On the spectral dimensionality
of quantum space(time)s

Tomasz Trze$niewski*

Institute of Theoretical Physics,
University of Wroctaw, Poland

July 13, 2022

*M. Eckstein & T. T., Phys. Rev. D 102, 086003 (2020)
M. Eckstein, B. lochum & A. Sitarz, Commun. in Math. Phys. 332, 627 (2014)
M. Arzano & T. T., Phys. Rev. D 89, 124024 (2014)

T. Trze$niewski On the spectral dimensionality of quantum space(time)s



Outline:

o Introduction

T. Trzesniewski On the spectral dimensionality of quantum space(time)s 1/21



Outline:

o Introduction

e The spectral dimensionality from both sides
@ Spectral dimension
@ Dimension spectrum

T. Trzesniewski On the spectral dimensionality of quantum space(time)s 1/21



Outline:

o Introduction

e The spectral dimensionality from both sides
@ Spectral dimension
@ Dimension spectrum

Q Analysis of two kinds of examples
@ Quantum-deformed sphere
@ x-Minkowski noncommutative spacetime

T. Trzesniewski On the spectral dimensionality of quantum space(time)s 1/21



Outline:

o Introduction

e The spectral dimensionality from both sides
@ Spectral dimension
@ Dimension spectrum

Q Analysis of two kinds of examples
@ Quantum-deformed sphere
@ x-Minkowski noncommutative spacetime

0 Conclusion

T. Trzesniewski On the spectral dimensionality of quantum space(time)s 1/21



Motivation

@ Two crucial properties of the (semi)quantum spacetime are its ef-
fective dimension and the fate of relativistic symmetries

@ It is conceivable that the (spectral) dimension ds(o =~ 0) # 4 due
to some small-scale structure of spacetime?

@ Such results were indeed obtained in e.g. Dynamical Triangula-
tions, Horava-Lifschitz gravity, Asymptotic Safety and Causal Sets

@ Almost always ds(o =~ 0) < d = 4 and most often ds(oc ~ 0) =2
@ Similar behaviour has been observed for QG models with d # 4

@ In the context of (spectral) honcommutative geometry, the heat
trace is instead characterized by the dimension spectrum®

@ Related issues include calculations of the vacuum energy density,
Casimir effect and entanglement entropy®; ds also helps to study
the asymptotic silence scenario®

a8, Carlip, CQG 34, 193001 (2017); J. Mielczarek & T. T., GRG 50, 68 (2018)

PA. Connes & H. Moscovici, GFA 5, 174 (1995); M. Eckstein & B. lochum, Springer 2018

CM. Arzano & G. Calcagni, EPJC 77, 835 (2017)
dJ. Mielczarek & T. T., PRD 96, 024012 (2017)
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Two-faced spectral dimensionality Spectral dimension
Two kinds of Examples Dimension spectrum

Spectral dimension out of diffusion

On a Riemannian manifold (M, h) of dimension d, let us consider a
(fictitious) diffusion process with the (auxiliary) time parameter o:

8@ (x — x)
VI det h(x)]’
where the Laplacian A = —h’/v,-vj, i,j=1,...,doris amore general

(pseudo)differential operator. The diffusion is characterized by the av-
erage return probability (the heat trace)

EK(X, Xo0;0) = —AK(x,X0;0), K(x,X;0)=

oy (1)

Plag)y=irycye =~=V"" /Vddx VIdeth(x)|K(x, x;0). (2)

Then the spectral dimension of M can be extracted via the formula

i dlog P(o) ;

BslE= dlogo

(3)

In particular, for RY with A = —9'9; we recover ds(c) = d.
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Two-faced spectral dimensionality Spectral dimension
Two kinds of Examples Dimension spectrum

Spectral dimension out of the heat operator

Heat trace definition extends from a Laplacian A acting on a manifold
M to a closed operator T on a separable Hilbert space #,

o0
Plo) LA es L= ) g (4)
n=0

where )\, are eigenvalues of T. To this end, e " needs to be trace-
class, which is not always true for an abstract T.

