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1. Introduction

The journey we are going to take in these very short lectures is a journey through

physical phenomena as we change the distance (or, equivalently, energy) scales probed

by our experiments. The history of physics itself is such a journey. Starting from

classical mechanics describing the movement of object of human size we learned that

this theory needs to be generalized to quantum mechanics to deal with movements
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of particles at subatomic level. In this sub-atomic world, Galelian kinematics of slow

sub-relativistic speeds of classical mechanics needed to be generalised to special rel-

ativity. Marriage of quantum mechanics and special relativity lead us to quantum

field theory (QFT) while marriage of special relativity with Newtonian gravity lead

us to general relativity. Moving into even smaller scales we hope to marry QFT with

general relativity into something like string theory where we imagine our subatomic

particles to be different vibrations modes of a tiny strings.

On this journey, to make a stop at some fixed scale and describe the physical system

at that scale we need to:

1. Determine relevant d.o.f. (fields). As we change our ”microscope” relevant d.o.f.

change. For example, new collective excitations appear or composite particles

2. Symmetries (types of interactions between fields)

3. Expansion parameters (power counting)

Since d.o.f. will change we need to learn how to identify the relevant ones and remove

irrelevant. This can be done by procedure of ”integrating out” d.o.f. as we change the

energy scale. Since this logic will be the central part of the EFT examples below let

me illustrate the procedure in a very simple example.

2. Invitation

2a. 1D Ising model of spins on a circle

To learn how to ”integrate out” d.o.f. let us consider a simple 1d model of spins on a

circle with Hamiltonian:

H = −J
N∑
i=1

SiSi+1 = −J(S1S2 + S2S3 + ...+ SNS1) (1)

Figure 1: Spins on a circle.
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In general, this system of spins is placed in an environment at a given fixed temper-

ature T. Laws of thermodynamics teach us that system prefers to arrange spins to be

in a state with minimum free energy F = H − T S. Consider T = 0 case: We need to

find a state where F=H has minimum. Clearly this is the state where all spins point

up or all point down because total interaction energy is minimized H = −NJ .
Consider now T > 0 case. We have to account for all possible configurations of

spins and weight them according to their energies. For a canonical ensemble that is

classical and discrete this defines the canonical partition function

Z(K,N ) =
∑
states

e−H/T =
+1∑

S1=−1

+1∑
S2=−1

...
+1∑

SN=−1

eK(S1S2+S2S3+...+SNS1) (2)

where K ≡ J/T . F = −T logZ(K,N ).

Let us now sum over the two possibilities S2 = ±1 for spin S2:

Z(K,N ) =
+1∑

S1=−1

+1∑
S3=−1

...
+1∑

SN=−1

[
eK(S1+S3) + e−K(S1+S3)

]
eK(S3S4+S4S5+...+SNS1) . (3)

In the same fashion let us sum over the two possibilities S4 = ±1 for spin S4:

Z(K,N ) =
+1∑

S1=−1

+1∑
S3=−1

...
+1∑

SN=−1

[
eK(S1+S3)+e−K(S1+S3)

][
eK(S3+S5)+e−K(S3+S5)

]
eK(S5S6+S6S7+...+SNS1) .

(4)

and we can repeat the exersize to sum over all even numbered spins:

Z(K,N ) =
+1∑

S1=−1

+1∑
S3=−1

...
+1∑

SN−1=−1

[
eK(S1+S3)+e−K(S1+S3)

][
eK(S3+S5)+e−K(S3+S5)

][
eK(S5+S7)+e−K(S5+S7)

]
. . . .

