 + \sum \delta_{i,n} E_i^{2+n}$

MEASUREMENTS AT UHE

Telescope Array (TA) Delta, UT, USA 507 detector stations, 680 km² 36 fluorescence telescopes

Pierre Auger Observatory

Province Mendoza, Argentina 1660 detector stations, 3000 km² 27 fluorescence telescopes

UHECR mass composition;

18.5

lg(E/eV)

18.0

17.0

17.5

 Mass composition changes
 Fluctuations decrease with energy

17.5

17.0

18.0

18.5

lg(E/eV)

19.0

19.5

20.0

19.5

19.0

20.0

LIV AND ASTROPARTICLES

UHECR PROPAGATION

- For the energies of the UHECRs, relevant photon fields are:
 - Cosmic Microwave Background (CMB)
 - relic radiation from the Big Bang; black body at temperature 2.7 K
 - UV-optical-IR (Extragalactic Background Light, EBL)
 - UV, optical and near IR is due to direct starlight
 - From mid IR to submm wavelengths, EBL consists of re-emitted light from dust particles
 - Dependence on redshift to be considered

• Relevant energy scale:

$$\varepsilon' = \varepsilon \Gamma (1 - \cos \theta)$$

UHECR PROPAGATION

• Pair production $\varepsilon' > 1 \text{ MeV}$ $p + \gamma \rightarrow p + e^+ + e^-$

• Pion production $\epsilon' > 150 \,\mathrm{MeV}$

$$p + \gamma \rightarrow n + \pi^{+}$$

$$\pi^{+} \rightarrow \mu^{+} + \nu_{\mu}$$

$$\mu^{+} \rightarrow e^{+} + \nu_{e} + \bar{\nu}_{\mu}$$

$$p + \gamma \rightarrow p + \pi^{0}$$

$$\pi^{0} \rightarrow \gamma + \gamma$$

UHECR nucleons & nuclei

UHECR nuclei

Source of cosmogenic neutrinos

Source of cosmogenic gamma rays

- What is measured: energy spectrum at Earth, mass composition...
- What do we want to know: energy spectrum at the sources, mass composition at the sources, properties of the distribution of sources...
 - Spectrum at Earth \neq spectrum at source (...), due to interactions !

ASTROPHYSICAL SCENARIOS

0

- What is measured: energy spectrum at Earth, mass composition...
- What do we want to know: energy spectrum at the sources, mass composition at the sources, properties of the distribution of sources...
 - Spectrum at Earth ≠ spectrum at source (...), due to interactions !

ASTROPHYSICAL SCENARIOS

- Typical interaction length: order of 10 Mpc
- Typical energy loss in one interaction: 15-20 %
 - Protons above 10²⁰ eV are expected only from close sources
 - Origin of the suppression of the UHECR spectrum at the highest energies (?) - GZK effect

ASTROPHYSICAL SCENARIOS Why LIV ??? Example: photo-pion production

- Violation of LI could modify the kinematics of interactions
 - The photo-pion production could be inhibited
 - The shape of the **expected** UHECR spectrum at the highest energies could be different
- Experimental evidence: the suppression of the UHECR spectrum is observed
- Limits on LIV parameters influencing the UHECR propagation can be derived by comparing the expected spectrum with the measured one

- Typical interaction length: order of 10 Mpc
- Typical energy loss in one interaction: 15-20 %
 - Protons above 10²⁰ eV are expected only from close sources
 - Origin of the suppression of the UHECR spectrum at the highest energies (?) - GZK effect

ASTROPHYSICAL SCENARIOS Why LIV ??? Example: photo-pion production

• Violation of LI could modify the kinematics of interactions

- The photo-pion production could be inhibited
- The shape of the **expected** UHECR spectrum at the highest energies could be different
- Experimental evidence: the suppression of the 10^{38} UHECR spectrum is observed \mathbf{S} Limits on LIV Y parameters influencing $[km^{-2}]$ the UHECR propagation 10³⁷ Ē can be derived by comparing the J(E)expected spectrum 10¹⁹ with the measured one E [eV]

Great idea, too optimistic though...

