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Introduction: Deformed symmetries

• Several quantum gravity scenarios predict that fundamental symmetries
should be deformed: they acquire quantum features, in a sense.

• The natural mathematical objects to study these deformations are quantum 
groups, algebras of functions on regular groups, with a non-commutative 
product. 

• The group parameters become operators in the deformed case: we want to 
study and give physical meaning to the states on which these operators act.

• As a case study, we will consider the ௤ quantum group, to investigate 
purely rotated systems.  



• In classical and quantum mechanics, rotation transformations are governed by 
the group SU(2)

∗

∗
ଶ ଶ

௜ఞ ௜థ

• SU(2) parameters and Euler Angles

ఈାఊ

ଶ
గ

ଶ

ఈିఊ

ଶ

coordinatization and Euler Angles



Link between and 

ଶ ଶ ∗ ଶ ∗ ଶ ଶ ଶ ∗ ଶ ∗ ଶ ∗ ∗

ଶ ଶ ∗ ଶ ∗ ଶ ଶ ଶ ∗ ଶ ∗ ଶ ∗ ∗

∗ ∗ ∗ ∗ ∗

• The connection between and classical rotations is established via 
the canonical homomorphism with .



• Parameters become the generators of ௤ the algebra of complex functions
on 

endowed with a non-commutative product realized by

• is a «small» deformation parameter, larger than 0 and close to 1.

Idempotent states on coquantum on Uq(2)Uq(2), SUq(2)SUq(2), and SOq(3) - Uwe Franz Adam Skalski and Reiji Tomatsu - Journal of Noncommutative Geometry 
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Homomorphism between and 

• ௤ ௤ ଶ , realizing the q-analogue of the to 
homomorphism

• A 3x3 matrix representation is given by 

𝑅௤ =
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(𝑎ଶ − 𝑞𝑐ଶ + 𝑎∗ ଶ − 𝑞 𝑐∗ ଶ)

𝑖
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(−𝑎ଶ + 𝑞𝑐ଶ + 𝑎∗ ଶ − 𝑞 𝑐∗ ଶ)

1
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1 + 𝑞ଶ (𝑎∗𝑐 + 𝑐∗𝑎)

𝑖
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(𝑎ଶ + 𝑞𝑐ଶ − 𝑎∗ ଶ − 𝑞 𝑐∗ ଶ)

1
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(𝑎ଶ + 𝑞𝑐ଶ + 𝑎∗ ଶ + 𝑞 𝑐∗ ଶ) −

𝑖

2
(1 + 𝑞ଶ) (𝑎∗𝑐 − 𝑐∗𝑎)

−(𝑎𝑐 + 𝑐∗𝑎∗) 𝑖(𝑎𝑐 − 𝑐∗𝑎∗) 1 − (1 + qଶ)𝑐𝑐∗

• This is not a real valued matrix anymore, it contains operators instead

. Podles, “Symmetries of quantum spaces. subgroups and quotient spaces of quantumsu (2) andso
(3) groups,” Communications in Mathematical Physics, vol. 170, no. 1, pp. 1–20, 1995



representations 

• The Hilbert space containing the two unique irreducible representations of the ௤(2) 
algebra is గ ఘ, where గ
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Quantum Euler Angles (1) 

• We promote the SU(2)-Euler Angles relations to the quantum case. 

• Comparing the phases of and to their classical analogues, we identify 
with and with . They are continuous and play the same role as 

before.

• Exploiting the fact that is a diagonal operator
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Quantum Euler Angles (2) 

௡

q=0.99



Physical interpretation and Quantum rotations

• A state is representative of the relative orientation between two
reference frames, A and B.

• Our interpretation is that the mean value of ௤ on will give an estimate of the 
entries of the rotation matrix that connects A and B
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• However, due to non-commutatitvity, we will have a non vanishing variance for the 
matrix elements, in general:
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Example: rotation around the z-axis

• Consider a state 𝜒 in representation 𝜌. The mean value of the rotation matrix
is:

• It coincides with a standard rotation matrix. Indeed, computing the 
uncertainties, we have

௜௝ Sharp rotations around the z-axis
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«Physical» states construction

• To effectively describe rotations’ deformations, we demand that our states of 
geometry satisfy 

where ௜௝ are the entries of a classical rotation matrix.
• Since behave as in the classical case, we must look for states of the 

form 

heavily weighted around and which satisfy the criteria above,
to properly describe a rotation deformation of Euler angles 
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Example: rotation of around the x-axis

• Consider the state గ

ଶ
. The relevant quantities, 

working at first order in 

• As , these correctly reproduce a rotation of around the x-axis with 
null uncertainty. 
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Agency dependent space

• The choice of the z-axis is “special”. Rotations around it are not affected by 
uncertainties.

• A rotation of this z-axis of an angle about the x-axis is affected by a “large” 
uncertainty

• An observer A who identifies a sharp object along its z-axis, will identify a 
“fuzzy” object along the z-axis of an observer B rotated of an angle about 
the x-axis with respect to A.

• Therefore, the space we infer depends on the choice of the z-axis…in this 
sense we say that space is agency dependent



Thanks for the attention! 


