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Introduction: Cosmic-Rays (CR)

B CR are particles reaching the Earth atmosphere from the
outer space.

| In astroparticle physics, the identification and
understanding of the sources of high-energy CR is one of the
most important open problems.

B One of the main goals of the CR experiments is the study
of the energy and composition of the primary CR
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Introduction: Cosmic-Rays (CR)
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Energy Spectrum of CR and colliders

10"

10"

107

10'®

108

10

10"

m CR can be measured only indirectly above an energy of 10'* eV through the cascades of secondary

particles, called extensive air-showers (EAS), that they produce in the atmosphere
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m  Only by simulating the generation of EAS and
comparing the predictions with measurements one can
draw conclusions on the primary mass composition of the
arriving particles

B CR energy & mass determined via hadronic+transport
Monte Carlos:

m MCs tuned with data obtained from accelerators.
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Tuning of hadronic MC models with collider data

Equivalent c.m. energy\@pp [GeV]
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m The LHC at the CERN laboratory allows us to access for the first time the energy region above the
knee in the laboratory.

m Therefore an analysis of inclusive particle data taken at the LHC is particularly interesting for
constraining existing hadronic interaction models and for testing possible new mechanisms of hadron
production

m The LHC data can provide a significant constrain for hadronic MCs for UHCR
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Hadronic interaction models @ high energy

m Calculating predictions for the bulk of produced particles in hadronic interactions is not possible yet
within first- principles QCD.

® One has to resort to phenomenological models that combine fundamental principles of QFT — such
as unitarity, analyticity and crossing — together with perturbative QCD predictions including
phenomenological fits (e.g. accounting for the parton-to-hadron fragmentation) to experimental hadron
spectra.

m  General-purpose hadronic interaction models used in HEP, such as PYTHIA, HERWIG and
SHERPA, are developed to learn and interpret the data measured in accelerator experiments with an
emphasis on hard-scattering measurements (signals and backgrounds) rather than on the bulk of
hadron production at lower p_.

® In contrast, interaction models commonly used in cosmic-ray physics such as QGSJETO01,
QGSJETII and SIBYLL, are supposed to predict hadronic interactions as realistically as possible with
the emphasis on reproducing existing accelerator measurements and providing a reasonable
extrapolation to higher energy and to phase-space regions where no data are available.

" In between these two generic % s Engel et al. Ranft Werner

categories there are models such as Ostapchenko
PHOJET/DPMJET and EPOS, which QGSJETO1 SIBYLL 2.1 DPMJET .55 VENUS

are designed to be more universal and soft

approach the sophistication of HEP \ Precstlr il /

models regarding some aspects of hard st

processes. e NEXUS\
QGSJETII  (DPMJET Ill) EPOS
Ostapchenko Pierog & Werner

(T.Pierog, 2009)
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Large Hadron Collider (LHC) @ CERN

m LHC is the world’s largest and most powerful particle accelerator.

m |t consists of a 27-km ring of superconducting magnets with a number of accelerating

structures to boost the energy of the particles along the way.
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Acceptance of LHC experiments

m  The number of particles in an air-shower is roughly proportional to the energy of the primary particle,
the most energetic outgoing particles of an interaction, emitted in the very forward region of a collider
experiment, are the most important ones for understanding air-showers

p. and n acceptance

= p-p @ 14 TeV
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https://cds.cern.ch/search?f=author&p=d%27Enterria%2C%20David&ln=en

Forward detectors @ CMS

Hadronic CMS

Hadronic

Forward (HF) I===== I Forward (HF)
140m (3.0 <[n| <5.0) ‘ ‘ |—————| | B0<l<50) 140 m toTEMRPS
. a4 Z e

(147,220m)

ZDC

TOTEM RPs 7DC CASTOR
(147,220m) (In| > 8.4) (-5.2 < n<-6.6)

(Inl > 8.4)

HF Detector

TOTEM T2
(in front of
CASTOR position)

CASTOR

* @11.2 m from interaction point
« Rapidity coverage: 3<|n| <5
+ Steel absorbers/quartz fibers
(Long+short fibers)

» 0.175x0.175 n/p segmentation

*Tungsten-Quartz-Cherenkov
sampling calorimeter

= Octagonal cylindrical shape

» Segmented in 16 sectors in ¢ and
14 modules in z

+ Separated electromagnetic and
hadronic sections

* Located at 14.4 m from IP in CMS
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Charged particle density

m Motivation:

« Study the different components of particle production

« Constrain and tune the models
 Study transition from perturbative to non-perturbative

region

« Measure average number of particles per

Qseudorapidity unit

\

m Analysis strategy:

- Trigger: both beams crossing at the IP

J

Veto

Activity : at least 1 particle with E > 5 GeV

:at least 1 charged particle p_> 0.5 GeM|
nl < 2.4

: no particle with E > 5 GeV

» Four different event selections based on activity in forward region

- Inelastic enhanced

- Single Diffractive (SD) enhanced

M+ Activity in at least one Fwd. region
- NonSingle Diffractive (NSD) enhanced :3x  + Activity in both Fwd. Regions

K+ Activity in one Fwd. Region and Veto in the other side

n ] I n

NSD

S. Cerci
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Charged particle density

0.9 TeV
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2.36 TeV
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— EPOS 1.99

i R
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N

D.d’Enterria, R. Engel, T. Pierog, S. Ostapchenko, K. Werner
[https://doi.org/10.1016/j.astropartphys.2011.05.002]

m Comparison of 0.9, 2.36, and 7 TeV charged-hadron data to CR MCs:

» Particle multiplicity not completely well predicted at 7.0 TeV:

» “Simplest” models: QGSJET-01, SIBYLL 2.1 better than more complete ones

S. Cerci

Impact of LHC data on UHECR physics, COST CA18108 Third Annual Conference, 2022



MC / Data

dN_, /dn

Hadron production in pp @ 8 TeV

Inclusive pp
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m n distributions are measured for different event topologies:

either inclusive or dominated by non-single diffractive dissociation (NSD),

for charged particles with p_> 0.1 GeV and p_> 1 GeV

m Results: based on different requirements,
» dominated by different types of collisions

» focus on the primary charged-particle multiplicity density

(dN_ /dn) and the highest-p_leading track in |n| < 2.4.

® Inclusive setup: poor description by Pythiaé ( >30% off @ |n| > 5.2)

m NSD setup:

» the power-like centre-of-mass energy dependence indicated by

previous NSD measurements at different energies

» generators do not describe the data

=0

AN, /|

13/22

EPJ C 74 (2014) 3053

m  Most of the particles produced in
pp collisions arise from semi-hard
(multi)parton scatterings which are

modeled phenomenologically.

n Experimental results provide

important input for tuning various MC

models and event generators.

T T L [l T
@ CMS-TOTEM (p-p NSD-enhanced, double-side activity at [n|=5.3-6.5)
@ CMS (p-p NSD-enhanced, double-side activity at [n|=2.9-5.2)

CDF (p-p Minimum Bias)

I[Wlllll T [\ll\\ll

ALICE (p-p NSD-enhanced, double-side activity at n=2.8-5.1, n=1.7-3.7) ]

V¥ UA1 (p-p NSD-enhanced, double-side activity at [n|=1.5-5.5)
A UA5 (p-p NSD-enhanced, double-side activity at n|=2-5.6)
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Charged hadrons @ 13 TeV

B First LHC paper at 13 TeV
B Datasets:
p data taken June 7, 2015
» number of collisions per bunch crossing: ~0.05
» CMS tracker and pixel detectors ON
» CMS magnet off, B=0 (straight tracks)

" CMS
E 1 ppvs=13 TeV inelastic:
7T FE -
N a4 | . A 4
B [ _.-..-..I mEEE ]
- el T Lk .
BB -
5 ]
F4F &
Z L -
s = 2
3 -
2 -= data E
C --=- PYTHA8 CUETP8S1 1
TE EPos LHC e
D :I 1 11 I 1 1 11 I 1 1 1 1 J l 1 1 1 | 1 1 1 1 | 1 1 1 I.:
-3 -2 -1 0 1 2 3

M

® Pseudorapidity density distributions of charged
hadrons in the region |n| < 2 for inelastic pp
collisions
B Charged hadron multiplicity at midrapidity:

5.49 £ 0.01 (stat.) £ 0.17 (syst.)

dNGh/dNli <05

Phys.Lett. B751 (2015) 143-163

CMS
5 — SO0 P T

L e CMS pPp |ﬂeia5t|{:5
7 F - ALICE E

. X PHOBOS :
6 F v UAS ¢

F + ISR s
5 £ --- PYTHIA8 CUETP8S1 U

[ e EPOS LHC : :
4 4
3 b :
2 | ;
1 F :

' —— parabolic fit in In(s)
0k - T i
10’ 10° 10° 10°

Vs [GeV]

B Center-of-mass energy dependence
B PYTHIAB8and EP O S globally reproduce
collision-energy dependence of hadron production in
inelastic pp collisions. However,

— EPOS is better than PYTHIAS
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Energy density measurement @ 13 TeV

Eur. Phys. J. C 79 (2019) 391

m Motivation: m Observables:
» useful input to the tuning of hadronic interaction models e dE / dn (sum of particle energies in
» better understanding of QCD dynamics each n bin)
» measure the energy density in pp collisions @ Vs = 13 TeV « The average energy density per
collision is defined as
dE _ 1 E. c(n)
dn Neoll An

= Most of the energy in the forward rapidities in HF or CASTOR.