(5)

Rewrite the remaining sums defining:

+1∑
S=−1

+1∑
S ′=−1

eK(S+S ′) + e−K(S+S ′) ≡ f (K)e−K
′SS ′ (6)

where both f (K) and K ′ are functions of K . Now we have:

Z(K,N ) = f (K)N/2
+1∑

S1=−1

+1∑
S3=−1

...
+1∑

SN−1=−1

e−K
′S1S3e−K

′S3S5e−K
′S5S7 . . . (7)

= f (K)N/2
+1∑

S1=−1

+1∑
S3=−1

...
+1∑

SN−1=−1

e−K
′(S1S3+S3S5+S5S7) · · · = f (K)N/2Z(K ′,N /2) .
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Note that we rewrote the Z(K,N ) we started with in terms of new function Z(K ′,N /2)

i.e. a function with parameters that describe the model with half the number of spins

and a different coupling parameter K ′ = J ′/T . Let us find the functions f (K) and K ′

implied by the transformation Eq.6. It is easy to show that they are given by:

K ′ =
1
2

log(cosh(2K)) f (K) = 2cosh1/2(2K) (8)

Exercise: Derive the result Eq.8.

Notice that K ′ < K . Eq.8 represent the ”RG group functions”. Now, repeat the pro-

cedure to integrate out another half of spins to arrive at Z(K ′′,N /4) then Z(K ′′′,N /8)

and so on. Since K > K ′ > K ′′ > K ′′′ after many iterations the coupling parameter

becomes negligibly small. Also notice that with each iteration the distance between

the neighboring spins doubles in size.

We found that K = 0 (J = 0) is an attractive fixed point of the RG transformation

in 1d model of spins. At this fixed point interaction between spins vanishes. There-

fore the temperature effects will determine the emergent behavior at large distances.

These thermal fluctuations will tend to align spins randomly and at long distances

system is disordered.

The Ising model undergoes a phase transition between an ordered and a disordered

phase in two dimensions or more. There is a nontrivial fixed point between two

phases at critical K = Kc. At this point, changing the scale does not change physics

because the system is in a critical fractal state.

2b. Relevant, marginal and irrelevant operators

We saw in the 1d Ising model that coupling strength K decreases as we perform the

RG transformations towards larger distances between spins. We call such interac-

tions irrelevant. Interactions whose strength increases as we ”integrate out” d.o.f. are

called relevant and marginal operators are those whose strength does not change. In

d dimensions and at the classical level, operators with dimension< (>)d are relevant

(irrelevant) while operators with dimension= d are marginal. Quantum corrections

will change classical (engineering) dimensions of operators so that, for example, clas-

sically marginal operators can become relevant or irrelevant at the quantum level.
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3. Constructing SM

The main example of the EFT in these lectures will be Standard Model of particle

interactions. Let us try to understand how far we can go in building this model just

using the notions of relevant, marginal and irrelevant operators above.

As we discussed above to describe the physical system at some energy scale we

need to:

1. Determine relevant d.o.f. (fields). For SM, the fermionic fields will be quarks

and leptons, vector ones are gauge bosons W ±,Z,γ and gluons and finally the

only scalar particle will be famous Higgs.

2. Symmetries. This is given by the semi-simple product of three gauge groups

SU (3)color × SU (2)w ×U (1)Y . Gauge bosons mediate these interactions: W1,2,3

mediate weak SU (2)w interactions, gluons mediate strong (QCD) interactions

SU (3)color and hypercharge boson mediate theU (1)Y interactions. Due to spon-

taneous symmetry breaking of SU (2)w ×U (1)Y → U (1)EM photon is a massless

linear combination of the gauge boson of U (1)Y and W3.

3. Expansion parameters are given by some mass of the SM particle (say, mass of

ones of the quarks) divided by the cutoff of the SM theory. This cutoff may be

Planck scale or grand unified scale or whatever is the scale up to which the SM

EFT is valid.

Of course, here I just stated the results for the d.o.f. and symmetries of the SM. It took

incredible amount of research to arrive at this construction through deep theoretical

ideas and experimental efforts.

Now, let us try to stay agnostic and build all possible operators out of fields above

consistent with the gauge symmetry of the SM classifying them according to their

dimension. Remember that we are working in four dimensions (three space and one

time) so that dimension= 4 operators will be marginal.

• Dimension-0 operator: this is just identity operator 1. We will compute coeffi-

cient of this operator in the SM later.

• Dimension-2: These are ”mass-terms” and in SM this will be the Higgs mass.

