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Introduction: Deformed symmetries

e Several quantum gravity scenarios predict that fundamental symmetries
should be deformed: they acquire quantum features, in a sense.

* The natural mathematical objects to study these deformations are quantum
groups, algebras of functions on regular groups, with a non-commutative

product.

 The group parameters become operators in the deformed case: we want to
study and give physical meaning to the states on which these operators act.

* As a case study, we will consider the SU,, (2) quantum group, to investigate
purely rotated systems.



SU(2) coordinatization and Euler Angles

* In classical and guantum mechanics, rotation transformations are governed by
the group SU(2)

SU(Z)BU:(a _C) a,ceC: lal2+]c|2=1

*

C a

a = e sin i c = e cos i
2 2

e SU(2) parameters and Euler Angles




Link between SU(2) and SO(3)

* The connection between SU(2) and classical rotations is established via
the canonical homomorphism with SO(3).
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SU,(2)

* Parameters become the generators of C, (SU(Z)), the algebra of complex functions
on SU(2)

(e - (ORI €. (s0(2)

endowed with a non-commutative product realized by

* * * *

ac = qca ac = gqc a cC =cC¢C

c'c+a*a=1 aa* —a*a = (1—-g%)c*c

* ¢ is a«small» deformation parameter, larger than 0 and close to 1.

Idempotent states on coquantum on Uq(2)Uq(2), Suq(2)SUq(2), and SOq(3) - Uwe Franz Adam Skalski and Reiji Tomatsu - Journal of Noncommutative Geometry




Homomorphism between SU,(2) and SO,(3)

gy (50(3)) = Cy(SU(2)/Z,), realizing the g-analogue of the SU(2) to SO(3)
homomorphism

* A 3x3 matrix representation is given by
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l 1 i
| 5@ +ac® = (@) —q(c)?) @ +q? + @) +q()?) -5(1+¢%) (@c-c'd)
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* This is not a real valued matrix anymore, it contains operators instead

. Podles, “Symmetries of quantum spaces. subgroups and quotient spaces of quantumsu (2) andso
(3) groups,” Communications in Mathematical Physics, vol. 170, no. 1, pp. 1-20, 1995



SU,(2) representations

The Hilbert space containing the two unique irreducible representatlons of the SU,(2)
algebrais H = H, @ H,, where H, = L*(S") ® L*(S") @ fand H, = L° (51)

p@lmy =en)y;,  p@dny=e™n) pn =0 p(cn) =0;

w(a)|n,d ,€) = eie\/(l —qg*M)In—-1,6,¢e); m(a*)|n,b,€) = e‘ie\/(l —q*"*2)|n+1,6,¢€);

n(c)|n, & ,€) = e¥q™|n, 8, €); n(c)|n,8,€) = et q™n, 6, €);

e a =e'Xcos (g) c.= ea¥sin (g) (Classical case)



Quantum Euler Angles (1)

 We promote the SU(2)-Euler Angles relations to the quantum case.

« Comparing the phases of a and c to their classical analogues, we identify

e with y and 6 with ¢. They are continuous and play the same role as
before.

* Exploiting the fact that c is a diagonal operator

8(n)

qn LN <T> o 0(n) = ZArcin(q”)



Quantum Euler Angles (2)

O(n) = 2Arcin(q™)
q=0.99




Physical interpretation and Quantum rotations

A state |ip) € H is representative of the relative orientation between two
reference frames, A and B.

* Our interpretation is that the mean value of R, on [) will give an estimate of the
entries of the rotation matrix that connects A and B

(W|Rg )5

 However, due to non-commutatitvity, we will have a non vanishing variance for the
matrix elements, in general:

Ay = \/(1P|R62,|1/J)ij — (YIRq )



Example: rotation around the z-axis

* Consider a state |y) in representation p. The mean value of the rotation matrix
iS:

cos(2y) —sin(2y) O
(X|Rqlx)i; = (sin( 2y)  cos(2y) O)
0 0 |

* It coincides with a standard SO (3) rotation matrix. Indeed, computing the
uncertainties, we have

A;; = 0 — Sharp rotations around the z-axis



«Physical» states construction

* To effectively describe rotations’ deformations, we demand that our states of
geometry |Y) satisfy

(Riy) ™ (w|Rqlw),, ~ 1 A;j > 0 when g — 1

where (Rij) are the entries of a classical rotation matrix.

* Since (¢, x) behave as in the classical case, we must look for states of the
form

¥)= ) ealn 6,2)
n=0

heavily weighted around n and which satisfy the criteria above,
to properly describe a rotation deformation of Euler angles (¢, x, 6 (1))



Example: rotation of T around the x-axis

 Consider the state [Y) = |n; x; @) = ‘0;%; 0>. The relevant quantities,
working at first order in (1 — q)

1-(1—-q) 0 0
(W|Ry ) = 0 -1+(1-¢q) 0 +0o(1—-q)
0 0 —1+2(1—9q)

v2(1-¢q) v2(1-¢q) y2(1-¢)
(W|AR W) = | V2(1—q) V2(1—q) J2(1—¢q) |+o(1—q)
J2(U =) ) 0

* Asq — 1, these correctly reproduce a rotation of 7w around the x-axis with
null uncertainty.




Agency dependent space

* The choice of the z-axis is “special”. Rotations around it are not affected by
uncertainties.

* A rotation of this z-axis of an angle m about the x-axis is affected by a “large”
uncertainty

* An observer A who identifies a sharp object along its z-axis, will identify a
“fuzzy” object along the z-axis of an observer B rotated of an angle ™ about

the x-axis with respect to A.

* Therefore, the space we infer depends on the choice of the z-axis...in this
sense we say that space is agency dependent



Thanks for the attention!