Energy flow dE/dn [GeV]

d Different event categories based on activity in forward region

CASTOR CMS HF

- Inelastic: Activity in at least one Fwd. Region

- NonSingle Diffractive (NSD) enhanced :
Activity in both Fwd. Regions

-Single Diffractive (SD) enhanced: Activity in one Fwd.
Region and Veto in the other side

" / Model predictions
1 I 1 I 1 '

i gl gt | I g
-10 -5 0 5 10

Pseudorapidity n
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0.06 nb' (13 TeV)
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Energy density measurement @ 13 TeV (ll)

s EPOS-LHC and QGSJetll show agreement with the data within the uncertainties over the whole |n|
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Energy density measurement @ 13 TeV (lll)

Eur. Phys. J. C 79 (2019) 391

-12I\\[‘I\\I‘\I\I[\I\\‘\\[\‘I\I(‘I[\I‘\[\I‘\I\\|\\[\

> | CMS .
O) I : Data =
= A HF 900 GeV .
F 10 = HF 7 TeVv B
I ® HF 13 TeV

v CASTOR 13 TeV |

- n ~
-----
- > N
-2 -,
- ~
. ~ .
&

-
"‘ ~
.

B QGSJETII.0O4 900 GeV =~ <! N
-------- EPOS-LHC 900 GeV
QGSJETII.O4 7 TeV

S T EPOS-LHC 7 TeV | —
- QGSJETIL.04 13 TeV i
- e EPOS-LHC 13 TeV \ i
O I I | ‘ [ ‘ [ | ‘ [ I | ‘ I I ‘ I ‘ I | ‘ I I | ‘ [ I | [ |
‘%0 9 8 7 6 5 4 -3 2 -

beam
| dET /dnl (nl= n | ybeam)

m The hypothesis of limiting fragmentation suggests that particle production reveals longitudinal scaling, i.e.
the dependence of very forward particle production on the centre-of-mass energy vanishes in the region n'= 0 .

= In this study, the hypothesis of limiting fragmentation is tested in collisions at \s from 0.9 to 13 TeV.
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Total pp cross section @ LHC

m Total cross-sections at the LHC:
o,,~100 mb

L

|;—14 TEV Proton
zi} fQ
+ Ogp+ Opp+ Oppe \/\J

hard r_nre§\pf;_ Uhc"ﬁﬂ mb

~60% of the time a “hard” collision occurs W

P

~25% of the time the protons scatter elastically p P O.25mb
P

Single Diffraction

~10% of the time single diffraction occurs 1:: ﬁ: o
Dauldle Dilfpaction
~1% of the time double diffraction occurs %.y;_ O 415 mb

p
~1% of the time central (exclusive) diffraction occurs p /if/' p
V.

Il::I"tmr!: - UE| + Uin

ﬂin o Upartnn

David d'Enterria, 2011
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pp cross section

JHEP 07 (2018) 161

B  Motivation: B Analysis strategy:
» measure the inelastic pp cross section @ 13 TeV in the » Use low pile-up runs from 2015 withB=0Tand 3.8 T
largest possible phase space that is experimentally » Trigger: both beams present @ IP
accessible » Count events with an energy deposit above threshold

» the total pp cross section
Oiot(8) = 0e1(8) + Ciner(8)

-7 -
Oinet(8) = 05q(8) + 044(8) + 0ea(8) + Tna(s). > @ least one HF or CASTOR tower above 5 GeV(g,>10 ORE, >10

P X M 2
Ex=—2% ¢, = My ¢ = max(éx, &y)

§ S
ﬂ)
+ + + » Correction for noise from no-beam events
P » Data driven correction for pile-up events