• Dimension-4: marginal operators and these we will present now. They are quar-

tic, Yukawa and gauge interactions between the SM fields.
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Summarizing, our SM Lagrangian so far schematically looks like:

L = ρ · 1+m2φ†φ+L4 + . . . (9)

where φ(x) is the Higgs field.

I purposefully omitted operators with dimension=1 and dimension=3. What is

their role?

3a. SM Lagrangian

So now we present the SM Lagrangian writing only the dim-2 and dim-4 operators:

LSM =− 1
4
BµνB

µν − 1
2
tr

(
WµνW

µν
)
− 1

2
tr

(
GµνG

µν
)

(U(1), SU(2), and SU(3) gauge terms)

+ (ν̄L, ēL) σ̃µiDµ
(
νL
eL

)
+ ēRσ

µiDµeR + ν̄Rσ
µiDµνR + (h.c.) (lepton dynamical term)

−
√

2
ν

[
(ν̄L, ēL)φMeeR + ēRM̄

eφ̄
(
νL
eL

)]
(electron, muon, tauon mass term)

−
√

2
ν

[
(−ēL, ν̄L)φ∗MννR + ν̄RM̄

νφT
(−eL
νL

)]
(neutrino mass term)

+
(
ūL, d̄L

)
σ̃µiDµ

(uL
dL

)
+ ūRσ

µiDµuR + d̄Rσ
µiDµdR + (h.c.) (quark dynamical term)

−
√

2
ν

[(
ūL, d̄L

)
φMddR + d̄RM̄

dφ̄
(uL
dL

)]
(down, strange, bottom mass term)

−
√

2
ν

[(
−d̄L, ūL

)
φ∗MuuR + ūRM̄

uφT
(
−dL
uL

)]
(up, charm, top mass term)

+
(
Dµφ

)
Dµφ−

m2
h

[
φ̄φ− ν2

2

]2
2ν2 (Higgs dynamical and mass term)

where (h.c.) means Hermitian conjugate of preceding terms, φ̄ = φ† = φ∗T , and the

covariant derivative operators are:

Dµ
(
νL
eL

)
=

[
∂µ −

ig1

2
Bµ +

ig2

2
Wµ

](
νL
eL

)

Dµ
(uL
dL

)
=

[
∂µ −

ig1

6
Bµ +

ig2

2
Wµ + igGµ

](uL
dL

)
DµνR = ∂µνR DµeR =

[
∂µ − ig1Bµ

]
eR

DµuR =
[
∂µ +

i2g1

3
Bµ + igGµ

]
ur DµdR =

[
∂µ −

ig1

3
Bµ + igGµ

]
dR
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Dµφ =
[
∂µ +

ig1

2
Bµ +

ig2

2
Wµ

]
φ

where φ is a 2-component complex Higgs field. Since L is SU(2) gauge invariant, a

gauge can be chosen so φ has the form:

φT =
(0,ν + h)
√

2
< φ >T0 = (expectation value of φ) =

(0,ν)
√

2

where ν is a real constant such that the Higgs potential Vφ =
m2
h

[
φ̄φ− ν2

2

]2

2ν2 is minimized,

and h is a residual Higgs field. Bµ, Wµ, and Gµ are the gauge boson vector poten-

tials, and Wµ and Gµ are composed of 2 × 2 and 3 × 3 traceless Hermitian matrices

respectively. Their associated field tensors are:

Bµν = ∂µBν −∂νBµ Wµν = ∂µWν −∂νWµ + ig2

(
WµWν −WνWµ

)
2

Gµν = ∂µGν −∂νGµ + ig
(
GµGν −GνGµ

)
.

The fermions include the leptons eR, eL, νR, νL and quarks uR, uL, dR, dL. They all have

implicit 3-component generation indices, ei = (e,µ,τ), νi =
(
νe,νµ,ντ

)
, ui = (u,c, t),

di = (d,s,b), which contract into the fermion mass matrices Me
ij ,M

ν
ij ,M

u
ij ,M

d
ij , and

implicit 2-component Pauli indices which contract into the Pauli matrices:

σµ =

1 0

0 1

 ,0 1

1 0

 ,0 −i
i 0

 ,1 0

0 −1


σ̃µ =

[
σ0,−σ1,−σ2,−σ3

]
tr

(
σ i

)
= 0 σµ† = σµ tr (σµσν) = 2δµν

We have included right-handed neutrino νR and thus wrote the Dirac mass term for

neutrino. We will discuss the issue of generating neutrino mass later.

