Prospects for neutrino decoherence measurements at KM3NeT

João Coelho for the KM3NeT Collaboration APC Laboratory

15 July 2022

Outline

- 1. Theoretical context
- 2. Experimental signatures
- 3. KM3NeT results
- 4. Epilogue: Open questions on phenomenological model

QG and Decoherence

- At Planck scales spacetime may be permeated with short-lived horizons
- Could such horizons act as a quantum bath, generating non-unitary quantum evolution?

Unitary Non-Unitary $\partial_t \rho = -i[H,\rho] + \not {\delta} H(\rho)$

Dimensional Analysis

 $\delta H \sim \mu^2 / M_P$

 $\mu \sim E? \qquad \mu \sim \Delta E?$

QG and Decoherence

- At Planck scales spacetime may be permeated with short-lived horizons
- Could such horizons act as a quantum bath, generating non-unitary quantum evolution?

Unitary Non-Unitary $\partial_t \rho = -i[H,\rho] + \frac{1}{2} \sum_j 2A_j \rho A_j^{\dagger} - \{A_j^{\dagger}A_j,\rho\}$

Lindblad Equation:

Most general Markovian evolution that preserves probabilities even in the environment system

Neutrino Oscillations

- Neutrinos are created in a superposition of mass states
- Time evolution generates flavour oscillations

Unitary QM

$$P_{\alpha\beta} = \frac{1}{2} \sin^{2} 2\theta [1 - \cos \Delta t]$$

$$P_{\alpha\beta} = \sum_{i} U_{\alpha i} |v_{i}\rangle$$

$$P(v_{\alpha} \rightarrow v_{\beta}) = \left| \langle v_{\beta} | e^{-iHt} | v_{\alpha} \rangle \right|^{2}$$

$$< H > .t \sim \Delta E.L \sim \frac{\Delta m^{2}L}{2E}$$

1

Neutrino Decoherence

- Interaction with some environment \rightarrow Mixed states
- Time evolution given by Lindblad equation

$$P_{\alpha\beta} = \frac{1}{2} \sin^2 2\theta [1 - e^{-\Gamma t} \cos \Delta t]$$

$$P_{\alpha\beta} = \frac{1}{2} \sin^2 2\theta [1 - e^{-\Gamma t} \cos \Delta t]$$

$$\frac{\partial_t \rho = -i[H, \rho] +}{\frac{1}{2} \sum_{j} 2A_j \rho A_j^{\dagger} - \{A_j^{\dagger} A_j, \rho\}}$$

$$P_{\alpha\beta} = \frac{\partial_t \rho}{2\theta^{1/2}} + \frac{\partial_t \rho}{2\theta^{1/2}} +$$

-1

Energy Dependence

- Little is known about how Γ depends on energy
- Γ has dimension of energy ٠
- Dimensional analysis guesses:
 - $\Gamma(E) \sim E^2/M_P \sim 10^{-19} \text{ GeV} * E^2$?
 - $\Gamma(E) \sim \Delta m^2/M_P \sim 10^{-40} \text{ GeV}$?
 - $\Gamma(E) \sim \Delta E^2/M_P = (\Delta m^2)^2 / (E M_P) \sim 10^{-61} \text{ GeV} * E^{-1}$?
- Take a phenomenological approach: $\Gamma(E) = \Gamma_0 (E/E_0)^n$

Energy Dependence

• Little is known about how Γ depends on energy

From the previous equation, the decoherence time can be inferred

Luciano
$$\tau_{\rm D} = \frac{1}{\sigma (\Delta E^2)^2} = \frac{\hbar^6}{16 m^2 \ell_{\rm p}^4 t_{\rm p} (\Delta E^2)^2}$$

 $\Gamma(E) \sim m^2 (\Delta m^2)^2 / M_P{}^5 \sim 10^{-156} \text{ GeV}$

3x3 Systems

- Neutrinos come in 3 flavours
- Hilbert space can be described by SU(3)
- Expand all operators in generators of SU(3) (Gell-Mann Matrices)

 $\partial_t \rho = -i[H,\rho]$ $\mathcal{O} = \sum_{j} \operatorname{tr} \left[\mathcal{O} F_{j} \right] F_{j}$ Simple block-diagonal form $\partial_t \vec{\rho} = \widetilde{H}_{vac} \vec{\rho}$ $\widetilde{H}_{vac} = \begin{bmatrix} 0_{3\times3} & 0 & 0 & 0\\ 0 & -i\sigma_2\Delta_{21} & 0 & 0\\ 0 & 0 & -i\sigma_2\Delta_{31} & 0\\ 0 & 0 & 0 & -i\sigma_2\Delta_{32} \end{bmatrix}$ System of 9 coupled equations

