

Vacuum Cherenkov radiation in UHE air showers: a way of probing Lorentz violation

Fabian Duenkel, Marcus Niechciol, Markus Risse University of Siegen

> COST CA18108 Third Annual Conference Napoli 15 July 2022

> > **DFG** Deutsche Forschungsgemeinschaft

- **UNIVERSITÄT** SIEGEN
- Lorentz symmetry is a fundamental pillar of the Standard Model of Particle Physics
- The Standard Model does not give a complete description of the universe
- Current approaches to establish a more comprehensive theory allow for deviations from exact Lorentz symmetry
- Consequences of LV can only be observed at the highest possible energies
- Ultra-high-energy cosmic rays and air showers can be used to test Lorentz symmetry

LV through EFT

- We work in the framework of the Standard Model Extensions (SME)
- Lorentz Violation (LV) in the photon sector is achieved by adding a single term which preserves CPT and gauge invariance to the standard QED Lagrangian:

$$\mathcal{L} = -\frac{1}{4} F^{\mu\nu}(x) F_{\mu\nu}(x) + \bar{\Psi}(x) (\gamma^{\mu} [i\delta_{\mu} - eA_{\mu}(x)] - m) \Psi(x) - \frac{1}{4} (k_{F})_{\mu\nu\rho\sigma} F^{\mu\nu}(x) F^{\rho\sigma}(x)$$

 Focusing on the specific case of isotropic nonbirefringent LV in the photon sector, k_F is controlled by a single parameter κ

Fabian Duenkel

Lorentz Violation ($\kappa < 0$)

 Consequence of LV: modified photon phase velocity

$$v_{ph} = \frac{\omega}{|\vec{k}|} = \sqrt{\frac{1-\kappa}{1+\kappa}}c$$
$$\kappa = \frac{c^2 - (v_{ph})^2}{c^2 + (v_{ph})^2} \approx 1 - \frac{v_{ph}}{c}$$

- Restricted to $-1 < \kappa \le 1$
- Previously: Focus on negative κ ("fast" photon)
- Consequence: Photon decay $\tilde{\gamma} \rightarrow e^- + e^+$

$$E_{\gamma}^{thresh}(\kappa) = 2 \cdot m_e \cdot \sqrt{\frac{1-\kappa}{-2\cdot\kappa}} \approx \frac{2\cdot m_e}{\sqrt{-2\cdot\kappa}}$$

Photon decay length drops to practically zero right above energy threshold

UHE - air showers

- Cosmic rays interact with the earth's atmosphere, producing a cascade of secondary particles
- Secondary particles can be measured using ground-based detectors and fluorescence telescopes
 - Reconstruction of primary parameters, e.g. direction, energy, particle type

6

Pierre Auger Observatory

• Pierre Auger Observatory uses a combination of surface detector stations and fluorescence telescopes

Fabian Duenkel

- We will use X_{max} measurements from the Pierre Auger Observatory
 - Good precision due to FD measurements

15.07.2022

Modified Air Shower Simulation

- Simulation of the modified air showers are generally done using MC simulations
- We are using the hybrid simulation code CONEX v2r7p50

[Bergmann et al., Astropart. Phys.26, 420 ,2007]

- CONEX is a combination of a MC simulation of high-energy interactions and fast numerical solutions of the cascade equations for secondary particles below a given energy threshold
- The MC part of the simulation code can easily be modified to include additional LV processes

Lorentz Violation ($\kappa < 0$)

- Implementing these modifications into shower simulations reveals significant change in $\langle X_{max} \rangle$
- Comparison with shower data has been used to set stringent bound on κ
 - Most conservative approach: Assume pure proton composition
 - Limit of $\kappa = -3 \times 10^{-19}$

[Duenkel, Niechciol, Risse, PRD 104:015010, 2021]

Improving the bounds on LV

- Use $\sigma(X_{max})$ as a second parameter to increase sensitivity
 - $\sigma(X_{max})$ has only minor dependence on κ
 - Pure-proton composition does not match all Auger data in any simulation with or without LV

Improving the bounds on LV

- Extend the analysis: allow for combinations of four primary particle types: protons, helium, oxygen and iron
- A range of possible $\langle X_{max} \rangle$ and $\sigma(X_{max})$ can be established for every κ and

Fabian Duenkel

Improving the bounds on LV

- Compare showers simulated with different κ to confidence interval given by X_{max} measurements from the Pierre Auger Observatory [PoS(ICRC2019)482]
- *k* is "rejected" if there is no overlap between the simulated possible combinations and Auger data for the entire energy spectrum
- Highest excluded value: $\kappa = -6 \times 10^{-21}$ (98 % C.L.)