The quarks also have implicit 3-component color indices which contract into Gµ.

So L really has implicit sums over 3-component generation indices, 2-component

Pauli indices, 3-component color indices in the quark terms, and 2-component SU (2)w
indices.

• Dimension-5: There is unique dimension=5 Weinberg operator in the SM and

we will discuss it later when we discuss the neutrino mass.
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• Dimension-6: There are many dim-6 operators one can build using SM fields.

These operators are generated at a new physics scale Λ, which is not known.

There are eight different classes of operators: X3, H6, H4D2, X2H2, ψ2H3,

ψ2XH , ψ2H2D and ψ4 in terms of their field content, where X,H,D and ψ

stand for gauge field strength, Higgs field, covariant derivative and fermion

field respectively. The SM EFT classifying these operators called SMEFT in the

literature.

Let us stop here even though we could continue the list but clearly higher dimen-

sional operators will be suppressed by more powers of the cutoff scale and so their

effects will be smaller.

4. BSM: Addressing problems of the SM from EFT point

of view

In the previous section we built all possible operators out of SM fields classifying

them according to their dimension:

L = ρ · 1+m2φ†φ+L4 +L5 +L6 + · · · (10)

Let us now discuss some of the problems related to these operators, going in the

direction of increasing operator dimensions.

• Dark energy: Let us calculate the contribution to the cosmological constant

(C.C) ρ, a coefficient of the unit operator, from the Higgs condensate. For ex-

ample, if φvac is the value of the Higgs field φ(x) which minimizes the potential

V (φ), then the lowest state has Tµν = gµνV (φvac), which is the classical scalar

field contribution to the vacuum energy. Concretely, minimizing Higgs poten-

tial

V (φ) = −m2φ†φ+
λ
2

(φ†φ)2 , (11)

Higgs condensate contribution (at the classical level) to the cosmological con-

stant is

ρHiggs = −m
4

2λ
. (12)

Exercise: Derive Eq.12.
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Besides Higgs condensate, there are other contributions to the C.C., for example

from the QCD vacuum, possible GUT scale physics, etc. The experimentally

measured physical value of the C.C. ρphys is given by

ρphys ≈ 10−47 GeV4 . (13)

The problem now is that if we use MH ∼ m = 125GeV then the corresponding

value
∣∣∣ρHiggs∣∣∣ ≃ 108 GeV4. In order to keep the QFT consistent with the ob-

servations, one has to demand that the parts contributing to the ρphys should

cancel with the great accuracy. For example, adding the vacuum contribution

to the C.C. ρvac, which we can always add to the Lagrangian, the ρvac and ρHiggs
should cancel with the precision of 55 decimal orders. This is the C.C. fine-

tuning problem.

• Hierarchy problem: Thinking of SM as an EFT with the cutoff scale Λ, the Higgs

mass term (dim-2 operator) is naturally expected to have a form Λ2φ†φ. The

expected quadratic Λ2 dependence of the coefficient leads to the so-called ”hi-

erarchy problem”: the Higgs mass gets a correction of order Λ≫ electroweak

scale. Indeed, from the sample diagram in Fig.2 coming from some hypothetical

Figure 2: Higgs mass correction

Yukawa interaction of some fermion with the Higgs yf̄ f φ, dimensional analysis

suggests that

m2
φ ∼ y

2
∫ Λ

0
d4k × 1

k
× 1
k
∼Λ2. (14)

Notice however that the sensitivity of mφ on Λ follows because we are com-

puting low-energy observable (Higgs mass) in terms of remnant of high-energy

parameters represented by Λ which is not in the spirit of the EFT where we

are suppose to integrate out high energy physics. Nevertheless, many exten-

sions of the SM were motivated by this problem among which are SUSY, extra-
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dimensional models, technicolor and composite Higgs. In SUSY there is a can-

cellation between fermions and bosons protecting corrections to Higgs mass. In

technicolor and composite Higgs models, Higgs is a composite particle (similar

to mesons in QCD) and so as we reach compositeness scale we have to change

description. Extra-dimensional models are conceptually similar to technicolor

and composite Higgs models via holographic AdS/CFT correspondence.