 $[F_j, F_k] = i \sum_{l} f_{jkl} F_l$

3x3 Systems

- Neutrinos come in 3 flavours
- Hilbert space can be described by SU(3)
- Expand all operators in generators of SU(3) (Gell-Mann Matrices)

$$\partial_{t}\rho = -i[H,\rho] + \frac{1}{2} \sum_{j} 2A_{j}\rho A_{j}^{\dagger} - \{A_{j}^{\dagger}A_{j},\rho\}$$

$$\begin{array}{c} \text{Operators as sum} \\ \text{SU(3) of generators} \\ \mathscr{O} = \sum_{j} \operatorname{tr} [\mathscr{O}F_{j}] F_{j} \end{array}$$

$$\begin{array}{c} \text{In general* 36 parameters!} \\ \widetilde{L}_{jk} = \frac{1}{2} \sum_{lmn} (\vec{a}_{l} \cdot \vec{a}_{m}) f_{lkn} f_{nmj} \\ \widetilde{L}_{jk} = \frac{1}{2} \sum_{lmn} (\vec{a}_{l} \cdot \vec{a}_{m}) f_{lkn} f_{nmj} \\ \end{array}$$

$$\begin{array}{c} \text{Diagonal w/ energy conserv.} \\ O_{t}\vec{\rho} = \left(\widetilde{H} - \widetilde{L}\right)\vec{\rho} \\ \text{System of 9} \\ \text{coupled equations} \end{array}$$

$$\widetilde{L} = \begin{bmatrix} 0_{3\times3} & 0 & 0 & 0 \\ 0 & I_{2}\Gamma_{21} & 0 & 0 \\ 0 & 0 & I_{2}\Gamma_{31} & 0 \\ 0 & 0 & 0 & I_{2}\Gamma_{32} \end{bmatrix}$$

*But already assuming increasing entropy $(A_i^{\dagger} = A_j)$

 $[F_j, F_k] = i \sum_{i} f_{jkl} F_l$

Cauchy-Schwarz

- Γ_{ii} are not independent
- Related by Cauchy-Schwarz inequalities

$$\widetilde{L}_{jk} = \frac{1}{2} \sum_{lmn} \left(\vec{a}_l \cdot \vec{a}_m \right) f_{lkn} f_{nmj}$$

$$\Gamma_{21} = |\vec{a}_3|^2, \ \Gamma_{31} = \frac{1}{4} |\vec{a}_3 + \sqrt{3}\vec{a}_8|^2, \ \Gamma_{32} = \frac{1}{4} |\vec{a}_3 - \sqrt{3}\vec{a}_8|^2$$
$$x \ge \left(\sqrt{y} - \sqrt{z}\right)^2$$

$$\begin{split} & \{x, y, z\} \ = \ \text{Any permutation of} \quad \left\{\Gamma_{21}, \Gamma_{31}, \Gamma_{32}\right\} \\ & \text{e.g.:} \quad \Gamma_{21} = 0 \Longrightarrow \Gamma_{31} = \Gamma_{32} \end{split}$$

Solar Neutrino Constraints

- Solar scale oscillations strongly constrain decoherence
- Sensitive to lower frequency ∆m²₂₁

 Δm_{32}^2

 Δm_{21}^2

• Decoherence coupling is dominated by Γ_{21}

Atmospheric Neutrinos

- Very long baselines available
- Strong matter effects give interesting patterns
- Great source for characterizing energy dependence of possible decoherence effects

Atmospheric Neutrinos

KM3NeT Collaboration

The ORCA Detector

Two Detector Scales

36m vert. x 90m horiz. spacing TeV - PeV **ARCA BB1 ARCA BB2** ORCA

9m vert. x 20m horiz. spacing GeV - TeV

Preliminary Sensitivities

- Strong constraints on a wide range of power laws
- ORCA dominates negative powers, ARCA takes over positive ones

World Leading

Epilogue

Energy Conservation

- Simple constraint equation: $\partial_t \mathrm{tr}[H\rho] = 0$
- But which H is conserved?
 - Vacuum? Decoherence is due to neutrino mass measurement (QG-like?)
 - Matter? Decoherence is due to effective neutrino energy (EW-like?)
- Most analyses assume the latter
- Carpio et al, argue this violates the Born-Markov assumptions of the Lindblad master equation [PRD 97, 115017 (2018); PRD 100, 015035 (2019)]
- Effect is small at low energies, but becomes relevant at the resonance
- Also important role from neutrino mass ordering

Matter Effects w/ Deco.