Lorentz Violation ($\kappa > 0$)

[Kaufhold, Klinkhamer, PRD 76:025024, 2007]

- 10⁰ Now: Focus on positive κ ("slow" photon) • 10-1 (VCb(E) [m] **Consequence: Vacuum Cherenkov** 10-2 . 10-3 radiation initial neutron initial structureless proton $e^{\pm} \rightarrow e^{\pm} + \gamma$ $E_e^{thresh}(\kappa) = m \cdot \sqrt{\frac{1+\kappa}{2\cdot\kappa}}$ 10-4 10⁻⁵ 10¹² 10⁹ 10¹⁰ 10¹¹ E [GeV] [Diaz, Klinkhamer, PRD 92:025007, 2015]
- Cherenkov radiation length drops to practically zero right above the energy threshold
- Current bound set by mere existence of UHECR with energies > 100 EeV: $\kappa < 6 \times 10^{-20}$

Lorentz Violation ($\kappa > 0$)

- Photon spectrum radiated by electrons depends on electron energy
- Radiated photons can inherit a significant share of the electron energy
- Differential photon spectrum shape changes only on electron Energies E_e near threshold energy ($E_{thresh} = 1.475 \times 10^{15} \text{ eV}$)

Changes in the shower development

- UNIVERSITÄT SIEGEN
- Electrons above E_{thresh} effectively are replaced by multiple lower energy photons and an electron below E_{thresh}
 - Subshowers induced by lower energy particles are shorter
 - Subshowers induced by photons are longer than those induced by electrons of the same energy
 - Both effects are counteracting each other

Changes in the shower development

- Lower values of $\langle X_{max} \rangle$ compared to the SM are obtained at higher energies, yielding differences in the order of 20 g/cm² for primary protons simulated with E = 10¹⁹ eV and $\kappa = 10^{-20}$
- Use this change to establish bounds on LV

Changes in the shower development

- No significant change of $\sigma(X_{max})$ compared to the SM
- Exact composition of arriving CRs is unknown
- Use combination of both observables to constrain allowed CR-composition

Comparison to air shower data

- Shower observables of simulated and measured showers can be compared
- No overlap between simulation and measurements excludes κ-value
- A priori restriction on primary energy due to κ further restricts possible compositions

Restriction on primary particle masses

UNIVERSITÄT

- Arriving primary CR particles • must have an energy below owest allowed Mass number A their respective threshold
- For higher energies, • only higher mass primary particles are allowed

[preliminary]

Comparison to air shower data

• Depending on κ , different particle compositions are possible

- Strong constraints on LV have already been determined using simulations of extensive air showers and comparing these simulations with air shower data for $\kappa < 0$
- Similar effects on $\langle X_{max} \rangle$ are observed for negative and positive κ
- Combination of parameters $\langle X_{max} \rangle$ and $\sigma(X_{max})$ can also be used to set constraints in the case of $\kappa > 0$
- Consistent application of VC leads to additional restrictions of possible primary particle masses

Backup: LV in UHE air showers

- Implementing Lorentz violation into shower simulations reveals similar changes in $\langle X_{max} \rangle$ for positive and negative κ
- Comparison with shower data can be used in both cases to set stringent bounds on κ

- Fixed tensor k_{F} has 20 independent components
 - 10 produce birefringence (constrained through cosmological observations)
 - 8 lead to direction-dependent modifications of the photon propagation
 - 1 corresponds to an unobservable double trace
 - 1 corresponds to an isotropic modification of the photon propagation
- Focusing on the specific case of isotropic nonbirefringent LV in the photon sector, k_F is controlled by a single parameter κ

$$(k_F)_{\mu\nu\rho\sigma} = \frac{1}{2} (\eta_{\mu\rho} \tilde{\kappa}_{\nu\sigma} - \eta_{\mu\sigma} \tilde{\kappa}_{\nu\rho} + \eta_{\nu\sigma} \tilde{\kappa}_{\mu\rho} - \eta_{\nu\rho} \tilde{\kappa}_{\mu\sigma})$$

$$\kappa_{\mu\nu} = \frac{\kappa}{2} [diag(3, 1, 1, 1)]_{\mu\nu}$$

[Klinkhamer and Schreck, Nucl. Phys. B848, 90, 2011]

Backup: Lorentz Violation ($\kappa < 0$)

[Klinkhamer, Mod. Phys. Lett. A Vol. 33, 1850104, 2018]

Fabian Duenkel

Backup: Different Models

• Using SIBYLL 2.3d results in the most conservative limit.

15.07.2022

Fabian Duenkel

UNIVERSITÄT SIEGEN

Backup: Comparison to air shower data

- Shower observables of simulated and measured showers can be compared
- No overlap between simulation and measurements excludes κ -value
- For $\kappa < 0$: Improves bound from $\kappa = -3 \times 10^{-19}$ to $\kappa = -6 \times 10^{-21}$

• For $\kappa > 0$: Work in progress

Backup: Improving the bounds on LV

- If for any energy there is no combination of simulated showers matching Auger data, the corresponding κ is excluded
- Highest excluded value: $\kappa = -6 \times 10^{-21}$ (98 % C.L.)