• vacuum instability (dimension-4 operator): The analysis of the vacuum stability

requires the knowledge of the effective potential of the model at hand. The

standard model effective potential is known up to two loops. For large field

values φ≫ v = 246 GeV, we may neglect the Higgs mass term because at high

energy it becomes irrelevant and the potential is very well approximated by its

RG-improved tree-level expression,

V (φ) = −m2φ†φ+λ(µ)(φ†φ)2 ≈ λ(µ)(φ†φ)2 , (15)

with RG scale µ = O(φ) itself. Therefore if one is simply interested in the condi-

tion of absolute stability of the potential, it is possible to study the RG evolution

of λ and determine the largest scale Λ < Mpl , with Mpl the Planck scale, above

which the coupling becomes negative. The RG evolution of the Higgs quartic

coupling in the SM is shown on the right in Fig.3 and we observe that the cou-

pling becomes negative around 1010GeV.

To illustrate how BSM physics can solve this problem we postulate an additional

complex singlet scalar S and to study its effect on the stability of the Higgs

potential, we consider a combined tree-level scalar potential for both scalars of

the form

V0 = λ
(
φ†φ− v2/2

)2
+λS

(
S†S −w2/2

)2
+ 2λφS

(
φ†φ− v2/2

)(
S†S −w2/2

)
. (16)

This model leads to the tree-level effect through which the new singlet can affect

the stability bound. Let us consider the limit in which the mass of S, MS ∼ w is

much larger than the Higgs mass (w2≫ v2). At the scale MS we can ”integrate

out” the field S using its equation of motion :

S†S ≈ w
2

2
−
λφS
λS

(
φ†φ− v

2

2

)
(17)

where we neglected the kinetic term for S since we are building an EFT for

momenta p ≪ MS . Plugging eq. (17) in V0, we obtain the effective potential
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Figure 3: (Left) Standard model stability analysis based on the effective standard

model Higgs quartic coupling. The red region indicates instability, the yel-

low metastability and the green absolute stability. The point with error bars

shows the experimental values of the top and Higgs masses. The red dashed

lines show the value in GeV at which λ crosses zero (Right) Running of the

Higgs quartic coupling in the SM.

below the scale MS :

Veff = λ′
(
H†H − v

2

2

)2

, λ′ = λ−
λ2
HS

λS
. (18)

This shows that the matching condition at the scale p =MS of the Higgs quartic

coupling gives a tree-level shift, δλ ≡ λ2
HS /λS , as we go from λ just above MS to

λ′ just below MS . Since λS > 0 is needed for the stability of the potential in the

S direction for large S values, we see that λ′ < λ > 0 which means that starting

from the electroweak scale from which we have the running of λ′, before we

approach the instability scale of around 1010GeV we should have a threshold

effect increasing the effective quartic coupling to λ′ and thus avoiding instabil-

ity.

Finally, let me comment that RG running of the Higgs quartic coupling in the

SM is very sensitive to the value of the top quark mass. This is illustrated on

the left plot in Fig.3 where we see that changing the value of the top mass by

O(1GeV ) may bring us back to the (green) stability region.

• Neutrino masses: Neutrinos are electrically neutral, and so can have either Ma-

jorana type or Dirac type mass terms. The existence of a Dirac mass term would
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necessitate the existence of right-handed neutrinos. In the minimal standard

model without right-handed neutrino, there is an effective dimension-5 Wein-

berg operator which generates Majorana neutrino masses

Λ−1φ0φ0νLνL, (19)

All models of neutrino mass and mixing (which have the same light particle

content as the minimal standard model) can be summarized by this operator.

Different models are merely different realizations of this operator. In the fol-

lowing I will show that it has only three tree-level realizations. In addition, it

also has three 1-loop realizations of radiative neutrino masses.