- Typical interaction length: order of 10 Mpc
- Typical energy loss in one interaction: 15-20 %
 - Protons above 10²⁰ eV are expected only from close sources
 - Origin of the suppression of the UHECR spectrum at the highest energies (?) - GZK effect

Astrophysical scenarios to investigate the UHECR origin

- Simple astrophysical model:
 - identical sources, uniformly distributed in co-moving volume
 - Power-law spectra at escape, up to max energy, rigidity dependence assumption
- Simulation of extragalactic propagation, taking into account:
 - Extragalactic photon fields
 - Photo-hadronic cross sections

Fit of energy spectrum and composition

COMBINED SPECTRUM AND COMPOSITION FIT

Similar to Auger JCAP 2017, with updated spectrum and composition (ICRC 2019)

20

18

18.5

19

19.5

log₁₀(E/eV)

19

18.5

18

• Implications for characteristics of UHECRs <u>at their sources</u>

• Small spectral index -> acceleration/interaction processes in the sources

Small rigidity -> power of the sources, <u>Hillas condition</u>?

• CNO nuclear species dominate at source -> nature of the sources

• <u>Consequences on secondary messengers</u>

- UHE photons can be expected in connection with
 - Close UHECR sources
 - Top-down models
 - LIV modified photon propagation ?

PHOTON PROPAGATION

- Neutral pion decay contributes to electron/positron pair production
- Electrons/positrons undergo inverse Compton
 - Energy is transferred below 10¹⁴ eV

MODIFIED PHOTON PROPAGATION

 $E_i^2 - p_i^2 = m_i^2 + \sum \delta_{i,n} E_i^{2+n}$

• Modifications of propagation: **CRPropa/Eleca code**

Lang, Martinez-Huerta & de Souza, ApJ 2018

$$\gamma + \gamma_{\rm bkg} \rightarrow e^+ + e^-$$

Effect on photon propagation:

- LIV can inhibit pair production at the highest energies
- More photons could reach the Earth

EXPECTED PHOTON FLUX The Pierre Auger Collaboration, JCAP 2022 10 Hyb 21 $----\delta_{\gamma}=0$ SPGE | n=0 **↓** SD 19 $\sum_{\gamma,0}^{-23} = -10^{-23} \\ \sum_{\gamma,0}^{-21} = -10^{-21}$ Integral flux [km⁻² y⁻¹sr⁻¹] -01⁻⁴ ₹ Problem: Whyí 10⁻⁸ 10⁻¹⁰ 18 19.5 18.5 20 19 $\log_{10} (E_{\gamma}/eV)$

Effect on photon propagation:

- LIV can inhibit pair production at the highest energies
- More photons could reach the Earth
- favoured UHECR astrophysical scenarios imply parameters at the sources (for the spectrum and composition) that minimise the expected photon flux!
- - Photons from neutral pion decay -> Pions from photopion production -> Threshold for photo-pion production is shifted at A times the one for protons

EXPECTED PHOTON FLUX

MODIFIED CR PROPAGATION The Pierre Auger Collaboration, JCAP 2022

- Similar approach to the one used in Scully & Stecker 2009
 - In order to modify the effect of photo-pion production above the GZK energy, we must have delta_pion > delta_proton (Coleman&Glashow 1999)
 - For most of the allowed parameter space near threshold, delta_pion can be as much as one order of magnitude greater than delta_proton
 - delta_pion is considered (at or near threshold)
- Effect of recovering of the spectrum is expected
 - But not observed!

• Modifications of propagation: SimProp code

10⁵ 10⁴ [Mpc]¹ 10² 10² $\delta_{had,0} = 0$ $o_{had,0} = 10^{-24}$ 10 20 21 19 log₁₀ (E/eV)

Modified CR Propagation The Pierre Auger Collaboration, JCAP 2022

- Interactions of nuclei -> modified photo-disintegration
- Consider a nucleus as composed by A nucleons
- LI case: the photo-dis threshold depends only on the nuclear species
- LIV case: a dependence of the photo-dis threshold on the energy appears

Effect on CR propagation:

 \bullet order to reproduce the observed composition

Threshold energy increases -> less interactions -> if LIV, lighter nuclear species are needed at the sources in