@ On a non-compact manifold M or for # with a non-compact alge-
bra of observables, one has to introduce an IR cutoff F, so that

Pl y—Frr =4 (5)

F may either factor out or lead to the IR/UV mixing.
@ Ifthe order of T is n:=ordT # 2, we should modify (3) to
dlogP(o)

d5to dlogo

(6)

but ord T is ambiguous for an abstract T — cf. x-Minkowski space.
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Two-faced spectral dimensionality Spectral dimension
Two kinds of Examples Dimension spectrum

Further subtleties of the spectral dimension

@ When the classical-limit spacetime is compact or curved

o if the kernel of T is trivial, ds(c) — oo in the IR;
e otherwise, ds(o) — 0in the IR, which can be remedied by replacing
ds(o) with the spectral variance

d
vs(o) := ds(o) — U%ds(a') E ()
in both cases, ds(o) has to be sewn with a classical profile.
@ If the full spectrum of T is unknown, ds(o) can be approximated
using a heat trace expansion but only deep in the UV regime?.
@ In order to calculate ds(o) in a pseudo-Riemannian case, one first
has to perform the Wick rotation, which is generally cumbersome.

aM. Eckstein & T. T., in preparation
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Two-faced spectral dimensionality Spectral dimension
Two kinds of Examples Dimension spectrum

Heat trace in the general setting

The heat trace of a (pseudo)differential operator T on a manifold M
has the asymptotic expansion at o = 0,

) Z ak(T) ok =9/" + 3" p(T) o' logor; (8)
1=0

k=0

o if T is differential, coefficients ax(T) are given by integrals of the
geometric invariants of (the bundle over) M, while all b;(T) = 0;

@ in the case of a non-compact M, the expansion coefficients will
generally depend on an IR cutoff F.

More generally, the asymptotic expansion of the heat trace of a closed
operator T on a separable Hilbert space # is
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Two-faced spectral dimensionality Spectral dimension
Two kinds of Examples Dimension spectrum

The dimension spectrum of an operator

The dimension spectrum of an operator T is the set of exponents

Sd(T) == Jz(k,m) c € (10)
k,m
and (p + 1) is called the order of Sd(T).
@ If we define the maximal real dimension

dsq := sup Re(2), (11)
zeSd

then the UV limit of the spectral dimension lim,_,o ds(o) = 7 dsq.

@ Dimensions z(k,m) ¢ R correspond to oscillations of P(o) at
small scales, leading to oscillations of ds(a) — cf. quantum sphere.

@ Sd does not tell about the dimensional flow or the IR limit.
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Two-faced spectral dimensionality Spectral dimension
Two kinds of Examples Dimension spectrum

Other properties of the dimension spectrum

Existence of the asymptotic heat trace expansion is not proven in gen-
eral. Moreover, sometimes it is easier to apply the Mellin transform

/ Tre T o~ do = I'(s) ¢7(s) (12)
0
and consider the associated spectral zeta function

Cr(s):=TrT~°, Re(s)>0; (13)

poles of I - {7 correspond to elements of Sd.

At a higher level, the dimension spectrum is defined for a spectral
triple (A, 7, D), where A is an algebra of observables represented on
a Hilbert space # and D is an unbounded operator acting on #.
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Two- d spectral dimensionality Quantum sphere
Two kinds of Examples r-Minkowski space

Topology of the (Podle$) quantum sphere

The quantum sphere is a homogeneous space of the g-deformed group
SU,4(2), described by a *-algebra with the generators A, B and B*,

AB = q?BA, BB* = g 2A(1-A),
AB* = g 2B*A, B'B=A(1-¢?A), (14)

where g € (0, 1). In the classical limit g — 1 we recover the algebra of
continuous functions on S2. The algebra (14) can be represented on
either of the SU(2) Hilbert spaces that are spanned by vectors:

|jam>7 me{_l7_j+1a7j}7./€Nr
hmye, me{-f,—I+1,....1}, leN+1. (15)

The classical scalar and spinor Laplacians act in these spaces as

A, m) = j(i+ 1) i, m),
APl m)y = (I + 32/, m) s . (16)
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Two- d spectral dimensionality Quantum sphere
Two kinds of Examples r-Minkowski space

Laplacians on the quantum sphere

The simplified Laplacian is the square of the so-called simplified Dirac
operator, acting on basis states as (ill-defined for g — 1)

Ai‘]m“a m>:|: S P q_(2I+1)|/7 m>:i:' (17)

(" =aq)
The (quantum) spinor Laplacian is given by the square of the full Dirac
operator and acts on basis states as

1
e Rl —(

The (quantum) scalar Laplacian is defined by the first Casimir of the
Hopf algebra t/,(s1(2)) that acts on basis states as