To obtain the effective operator Eq.19 at the tree level, using only renormaliz-

able interactions, we show now that there are only three ways. To start with

recall that in the SM, left-handed neutrino and neutral component of the Higgs

are parts of the left-handed doublets ψ =
(
νL
eL

)
and Φ = (φ+φ0 ). So using the

group theory multiplication 2⊗ 2 = 3⊕ 1 we have the following possibilities:

(I) ψ ×Φ ∼ (φ0νL −φ+eL) form a fermion singlet,

(II) ψ ×ψ form a scalar triplet with one of the components νLνL,

(III) ψ ×Φ form a fermion triplet with one of the components (φ0νL +φ+eL).

In each case, we always generate the operator Eq.19 among with the other in-

teractions which altogether schematically look like:

(I) Λ−1(φ0νL −φ+eL)(φ0νL −φ+eL), (20)

(II) Λ−1[φ0φ0νLνL −φ+φ0(νLeL + eLνL) +φ+φ+eLeL], (21)

(III) Λ−1[(φ0νL +φ+eL)(φ0νL +φ+eL)− 2φ+νLφ
0eL − 2φ0eLφ

+νL]. (22)

The intermediate heavy particle in the first case is clearly a fermion singlet

(right-handed neutrino) and this is well-known type-I seesaw mechanism. In

the second case intermediate heavy particle is a heavy scalar triplet ξ = (ξ++,ξ+,ξ0)

realizing type-II seesaw. Finally, we have a heavy Majorana fermion triplet

(Σ+,Σ0,Σ−) and obtain type-III seesaw mechanism. Clearly each seesaw mecha-

nism has its own unique implications about physics beyond the standard model.

Note that the singlet combination of ψi and ψj is νilj−liνj and does not generate

Eq.19.
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• Dark matter: Particle physics proposes a plausible and effective solution to this

problem in terms of an electrically neutral and weakly interacting massive par-

ticle that is stable at cosmological scales. DM particles are predicted by many

extensions of the SM, including the well motivated ones that address other im-

portant theoretical or experimental issues above. Because of the large number

of possibilities for DM candidates, it has become customary and quite useful to

consider EFT approaches, which allow to study in a model-independent man-

ner the phenomenology of these particles. It is typically assumed that the new

state is either a scalar, a vector or a fermion. In order to work with a manage-

able theory some restrictions on the DM sector need to be imposed. Possible

assumptions are:

1. In order to stabilize the DM particle, we impose a discrete Z2 symmetry.

2. The field content of the theory is given by the SM one, including the Higgs

doublet, and a single extra multiplet X that belongs to some irreducible

representation of the SM gauge group GSM = SU (3)color × SU (2)w ×U (1)Y .

Under the Lorentz group, X transforms either as a scalar, a spinor or a

vector. All SM fields are even under Z2, while X is odd.

The DM-EFT Lagrangian can be schematically written as:

L = LSM +
∑
dim≤6

ciOi (23)

where operators Oi include SM and DM field X.

• Flavour problem (dim-6 operators). SM does not explain the fermion masses

and their mixing angles. These parameters are very different. Also, why there

are 3 generations of quarks and leptons? From the Lagrangian point of view

this problem connected to Yukawa coupling of the fermions to the Higgs and

Weinberg operator in neutrino sector:

Yijψ
i
Lψ

j
Rφ+Λ−1φ0φ0νiLν

j
L (24)

where i, j are indices of the SM three generations. The main goal of the flavor

physics model building is the identify the symmetries and symmetry-breaking

patterns beyond those present in the SM which would explain fermion masses

and mixing angles. The dim-6 operators build from the SM fields are very im-

portant as they lead, for example to B− B̄ mixing: (d̄LγµbL)(d̄LγµbL).
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Figure 4: Proton decay mediated by the X boson (3,2)−5/6 in SU (5) GUT.

