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Conformal field theories
CFT = QFT invariant under conformal transformations:

transformations which locally preserve angles.

CFTs are defined by their CFT data:

.

Extrema of the RG flow      Critical phenomena      String theory      Quantum gravity

Primary operators       

Scaling dimensions

OPE coefficients



• CFT (QFT) simplifies in certain limits when a small/large

parameter exists. (Perturbative expansion)

• Our large parameter(s): conserved charge(s) of the internal

symmetry group of the CFT:

Solve CFT

LARGE-CHARGE EXPANSION FOR CFT DATA



Diagrammatics
Conventional Feynman diagram expansion (in the number of loops):

Tree-level diagrams dominates

Large-N (number of colors) expansion in gauge theories

Planar diagrams dominates

Large-Nf (number of flavors) expansion

Bubble diagrams dominates

Large-charge expansion



Quantum physics “classicalizes” in the presence of large

quantum numbers.

Quantum VS Classical

QUANTUM ground state energy:       CLASSICAL ground state energy:

Hydrogen atom with infinite mass of the proton at fixed magnetic 

quantum number m:

.

LARGE-CHARGE EXPANSION = 

SEMICLASSICAL EXPANSION



Charging the O(N) model

Standard Model Higgs Superfluid He4, Magnets, 

Superconductors, ..

We study the O(N) scalar theory in d= 4-ε dimensions where it 
features an infrared Wilson-Fisher fixed point



The eigenvalues of the dilation charge (the scaling dimensions) become 

the energy spectrum on the cylinder (state-operator correspondence)

We compute the scaling dimension of operators with total charge Q and 

the minimal scaling dimension. 
i.e. we compute the ground state energy on the cylinder.

Map to the cylinder

.

LARGE-CHARGE EXPANSION = 

FINITE DENSITY QFT



We compute the scaling dimension of operators with total charge Q 
and the minimal scaling dimension. 

These operators transform according to the Q-indices traceless 
symmetric O(N) representations.

What are we computing?

Physically, these operators represent anisotropic perturbations

in O(N)-invariant systems. Their scaling dimension define a set

of crossover (critical) exponents measuring the stability of the

system (e.g. magnets) against anisotropic perturbations (e.g.

crystal structure).



Computation

Conformal

coupling

Charge-fixing

Every Δk resums an infinite series of Feynman diagrams.

To get the ground state energy on the cylinder we consider the matrix 

element of the evolution operator between charge-Q states.

Q counts loops. 
Computing the path integral semiclassically, we have 



Given by the effective action evaluated on the classical solution of the EOM

Leading order: ∆−1

This classical result resums an infinite number of Feynman diagrams!

Q counts the number of external legs. 

g counts the number of vertices. Many-loops – Many-legs



At NLO we have to compute a quadratic (Gaussian) path integral.

∆0 is given by the fluctuation determinant around the classical trajectory

Next-to-leading order: ∆0

labels the eigenvalues of the momentum which have degeneracy     . 

Dispersion relations of the spectrum.



Boosting perturbation theory

Red terms: Δ-1

Blue terms: Δ0

By expanding the Δk‘s in the limit of small ‘t Hooft-like coupling A=gQ,

we obtain the conventional perturbative expansion

Complete 4-loop (ε4) scaling dimension obtained by combining our 

results with the known perturbative results for Q= 1, 2, 4.

Infinite number of checks for future diagrammatic computations:
4-loop: I. Jack & D.R.T. Jones, Phys.Rev.D 103 (2021) 8, 085013

5-loop: Q. Jin & Y. Li, 2205.02535 [hep-th] (2022)

6-loop: A. Bednyakov & A. Pikelner, 2208.04612 [hep-th] (2022)



• Efficient CFT data computation.

• Non-trivial tests of dualities in QFT.

• Access the large-order behavior of perturbation theory.

• Gain insight on the structure of QFT (e.g. Convex 
Charge Conjecture:                                      ).

• Understand non-perturbative properties of multi-boson 
production in the Standard Model

• …….

What can we do?
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The operator ΦQ carries U(1) charge Q.

We bring the field insertions into the exponent, obtaining

For large Q the path integral is dominated by the extrema of

Semiclassical expansion

We can evaluate the integral via a saddle-point expansion
1/Q counts loops and is our expansion parameter.