100	
_	
_	
- 64	
- 11	
-	
-	
_	
_	
-	
×.	
-	
-	
-	r
-	
- 61	
- 18	c
. 0	
-	
- 25	
-	
	s.
- 10	
- 14	
- 24	

EXPECTED CR SPECTRUM AND COMPOSITION The Pierre Auger Collaboration, JCAP 2022 450 --- SPGE 19.5 ---- SPDE - SPGE - SPDE ---- STGE 400 --- STGE Total deviance --- SPGS 19 350 ц 0 300 18.5 - SPGE --- SPDE - STGE 250 -2 -22 -20 -00 -22 -20 -18 -18 -24 -∞ -24 20 $\log_{10} (\delta_{had,0})$ $\log_{10}(\delta_{had,0})$

- Interpretation in terms of spectral parameters at the source is affected \bullet
 - Larger LIV effects -> less interactions -> softer spectra

LIV AND ASTROPARTICLES

- Wish list for studying LIV with astroparticles
 - Extremely energetic cosmic rays
 - Light cosmic rays (photo-pion production processes might have the largest modifications due to LIV)
 - High energy + light particles ->
 photo-pion reactions are more
 efficient -> large cosmogenic
 gamma-ray and neutrino fluxes might
 be expected

LIV AND ASTROPARTICLES

- Wish list for studying LIV with astroparticles
 - Extremely energetic cosmic rays
 - Light cosmic rays (photo-pion production processes might have the largest modifications due to LIV)
 - High energy + light particles ->
 photo-pion reactions are more
 efficient -> large cosmogenic
 gamma-ray and neutrino fluxes might
 be expected

What about the development of the cascade of particles in the Earth's atmosphere?

- What we have
- Low rigidity found with UHECR astro scenarios
 - The suppression of the CR flux cannot be due only to propagation: source power is involved

- Heavier species found at the highest energies
 - Implications for secondary messengers

LIV AND EXTENSIVE AIR SHOWERS

EXTENSIVE AIR SHOWERS

- **Pions** drive the development of <u>electromagnetic and muonic</u> <u>components</u> of EAS
 - Early stages: pions interact
 - Late stages: pions decay

Depending on pion energy (which depends on primary energy per nucleon)

muonic component

EXTENSIVE AIR SHOWERS

- Longitudinal profile of the EAS (integrate energy losses in atmosphere)
 - Electromagnetic component

- Lateral distribution of the EAS (look at particles at ground)
 - Muonic component

MASS COMPOSITION FROM EL-MAG COMPONENT OF EAS

Heitler model for EAS

 $N(X) = 2^{X/\lambda}$ $E(X) = \frac{E_0}{N(X)}$ E(X $N(X_{\max})$ $X_{\rm max} \propto \ln(E_0/E_c)$

MASS COMPOSITION FROM EL-MAG COMPONENT OF EAS

- the shower

• Composition information (mainly) from the longitudinal development of

```
• Break in <Xmax> at energy of the ankle

    Fluctuations decreasing with increasing energy

                    30
```


LIV IN EXTENSIVE AIR SHOWERS

- Heavy primary CRs with respect to light primary CRs with same energy
 - EAS develops earlier in atmosphere (smaller Xmax)
 - Position of Xmax fluctuates less
 - Contain more muons
 - Number of muons fluctuates less
- LIV can affect kinematics
 - Example:
 - Pions do not decay -> neutral pions interact
 - More muons are produced
 - Electromagnetic vs muonic component of the shower are affected

component

MODIFICATIONS TO EAS DEVELOPMENT

 $E_i^2 - p_i^2 = m_i^2 + \sum \eta_{i,n} \frac{E_i^{2+n}}{M_{Pl}^n}$

C. Trimarelli for the Pierre Auger Collaboration, ICRC 2021

$$\Gamma = \frac{E}{m_{\rm LIV}} \qquad \qquad \tau = \Gamma \tau_0$$

Positive eta: negligible effects

2. Negative eta: forbidden neutral pion decay if...

$$m_{\pi}^2 + \eta_{\pi}^{(n)} \frac{E_{\pi}^{2+n}}{M_{Pl}^n} < 0$$

 10^{20}

MODIFICATIONS TO MASS OBSERVABIES

- If neutral pion does not decay, it can interact
 - Calorimetric energy is smaller than in the LI case
 - Predictions for Xmax decrease with energy with respect to the LI case