• Proton decay (dim-6 operators) In the SM, the proton is stable because it is

the lightest baryon and baryon number (quark number) is conserved. Many

BSM models explicitly break the baryon number symmetry, allowing protons

to decay. For example, in grand unified theories (GUTs) it can decay via the

new X vector bosons (see fig.4) . Integrating out heavy X bosons (we will illus-

trate this process of integrating out a heavy vector particle again later, when we

will integrate out the W and Z bosons to obtain the Fermi theory) we are left

with dimension-6 operators ēcūcqq

Λ2
GUT

and ūcd̄cql

Λ2
GUT

. All of these operators violate both

baryon number (B) and lepton number (L) conservation but not the combination

B − L. This operators mediate the decay of the proton to positron and neutral

pion: p→ e+ +π0. Breaking of the baryon number symmetry is also important

to explain the matter-antimatter asymmetry as we observe in our Universe.

In summary, notice that puzzles related to relevant dim<4 operators lead to ”hier-

archy” problems due to the fact that related observables expected to pick up contri-

bution proportional to the cutoff scale Λ whereas experimentally they are at the low

scale. Problems related to irrelevant dim>4 operators have opposite, ”decoupling”

nature. If we take a cutoff scale infinitely large, the effects of these operators will be

unobservable.
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5. EFTs in general

Having discussed SM EFT and it problems we now discuss how to construct EFT in

general. There are two ways to do it:

1. Top-down: in this approach we integrate out heavy particles and match onto a

low energy theory. We find new operators and new low energy constants.

2. Bottom-up: here you write down the most general possible operators/interac-

tions consistent with symmetries. Couplings of your EFT will be unknown but can

be fitted to experiment.

5a. Examples of EFTs

Let me give some examples of EFTs keeping in mind that the list is not exhaustive.

First three examples will be examples of top-down approach while the last three will

be bottom-up.

• Heavy quark effective theory (HQET): describes the low-energy dynamics of

hadrons (composite particles built from quarks and thus interacting via QCD

interactions) containing a heavy quark. The theory is usually applied to hadrons

containing b and c quarks. The expansion parameter is ΛQCD /mQ, where mQ =

mb,mc is the mass of the heavy quark and ΛQCD is dynamical scale generated in

QCD theory. Since hadrons are build from quarks which interact with gluons,

coefficients of this EFT also have an expansion in powers of αs(mQ)/(4π) where

αs(mQ) ∼ g2(mQ) is evaluated at the heavy quark mass and g is the coupling

constant of QCD Lagrangian (see SM Lagrangian in Sec.3a). The matching from

QCD to HQET can be done in perturbation theory, since αs(mQ)/(4π) is small,

for example αs(mb) ∼ 0.22, αs(mb)/(4π) ∼ 0.02.

• Fermi theory of weak interactions: this is EFT for weak interactions at energies

below the W and Z masses. Expansion parameter is p/MW where p is the mo-

menta of a particle in the weak decay (which is related to b-quark mass in a

b-decay, for example). We start with the amplitude for the b→ c decay as our

simple example:

A =
(
−ig
2
√

2

)2

Vcbc̄γµ(1−γ5)b ℓ̄γν(1−γ5)νℓ

(
−igµν

p2 −M2
W

)
(25)
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For low momentum transfers, p≪MW , we can expand the W propagator:

1

p2 −M2
W

= − 1

M2
W

(
1 +

p2

M2
W

+
p4

M4
W

+ . . .
)
. (26)

Keeping only the first term we obtain the local Lagrangian:

A =
(
−ig
2
√

2

)2
i

M2
W

Vcbc̄γµ(1−γ5)b ℓ̄γµ(1−γ5)νℓ +O
(

1

M4
W

)
(27)

This EFT no longer has dynamical W bosons, and the effect of W exchange in

the SM has been included via this dimension-six four-fermion operator.

• SM below EW scale: Below the electroweak scale, one can write a low energy

effective theory with quark and lepton fields, and only QCD and QED gauge

fields. Since SU(2) gauge invariance is no longer a requirement, there are several

new types of operators:

– There are νLνL operators which give a Majorana neutrino mass for left-

handed neutrinos as we discussed in the previous section.

– There are dimension-five dipole operators, e.g. ψ̄σµνψFµν

– There are X3 and ψ4 operators as in SMEFT classification, but operators

containing Higgs field H are no longer present.

– There are many four-fermion interactions e.g. ψ̄ψνLνL.