Summary

 Decoherence in neutrino oscillations may be a strong probe of quantum gravity effects

• With increasing precision, more sophisticated phenomenological treatments are now required

 KM3NeT will be able to probe never tested regions of parameter space

• Relationship with matter effects needs to be better understood, especially for atmospheric neutrinos

- For more details:
 - Master's Thesis [1]
 - Poster at Neutrino 2022 [2]

Thank you!

Systematics Impact

Parameter	Central value (IH)	al value (IH) Prior		Prior		Parameter	Prior
$\frac{1}{1} \frac{1}{1} \frac{1}$	$2 = 1 = 10^{-3} (2 = 10^{-3})$			Energy slope	0.3		
$\Delta m_{\rm atm}^2 [\rm eV^2]$	$[2.515 \cdot 10^{-5} (-2.498 \cdot 10^{-5})]$ free			Energy scale	0.06		
$\Delta m_{aa1}^2 [\text{eV}^2]$	$7.42 \cdot 10^{-5}$	fixed		Zenith angle slope	0.02		
\circ				$\nu_e/\bar{\nu}_e$	0.07		
$\Theta_{12}[$	33.44	nxed		$\nu_{\mu}/\bar{\nu}_{\mu}$	0.05		
Θ ₁₃ [°]	8.57	0.13		$(\nu_{\mu}+\bar{\nu}_{\mu})/(\nu_{e}+\bar{\nu}_{e})$	0.02		
(Pag [°]	40.2	froo		$n_{\rm showers}$	free		
023[]	49.2	nee		<i>n</i> _{middles}	free		
δ_{CP} [°]	149 (287)	free		n _{tracks}	free		

Current Limits

.

	n = -2	n = -1	n = 0	n = 1	n = 2
--	--------	--------	-------	-------	-------

	IceCube (this work)					
ng	Atmospheric ($\gamma_{31} = \gamma_{32}$)	$2.8 \cdot 10^{-18}$	$4.2 \cdot 10^{-21}$	$4.0\cdot10^{-24}$	$1.0\cdot10^{-27}$	$1.0\cdot10^{-31}$
deri	Solar I ($\gamma_{31} = \gamma_{21}$)	$6.8 \cdot 10^{-19}$	$1.2\cdot 10^{-21}$	$1.3\cdot 10^{-24}$	$3.5\cdot10^{-28}$	$1.9\cdot10^{-32}$
I OI	Solar II ($\gamma_{32} = \gamma_{21}$)	$5.2 \cdot 10^{-19}$	$9.2\cdot 10^{-22}$	$9.7\cdot 10^{-25}$	$2.4\cdot 10^{-28}$	$9.0 \cdot 10^{-33}$
rma	DeepCore (this work)					
No	Atmospheric ($\gamma_{31} = \gamma_{32}$)	$4.3\cdot10^{-20}$	$2.0\cdot10^{-21}$	$8.2\cdot 10^{-23}$	$3.0\cdot10^{-24}$	$1.1 \cdot 10^{-25}$
	Solar I ($\gamma_{31} = \gamma_{21}$)	$1.2 \cdot 10^{-20}$	$5.4\cdot10^{-22}$	$2.1\cdot 10^{-23}$	$6.6\cdot10^{-25}$	$2.0\cdot10^{-26}$
	Solar II ($\gamma_{32} = \gamma_{21}$)	$7.5 \cdot 10^{-21}$	$3.5\cdot 10^{-22}$	$1.4\cdot10^{-23}$	$4.2\cdot10^{-25}$	$1.1\cdot10^{-26}$