C. Trimarelli for the Pierre Auger Collaboration, ICRC 2021

MODIFICATIONS TO MASS OBSERVABLES

• LI case:

- number of muons larger (and less fluctuations) in showers initiated by heavy nuclear species with respect to protons
- LIV case:
 - Fluctuations decrease with respect to the LI case

C. Trimarelli for the Pierre Auger Collaboration, ICRC 2021

- Focus on <u>fluctuations in the number of muons</u>
 - **Decrease** if (pure) mass becomes heavier
 - Increase/decrease depending on the mass mixing
 - **Decrease** if LIV strength increases

CONSTRAINTS FROM MUON FLUCTUATIONS

• Procedure:

- Combine masses as a function of energy and LIV strength in order to have the <u>largest</u> <u>fluctuation</u> for each LIV parameter
- Compare the data to the predictions corresponding to LIV parameters

 $\eta^{(1)} > -5.95 \cdot 10^{-6}, 90\%$ CL

CONSTRAINTS FROM MUON FLUCTUATIONS

C. Trimarelli for the Pierre Auger Collaboration, ICRC 2021

CONCLUSIONS

- LIV can be tested with UHECRs
 - Extragalactic propagation of UHECRs
 - Astrophysical scenarios predict low maximum energy \bullet at the sources and mixed composition
 - Not optimal for LIV tests with UHECRs and/or lacksquarecosmogenic photons
 - Development of cascade of particles in atmosphere
 - Fluctuations of number of muons used for the first \bullet time to constrain LIV

FUTURE PERSPECTIVES

Upgrade of Pierre Auger Observatory

- Can provide better discrimination between muonic and electromagnetic component of the shower
 - Possible proton fraction at highest energy can be better constrained
 - Astrophysical models could be reconsidered and LIV limits could be improved

- OPEN QUESTIONS:
- Origin of flux suppression and other spectrum features:
 - propagation and/or source effects
 - in-source interactions
- Proton fraction at the highest energies:
 - charged particle astronomy?
 - secondary messengers (neutrino and photons) ?
- UHECR composition and hadronic interactions
 - Muonic component of air showers
 - New physics

FUTURE PERSPECTIVES

Upgrade of Pierre Auger Observatory

- Can provide better discrimination between muonic and electromagnetic component of the shower
 - Possible proton fraction at highest energy can be better constrained
 - Astrophysical models could be reconsidered and LIV limits could be improved

Many analyses still inspired from previous works and discussions with Aurelio Grillo

- OPEN QUESTIONS:
- Origin of flux suppression and other spectrum features:
 - propagation and/or source effects
 - in-source interactions
- Proton fraction at the highest energies:
 - charged particle astronomy?
 - secondary messengers (neutrino and photons) ?
- UHECR composition and hadronic interactions
 - Muonic component of air showers
 - New physics

BACKUP SLIDES

MEASUREMENT OF THE ENERGY SPECTRUM

- Change of slope between 1 and 2 ("ankle", already known, reconfirmed)
- Change of slope between 2 and 3 (new feature!!!)
- Change of slope between 3 and 4 ("suppression", already known, reconfirmed)

Figure 12: X_{max} distributions for different energy intervals.

MASS COMPOSITION

- Composition information (mainly) from the longitudinal development of the shower
- Break in <Xmax> at energy of the ankle
- Fluctuations decreasing with increasing energy

- 1 4000 SD events
- 76800 km² sr yr exposure, 85% sky coverage
- Analysis of first harmonic in right ascension:
 - 4-8 EeV -> compatible with isotropy
 - >8 EeV: 3D dipole of amplitude 6.5% at 5.2 sigma

Magnitude and direction of the anisotropy support the hypothesis of extragalactic origin of UHECRs !