AZP“./ m)i =

q1/2

Ay, m) = (= g7

(@7—1-qg+d™")|j,m). (19)
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Two- d spectral dimensionality Quantum sphere
Two kinds of Examples r-Minkowski space

Calculating the spectral dimension

The spectral dimension for the Laplacian Ag" is given exactly by

[G'(log(uc)) + 4] log(uo) + F'( log(uc))
2log?(uo) + G(log(ua)) log(ua) + F(log(uo)) + R(uo)
+G( log(uc)) + uoR'(uc)

ds(”sm(a) =-2

: (20)

where G, F are certain bounded, periodic functions and R is a conver-
gent series. There are no exact formulae for ds for other Laplacians
but in the UV they can be expressed via (20) as

dsq’sp(g') = dsq’sm(o) Fir O(U) 9
d¢%(0) = dY**"(q7"/%0) + O((log #) 7). 5

It justifies our choice of 5 = 2 in all cases. dg"*™ and dg"**F both diverge
in the IR, hence they little differ in general.
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Two-faced spectral dimensionality Quantum sphere
Two kinds of Examples r-Minkowski space

Spectral dims. for different Laplacians and varying q

ds dS
3.0r

23503 4

G

gl

0.5}

o # 107 0.01 7

Figure: (left) spectral dim. for A (red) and A7 (blue) with g = 0.15, and for
classical 2-sphere with A* (green) and A* (black) Laplacians; (right) spectral
dim. for Ay, with g = 0.9 (green), g = 0.5 (yellow) and g = 0.1 (red), and for
classical 2-sphere with A*® Laplacian (blue)

The amplitude of oscillations rapidly decreases with growing g.

M. Eckstein & T. T., Phys. Rev. D 102, 086003 (2020)
(D. Benedetti, Phys. Rev. Lett. 102, 111303 (2009) — numerical result for Ag)
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e dimensionality Quantum sphere
Two kinds of Examples r-Minkowski space

Dim. spectra in the classical and quantum cases

Im(s) Im(s) Im(s)
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Figure: Dimension spectrum for different Laplacians (a) on classical 2-sphere
Sd(A®) = Sd(A*) and quantum sphere (b) SA(AF"), (c) SA(A7) = SA(AY);
where Y = 7'r/ log g (and the symbols x, * and e denote elements of Sd corresponding to
poles of the function I - ¢ of order 1, 2 and 3, respectively)

In particular, dsq = 0 and ord Sd = 3 for all quantum Laplacians.

M. Eckstein, B. lochum & A. Sitarz, Commun. in Math. Phys. 332, 627 (2014)
M. Eckstein & T. T., Phys. Rev. D 102, 086003 (2020)
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Two-faced spectral dimensionality Quantum sphere
Two kinds of Examples r-Minkowski space

n+1-dimensional x-Minkowski space

rk-Minkowski space is the spacetime covariant under the action of
r-Poincaré (Hopf) algebra. lts time and spatial coordinates satisfy

[mea]:éxa., D2 A, Tl Bad. .0, "

spanning the Lie algebra an(n), which is a subalgebra of so(n+ 1, 1).
In turn, an(n) generates the group AN(n), whose elements are defined
as the ordered exponentials of algebra elements, e.g. in the time-to-
the-right ordering they have the form

g=e PXaghX  pip cR. (23)
AN(n) (a subgroup of SO(n + 1,1), with a (n + 2) x (n + 2) matrix

representation) can be seen as the momentum space corresponding
to k-Minkowski space.
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Two-faced spectral dimensionality Quantum sphere
Two kinds of Examples r-Minkowski space

Calculating the heat trace

Calculations become simpler in classical coordinates

ko = ksinh (2) — zlep"/”papa,
i

ka 3 ep(}/ﬁpav
k_1 = rcosh (®) + 2lepo/“papa, (24)
K
satisfying k2 + k.k? — k?, = —«? and k_y > 0. The heat kernel

can be expressed, via the noncommutative Fourier transform, in the
(Euclidean) momentum space representation

K(x,X0;0) = 1 - /du(k) o~ L(K) gik(x=X0) (25)

(@n)?

where L(k) is the momentum-space version of a given Laplacian.
k-Minkowski space is actually non-compact but it has been shown that
the IR regularization factorizes.
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Two- d spectral dimensionality Quantum sphere
Two kinds of Examples r-Minkowski space

Laplacians in the momentum representation

The bicovariant Laplacian, determined by the bicovariant differential cal-
culus on k-Minkowski space, has the form