	IceCube (this work)					
	Atmospheric ($\gamma_{31} = \gamma_{32}$)	$6.8 \cdot 10^{-19}$	$1.2 \cdot 10^{-21}$	$1.3\cdot 10^{-24}$	$3.5\cdot10^{-28}$	$1.9\cdot10^{-32}$
ring	Solar I ($\gamma_{31} = \gamma_{21}$)	$5.2 \cdot 10^{-19}$	$9.2\cdot 10^{-22}$	$9.8\cdot 10^{-25}$	$2.4\cdot 10^{-28}$	$9.0 \cdot 10^{-33}$
Orde	Solar II ($\gamma_{32} = \gamma_{21}$)	$2.8 \cdot 10^{-18}$	$4.2\cdot 10^{-21}$	$4.1\cdot10^{-24}$	$1.0\cdot10^{-27}$	$1.0\cdot10^{-31}$
ed C	DeepCore (this work)					
vert	Atmospheric ($\gamma_{31} = \gamma_{32}$)	$1.4 \cdot 10^{-20}$	$5.8\cdot 10^{-22}$	$2.2\cdot 10^{-23}$	$7.5\cdot 10^{-25}$	$2.3\cdot 10^{-26}$
l II	Solar I ($\gamma_{31} = \gamma_{21}$)	$8.3 \cdot 10^{-21}$	$3.6\cdot10^{-22}$	$1.4\cdot 10^{-23}$	$4.7\cdot 10^{-25}$	$1.3\cdot 10^{-26}$
	Solar II ($\gamma_{32} = \gamma_{21}$)	$5.0 \cdot 10^{-20}$	$2.3\cdot 10^{-21}$	$9.4 \cdot 10^{-23}$	$3.3\cdot 10^{-24}$	$1.2 \cdot 10^{-25}$
	Previous Bounds					
	SK (two families) [7]		$2.4\cdot10^{-21}$	$4.2\cdot 10^{-23}$		$1.1\cdot10^{-27}$
	MINOS (<i>γ</i> ₃₁ , <i>γ</i> ₃₂) [32]		$2.5\cdot 10^{-22}$	$1.1\cdot 10^{-22}$	$2 \cdot 10^{-24}$	
	KamLAND (γ_{21}) [15]		$3.7\cdot10^{-24}$	$6.8\cdot10^{-22}$	$1.5\cdot10^{-19}$	

Coloma et al: EPJC 78, 614 (2018)

Production ongoing around Europe

- ORCA: 10 lines operational since July 2022
- ARCA: 19 lines operational since June 2022

Measuring Neutrinos

Reco Performance

- Energy resolution: ~25% (Close to limit arXiv:1612.05621)
- Angular resolution: Better than 15 degrees at relevant energies

29

3v Formulas

$$\mathcal{P}_{\mu\mu}^{(3\nu)} = 1 - 2\sum_{j>k} \{ |\tilde{U}_{\mu j}|^2 |\tilde{U}_{\mu k}|^2 (1 - e^{-\Gamma_{jk}L} \cos \tilde{\Delta}_{jk}L) \},\$$

1.0F

$$\begin{split} \mathcal{P}^{(3\nu)}_{\mu\mu} &\approx 1 - \frac{1}{2} \sin^2 \tilde{\theta}_{13} \sin^2 2\theta_{23} [1 - e^{-\Gamma_{21}L} \cos 2\tilde{\phi}_{-}] \\ &- \frac{1}{2} \cos^2 \tilde{\theta}_{13} \sin^2 2\theta_{23} [1 - e^{-\Gamma_{32}L} \cos 2\tilde{\phi}_{+}] \\ &- \frac{1}{2} \sin^2 2\tilde{\theta}_{13} \sin^4 \theta_{23} [1 - e^{-\Gamma_{31}L} \cos 2\tilde{\phi}_{0}], \end{split}$$

θ₂₃ ORCA 0.8 9.0 9.0 9.0 JUNO θ₁₂\ DUN∉ θ_{13} NOvA T2K 0.2 0.0 10⁻⁴ 10⁻⁶ **10**⁻⁵ 10⁻³ 10⁻² 10-1 $2E.V_e$ (eV²)

where

$$\begin{split} \tilde{\phi}_0 &\equiv \phi \sqrt{(\cos 2\theta_{13} - \hat{A})^2 + \sin^2 2\theta_{13}}, \\ \tilde{\phi}_{\pm} &\equiv \frac{1}{2} [(1 + \hat{A})\phi \pm \tilde{\phi}_0], \end{split}$$

15 Jul 2022

Matter Effects

Resonances

15 Jul 2022

Resonances

15 Jul 2022

15 Jul 2022

Matter Effects w/o Deco.

Resonance Formulas

$$\sin^2 2\theta_{13}^m \equiv \sin^2 2\theta_{13} \left(\frac{\Delta m_{31}^2}{\Delta^m m^2}\right)^2$$

Depends on sign of Δm_{31}^2 (NMO)

$$\Delta^m m^2 \equiv \sqrt{(\Delta m_{31}^2 \cos 2\theta_{13} - 2 E_{\nu} A)^2 + (\Delta m_{31}^2 \sin 2\theta_{13})^2},$$

$$E_{\rm res} \equiv \frac{\Delta m_{31}^2 \, \cos 2\theta_{13}}{2 \sqrt{2} \, G_F \, N_e} \simeq 7 \, {\rm GeV} \, \left(\frac{4.5 \, {\rm g/cm}^3}{\rho}\right) \, \left(\frac{\Delta m_{31}^2}{2.4 \times 10^{-3} \, {\rm eV}^2}\right) \, \cos 2\theta_{13} \, .$$