COMPARISON WITH EXTRAGALACTIC GAMMA-RAY CATALOG

- Events above 20 EeV, collected between Jan 2004 and April 2017, total exposure 89720 km² yr sr.
- Fermi-LAT sources above 50 GeV (D<250 Mpc)
 - 17 AGN + 23 starburst galaxies
- Assumption: UHECR flux proportional to photon flux
- The attenuation of UHECRs due to propagation effects is taken into account (scenario A corresponds to combined spectrum composition fit, Auger JCAP 2017), but no Galactic/extragalactic magnetic fields are included
- Maximum signal for Starburst Galaxies found above 38 EeV

Auger, ICRC 2019

MULTIMESSENGER SEARCHES

- Sensitivity to neutrinos above 100 PeV, by looking for inclined showers with SD
- Sensitivity to photons with SD
- Searches for neutrinos in coincidence with transient events:
 - Neutrinos associated with GWI50914 and GWI51226, Auger PRD 2016
 - Neutrinos associated with GW170817, together with Antares and IceCube, Apj 2017
 - Neutrinos associated to TXS, ApJ 2020

ENERGY LOSS LENGTH

$$l_{\rm loss} = -c \left(\frac{1}{E}\frac{dE}{dt}\right)^{-1} = -E\frac{ds}{dE}$$

$$\frac{1}{E}\frac{dE}{dt} = -H_0$$
$$\frac{1}{E}\frac{dE}{dt} = -\frac{c}{2\Gamma^2}\int_{\varepsilon'_{\rm th}}^{\infty} \varepsilon' f(\varepsilon')\sigma(\varepsilon')\int_{\varepsilon'/2\Gamma}^{\infty} \frac{n_{\gamma}(\varepsilon)}{\varepsilon^2} d\varepsilon d\varepsilon'$$

Plot by C. Evoli

COMBINED SPECTRUM AND COMPOSITION FIT

- Low-rigidity cutoff at the sources:
 - Interpretation of suppression as due to lack of acceleration power at source is favoured with respect to propagation effects (i.e. "GZK effect"), independent of composition

- Small spectral index (at odds with Fermi mechanisms):
 - Escape of high-energy (charged) particles from source environment is favoured, change of effective spectral index expected

E/GeV

Example: 50% H + 50% Fe at source

- The sigma(Xmax) is a measurement of the spread of the mass composition, due to
 - Mixed composition at source
 - Spectral parameters
 - Propagation of UHECRs in the extragalactic space

See Auger, JCAP 2013 for more details on this topic

 $\langle X_{max} \rangle = \langle X_{max} \rangle_p + f \langle InA \rangle$

$$\sigma^2(X_{max}) = \langle \sigma^2_{sh} \rangle + f^2 \sigma^2_{sh}$$

- Mixed UHECR composition
 - Nuclei heavier than H must **exist** in the source environment, and **survive** the potential interactions with the present matter/radiation
 - The survival condition can be satisfied depending on the characteristics of the possible source (such as **density of radiation**, etc...)

- Mixed UHECR composition
 - Nuclei heavier than H must **exist** in the source environment, and **survive** the potential interactions with the present matter/radiation
 - The survival condition can be satisfied depending on the characteristics of the possible source (such as **density of radiation**, etc...)
- <u>What sources could provide mixed UHECR composition?</u>
 - Neutron stars, Kotera, Amato & Blasi, JCAP 2015
 - Wolf-Rayet stars, **Thoudam et al. A&A 2016**
 - Binary Neutron Star mergers, Rodrigues, Biehl, DB & Taylor, Astropart. Phys. 2019; Decoene et al. JCAP 2020 Tidal Disruption Events, Alves Batista & Silk, PRD 2017; Biehl, DB, Lunardini & Winter, Sci. Rep. 2018 Gamma-Ray Bursts jets, Murase et al. PRD 2008; Biehl, DB, Fedynitch & Winter, A&A 2018; LL-GRB jets, Zhang et al,

 - PRD 2018; **DB**, Biehl & Winter, ApJ 2019
 - Blazars, *Murase et al. PRD 2014*

- Mixed UHECR composition
 - The **ankle** cannot be interpreted as a propagation effect of the protons in the extragalactic space (<u>dip model</u>), due to pair-production
 - Other possible explanations:

 - populations?