• Chiral perturbation theory (χPT): describes the interactions of pions and nu-

cleons at low momentum transfer p in a bottom-up approach. It is not possible

to analytically compute the matching onto the EFT, since the matching is non-

perturbative. The two theories, QCD and χPT, are not written in terms of the

same fields. The QCD Lagrangian has quark and gluon fields, whereas χPT

has meson and baryon fields. The parameters of the chiral Lagrangian are fit

to experiment. The expansion parameter of χPT is p/Λχ, where Λχ ∼ 1 GeV is

referred to as the scale of chiral symmetry breaking

• SMEFT: is the EFT constructed out of SM fields, and is used to analyze devi-

ations from the SM, and search for BSM physics. The higher dimension oper-

ators in SMEFT are generated at a new physics scale Λ, which is not known.

Unique dim-5 operator is Weinberg operator while at dimension-six level there

are eight different operator classes of operators: X3, H6, H4D2, X2H2, ψ2H3,

ψ2XH , ψ2H2D and ψ4 as we discussed above.
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• General relativity: The field relevant for gravity is the metric, gµν (whose matrix

inverse is denoted gµν). For applications on macroscopic scales we use the most

general effective lagrangian consistent with general covariance:

Lgrav =
√−g

(
1
2
MpR+ c1R

2 + c2RµνR
µν + c3RµναβR

µναβ +
c4

m2R
3 + . . .

)
(28)

The term linear in R is the usual Einstein-Hilbert action, with Mp denoting the

usual Planck mass. The remaining effective couplings ck are dimensionless and

unknown a priori. The scale m stands for the lightest particle (say, the electron)

which have been integrated out to obtain this EFT.

5b. Top-down approach: Example of tree-level matching

Before we conclude these lectures let me give one more example of tree-level match-

ing technique from the full theory to the effective one in the top-down approach. We

consider U (1) global theory:

L = ∂µφ
∗∂µφ−

λ
[
φ̄φ− v2

]2
4

(29)

which has aU (1) global symmetryφ→ eiωφ for ∂µω = 0. Redefineφ ≡ χeiθ to obtain:

L = ∂µχ∂
µχ+χ2∂µθ∂

µθ −
λ
[
χ2 − v2

]2
4

(30)

The structure of the theory is now transparent. We see that we have two fields: θ,

which is massless, and χ with mass M =
√
λv. As usual, we have to shift the χ field

and so we define new fields: χ→ v + ψ√
2

and θ = ξ√
2v

. Our Lagrangian becomes:

L = ∂µψ∂
µψ +

1
2

(1 +
ψ
√

2v
)2∂µξ∂

µξ −
λ
[√

2vψ +ψ2/2
]2

4
(31)

To construct our EFT we will need to choose some observable to calculate. Let

us use ξξ → ξξ scattering, which occurs at tree-level in the full theory through the

s, t and u channel processes, all formed from the ψ∂µξ∂µξ vertex. We will assign

momenta to the external lines as follows: p and q to incoming lines, p′ and q′ to

outgoing. Then the amplitude in the full theory is :

Af ull =
2
v2

(
(p · q)2

(p+ q)2 +M2 +
(p · p′)2

(p − p′)2 +M2 +
(p · q′)2

(p − q′)2 +M2

)
(32)
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Exercise: Derive the result Eq.32.

To order O(1/M2) we simply have:

ALO =
2

v2M2

(
(p · q)2 + (p · p′)2 + (p · q′)2

)
. (33)

We now need to construct the effective Lagrangian for ξ, and calculate the same am-

plitude using this EFT. We have:

Lef f =
1
2
∂µξ∂

µξ − a(∂µξ∂
µξ)2 + . . . (34)

where a is unknown coefficient. Using this effective Lagrangian we obtain for the

amplitude:

Aef f = 8a
(
(p · q)2 + (p · p′)2 + (p · q′)2

)
, (35)

so that comparing we obtain a = 1
4v2M2 . By matching the coefficient in the effective

theory to that produced (approximately) by the full theory we embeded information

about the heavy field ψ, which is not itself part of the EFT, into our results.
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