Lov(Ko, {ka}) = K2 + kak?. (26)

The bicrossproduct Laplacian is the first Casimir of the «-Poincaré algebra
(and satisfies the relation L, = Lo, + 772 £2,)

Lep(ko, {ka}) =2k (\/kg + kak@ + K2 — K) 2 (27)

The relative-locality Laplacian is given by the (squared) distance along
geodesics in momentum space

L (Ko, {ka}) = rParccosh? <l \/ kG + kaka + /<;2> ! (28)
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Two-faced spectral dimensionality Quantum sphere
Two kinds of Examples r-Minkowski space

Results for the spectral dimension

The spectral dimension can be calculated analytically for each Lapla-
cian in n+1 dim. In particular, in the case of 3+1 dim we obtain

) w20 2 b
d‘(s3+1,cv)(0_) i 2k\fo — /T e 2(2/{ o+ 1)(1 — erf(k\/0)) . (29)
—2k+/0 + /T e (2k20 — 1)(1 — erf(rk+/0))
2
(3+1,cp) Lo e 4rkc0
dg (c)=6 525 4+ 12 (30)
g erf (2;\/;) — 3%/ (*)erf (2,:/5)

2K20 Serf (251\/5) NIy eZ/(f»gZd)erf(

o (= 1 (31)

3
ZN\/E)

At small scales ox? ~ 0, we observe the dimensional drop for L.,
dimensional rise for L., (except 1+1 dim) and divergence for Ly,

li (n+1,cv) g li (n+1,cp) —2p )
UT;]O ds ) JIE]O ds ] (3 )
while at large scales we always recover lim, dg’*” =n+1. Inthe

above, it was assumed that n = 2 for all Laplacians.
(D. Benedetti, Phys. Rev. Lett. 102, 111303 (2009) — numerical result for £&+1)
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Two-faced spectral dimensionality Quantum sphere
Two kinds of Examples r-Minkowski space

Comparing spectral dims. for different Laplacians

Figure: Spectral dims. for L., (black), L., (red) and L (green) Laplacians in
3+1 dim (left) and 2+1 dim (right)

Looking at (27), (28), one may argue that n(£L.,) = 1 and n(£q) = 0.
Thus, all ds(a) curves could in principle be superimposed by using
n = n(k), such that lim,_, . n(x) = 2 and the appropriate n(x ~ 0).

M. Arzano & T. T., Phys. Rev. D 89, 124024 (2014)
M. Eckstein & T. T., Phys. Rev. D 102, 086003 (2020)
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Two-faced spectral dimensionality Quantum sphere
Two kinds of Examples r-Minkowski space

Dimension spectrum for different Laplacians

Expanding heat traces, we can read out the dimension spectra

Sd(3+1):{g}u{%“’G]N}:{27%a07*1§7*1»~--}7 01'de21,
W Syl R OTH "0 0| C osaeaa
Sd(141)=2(1=N)={},0,—%,—-1,...}, ordSd =1 (33)

for L., and

Sd(3+1) = {372}7 ordSd = 1 g

Sdia4y =2-=N=42,1,0,-1,-2,...}, ordSd =2,

Sd(1+1) —= {1}, ordSd = 1 (34)
for L.,. Here we assumed that n = 2 for both Laplacians, which is

not necessarily accurate. In the £,; case the dimension spectra do not
exist due to the divergent factor e'/? in the heat traces.

M. Eckstein & T. T., Phys. Rev. D 102, 086003 (2020)
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Comparison of two quantum spaces

How differences in geometry are uncovered:

qS? ordSd = 3 corresponds to ds(o ~ 0) ~ —4/log o

gS? Identical Sd’s but different ds(o)'s for the Laplacians Ay and Ay

xM ord Sd = 2 corresponds to ds(o ~ 0) ~ 2a/(a + Bologo) for Ly,
and ds(c = 0) ~ 2+ 2a/(a+ Bologo) for L,

kM Sd’s cannot coincide even for the order n = 7(x) defined so that

d(”+1)(a) would not depend on a Laplacian

e 4

Independent on a choice of Laplacian:

qS? The presence of oscillations in ds(o) — IR/UV mixing?
qS? Third order poles in Sd — presence of singularities?

kM The lack of oscillations in ds(o) — less fractal structure?
xM Second order poles in Sd in 2+1 dim — and generally in 2n+1 dim?J
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Summary

Conclusions and open questions

@ Itis much more informative to study all heat trace properties than
only the spectral dimension or dimension spectrum

@ The spectral dimension does not easily see the possible structure
of complex exponents and oscillations

@ The latter arise in systems with the discrete scale invariance

@ The dimension spectrum does not capture the scale dependence,
including the classical (IR) limit

@ The latter may track the emergence of self-similarity in the UV

@ The oscillations may possibly affect CMB, stochastic GW back-
ground, thermodynamics of photons...2

@ What is the reason for radical differences between our examples?
@ Should the order of an operator be defined as scale-dependent?