- Mixed UHECR composition

• The **new feature at 13 EeV** might reflect the interplay between the flux contributions of the He and CNO components injected at the source with their distinct cut-off energies, shaped by photodisintegration during the propagation

SECONDARY PARTICLES: NEUTRINOS Auger 2015 total 3²J_v [GeV cm⁻² sr⁻¹ s⁻¹ CL per-flav_x3 $\varepsilon' = \Gamma \varepsilon$ must be order of hundreds of IceCube non-atmosph. 10 68% CL per-flav. x3 MeV for producing pions $E^2 x flux$

17

Neutrinos from interactions of protons with IR (10⁻²-10⁻¹ eV)

15

 10^{-2}

-> smaller energy of the protons is required to excite the Delta resonance;

-> neutrinos with smaller energy will be produced

Aloisio, DB, di Matteo, Grillo, Petrera, Salamida 2015

Neutrinos from interactions of protons with CMB (7x10-4 eV); for instance

• Proton with $E=10^{20.5}$ eV, Lorentz factor 3x10¹¹ -> 2.2 x 10⁸ eV photon energy in the nucleus rest frame, above threshold for pion production

SECONDARY PARTICLES: NEUTRINOS

Effect of cosmological evolution of sources $(1 + z)^m$

$$J(E) = \frac{c}{4\pi} \int dz \left| \frac{dt}{dz} \right| \tilde{Q}(E_g(E, z), z) \frac{dE_g}{dE}$$

Aloisio, DB, di Matteo, Grillo, Petrera, Salamida 2015

On cosmic-ray spectra the effect is much less relevant than for neutrinos!

 Cosmogenic neutrinos could improve the understanding of the distribution of UHECR sources

SECONDARY PARTICLES: NEUTRINOS

Cosmogenic neutrinos from UHECR protons/nuclei Alves Batista, DB, di Matteo, van Vliet 2019

SECONDARY PARTICLES: NEUTRINOS

Heinze, Fedynitch, DB, Winter 2019

THE MULTI-MESSENGER PICTURE arxiv: 2205.05845

Muon Fluctuations

with mass A
$$\frac{N_{\mu}}{\langle N_{\mu} \rangle} = \frac{\alpha_1}{A}$$
.

- in the presence of LIV Reduction of Muon Fluctuations: the proton is behaving as a heavier nucleus and the fluctuations decrease

Where

$$\langle N_{\mu} \rangle_{\text{mix}}(\alpha; \eta) = (1 - \alpha) \langle N_{\mu} \rangle_{p} + \alpha \langle N_{\mu} \rangle_{Fe}$$

$$\sigma^{2}(N_{\mu})_{\text{mix}}(\alpha; \eta) = (1 - \alpha)\sigma^{2}(N_{\mu})_{p} + \alpha\sigma^{2}(N_{\mu})_{Fe} + (\alpha(1 - \alpha)(\langle N_{\mu} \rangle_{p} - \langle N_{\mu} \rangle_{Fe})^{2}$$

Relative Fluctuations

Effects of the different composition scenarios

A. Aab et al. [Pierre Auger] Phys. Rev. Lett. 126 (2021) no.15, 152002

 $1 - \alpha$ is the fraction of proton α is the fraction of iron

 $\langle X_{max} \rangle$

Muon Fluctuations

The most conservative case is produced by H-Fe mixture corresponding to the maximum of the relative fluctuations wrt α

In presence of LIV

1- We have to parametrize: $\langle N_{\mu} \rangle_{p}$, $\langle N_{\mu} \rangle_{Fe}$, RM 2- We will find the maximum: $\max_{\alpha} \frac{\sigma_{\mu}}{\langle N_{\mu} \rangle} = -\frac{1}{2}$

log(-η)=-3

$$\frac{MS^{2}(N_{\mu})_{p} \text{ and }}{\sqrt{RMS^{2}(N_{\mu})(\alpha)}} \forall \text{ energy bin}$$

log(-η)=-14

67

Mass fraction fit

 The mass fraction fit has been done again using the LIV models
 The Gumbel parametrization have been produced for the LIV models we have simulated

> For LIV at 1st order the number of protons highest energies increases