» @ least one HF tower above 5 GeV (& >1 0-6)

p SR Inmk, . S Non-difractive o, gu » Correction to the particle level-different MC models:
PYTHIAS8 (D-L and MBR for diffraction), PYTHIA6, EPOS,
P QGSJET-Il, PHOJET

p y Diffractive

Single dissociation: o, events:
- largest gap
separates

e L the dissociation

p go more forward and gain information on relative
increase X

P reduce extrapolation uncertainty

P provide valuable input for phenomenological
hadronic interaction models and Monte Carlo (MC)
tuning

P Inelastic cross section required for the modelling of

systems

Non-Diffractive

. events:
pileup. + Small largest gap
* randomly located
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Inelastic pp cross section

JHEP 07 (2018) 161

85 CMS 13 TeV
o] - s CMS o ATLAS m  Most models describe the relative acceptance
-E- | e EPOSLHC QGSJETII-04 increase from (g >10%, £ >10°) to (¢ > 107, & > 10%)
o] B v PYTHIAG Z2* (SS) A PYTHIA8 CUETP8M1 (SS)
80 = ¢ PYTHIA8 Monash (DL) < PYTHIA8 MBR
75— A
B v & °
N . v . Relative cross section increase in %
- 2 Data 1.64 + 0.53
70— , f i Epos LHC 1.76
- * % QGSJETI-04 2.36
B PYTHIA 6 Z2* (SS) 1.74
65 [ pYTHIA 8 CUETP8M1 (SS) 1.52
= PYTHIA 8 Monash (DL) 3.83
B PYTHIA 8§ MBR 2.32

“;::-10'B §X>1O'?OI’§Y>1O_S

HF only: (> 10-6) = 67.5 = 0.8 (syst) = 1.6 (lumi) mb
HF or CASTOR: o(gx > 107 or g, > 10-6) = 68.6 = 0.5 (syst) = 1.6 (lumi) mb

m The measured cross sections are smaller than those predicted by the majority of models for hadron-hadron
scattering.
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B LHC is the first collider reaching an energy higher than the knee in the energy spectrum of cosmic

rays.
B Many measurements are made for UHCR at the LHC

» The comparison to LHC data is an important benchmark for the quality of the models and hence
the reliability of air shower simulations currently used to interpret cosmic ray (CR) data.
» The quality of the LHC data description varies from model to model and differs for different
observables.
P Re-tuning of model parameters to match LHC data will improve the reliability of air shower

simulations.

B A new period of data taking of LHC begins with 13.6 TeV, providing greater precision and discovery
potential than ever before.

P Future measurements at the LHC will further cross-check interaction models and help to

understand better the underlying hadron production processes.
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B Knee the origin of which is still under debate.

— Theoretical explanations have been put forward based on a change of slope in the source
spectra, effects of leakage from the Galaxy, the assumption of changes in hadronic

interactions or the production of exotic new particles

i L3

Their exact extragalactic sources and their nature, pro-
tons or heavier ions, remain still open questions to-
day [l, 2]. When reaching earth, they collide with N,O
nuclei in the upper atmosphere at c.m. energies, Vs =

il + 2By m & {2 IO ELEV) & 14-
450 TeV, up to 30 times larger than those ever reached in

In experimental particle physics, pseudorapidity, ), is a commonly used spatial coordinate describing the angle of a particle relative to the beam
axis. It is defined as

)

where 8 is the angle between the particle three-momentum P and the positive direction of the beam axis.["! Inversely,
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B  Motivation:
+ Energy carried by particles produced in the very forward
region powerful probe
¥ to study UE activity
¥ to validate MPI models and tuning
¥ First correlation study of hadron activity at very forward &
central rapidities performed @13 TeV

B Analysis strategy:
¥ Average energy reconstructed in —6.6 < n < -5.2 as a function
of the track multiplicity
¥ Activity in @ least one tower of HF calorimeter
¥ At-least one track reconstructed in CMS tracker with |n|< 2
+ Apply a cut on reco. vertex multiplicity--> reduce PU events

» Comparison with models and high energy cosmic ray air showers

» Increase with N

tracks

» UE parameter tunes determined at central rapidity can be safely
extrapolated to the very forward region!

»SIBYLL 2.1 gives the best description
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The EPOS-LHC and QGSJETII.04 generators are commonly used to describe extensive air
showers in the atmosphere initiated by cosmic ray particles, where soft physics is of pri- mary
importance. A combination of Gribov—Regge multiple scattering perturbative QCD, and string
fragmentation are the cornerstones of both models. While QGSJETII.04 includes a small
number of fundamental parameters, the phenomenology implemented in EPOS-LHC of- fers
more opportunities for tuning. In EPOS-LHC a hydrodynamic, or collective, component is
included in a parametrised form
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