4G. Calcagni, PRD 96, 046001 (2017); G. Amelino-Camelia et al., PLB 774, 630 (2017);
E. Akkermans et al., PRL 105, 230407 (2010)

v
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Two kinds of E

r-Poincaré (Hopf) algebra in 3+1 dim

The x-Poincaré algebra is a particular deformation of the Poincaré al-
gebra. In the so-called bicrossproduct basis, its Lorentz subalgebra is
undeformed, to wit (a=1,2,3, 1 =0,1,2,3)

[Ma» Mb] 7 /GabcMca [Maa Nb] T iEach07 [Naa Nb] T _ieabcMC»
[Ma, Po] =0, (MR l=ieustf s lBstl | 510 (35)

and the deformation occurs only for the brackets
[Naa'DO] < iPa7

: K _oP /k 1 i
(S| 715, (2 (1 _ g 2P/ ) i 2K/%PC) R AR ()

where k € R, while the classical limit is given by K — +oc0. The &-
Poincaré algebra is also a non-trivial coalgebra with the antipode.
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Two kinds ples

r-Poincaré algebra — the coalgebra

The coproducts and antipodes for its Lorentz generators have the form
AMy=M; 01 +1Q My, S(Mz) = —M,,
ANz = Na® 1+ 75/ @ Ny + %Eabcpb ® M,
S(Na) = —eP/*N, + %eabcePO/"Pch. (37)

The k-Poincaré algebra can be obtained from the g-deformed anti-de
Sitter algebra Uy(s0(3,2)) by taking the limit of the de Sitter radius
R — oo and the deformation parameter g — 1, with the fixed ratio

Rlogg=«x~"'. (38)
In the bicrossproduct basis used above, this Hopf algebra becomes

U(so0(3,1)) »a T, where T is the enveloping algebra of translations.
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Coalgebraic structure of momenta

The product of two plane waves g = e P XagitoXo h = =10 Xagi®Xo jg

gh= e (P*®a) Xa gi(PBG0)Xo _ g i(PP+e P/ %) Xa gi(Po+G0) Xo (39)

The non-abelian addition p,, ® q,, can be reconstructed by the trans-
lation generators P, acting as P.(p) = p., P.(g) = g, on a pair of
points (p, @) in momentum space via the coproducts

APy =Py®1+1® P, AP, =P,®1+e /"o P,. (40)

The inverse element g—' = e (9PN XeglEmX% — &P Xagin i
similarly given by the action of the antipodes

S(Po) = —Fo, S(P.) = —ef/*P,. (41)
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Lorentzian mapping of momentum space

Acting with g on a spacelike vector
(0,...,0,x) one obtains g > (0,...,0,k) =
(ko, {Ka}, k—1), where
1
ko = K sinh (R __gPo/rp pd
0 (0 50 (K)+2He Pap",
ka > epO/Hpaa
1
k_1 = rcosh (&) — Ee‘%/“papa. (42)
The coordinates obey —k2 + kak? + k2, = K2

and ko + k_1 > 0. In the classical limit K — oo
we recover

lim k0:p07 lim ka:paa

K—00 K—>00

lim k1 =o00. (43)
K— 00

T. Trzesniewski On the spectral dimensionality of quantum space(time)s
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Euclidean mapping of momentum space

Acting with g on a timelike vector (x,0,...,0)
one obtains g (k,0,...,0) = (k_1, {ka}, ko),
where
; 1 )
ko = & sinh (2) — EGPO/ pap°,
ka 7 ePO/Hpaa

k_1 = kcosh (2) + ;—HePO/"papa. (44)

The coordinates obey k2 + kak@ — k?; = —k?
and k.4 > 0. This can also be achieved

via the Wick rotation (x + i, po — ipg) and  Figure: Euclidean space of

(ko — iko, k1 — ik_1). momenta
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