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Motivations for NCG
- Space-time noncommutativity as a signature of Quantum gravity
- Gedanken experiments which challenge the Riemannian structure of
space-time at scales where both quantum mechanics and general relativity
are relevant [Bronstein ’36, Doplicher-Fredenhagen-Roberts ’94]

- Regularization of QFT in the UV regime [Heisenberg ’30, Snyder ’47]

- Space-time discreteness emerging from different models of quantum gravity
[e.g. LQG where the spectrum of area and volume operators is discrete
[Ashtekhar ’01]; Group Field Theory [Oriti ’06]]

- Low energy regimes of strings in the presence of a background field B
[Seiberg-Witten ’99] already in [Witten ’86] in the context of string field theory
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DFR argument

Attempts to localize with extreme precision cause gravitational collapse so that
spacetime below the Planck scale λP = (G~

c3 )1/2 ' 1.6× 10−33 has no operational
meaning
I Heisenberg uncertainty principle: measuring the spacetime coordinate of a

particle with great accuracy, a, causes an uncertainty in momentum of order
1
a (in natural units)
=⇒ an energy of order 1/a is transmitted to the system and concentrated at
some time in the localization region;

I General Relativity: the associated energy momentum tensor Tµν generates a
gravitational field solution of Einstein’s equation for Minkowski metric

Rµν −
1
2
Rηµν = 8πTµν

I the smaller the uncertainty ∆xµ the stronger will be the gravitational field
generated

I as ∆x → 0 the field becomes so strong as to prevent light or other signals
from leaving the region
=⇒ operational meaning can no longer be attached to the localization
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By requiring that no blackhole is produced DFT infer that the ∆xµ cannot be
made simultaneously arbitrary small
=⇒ Uncertainty relations among coordinates emerge

∆xµ∆xν ≥ λ2P

Learning from quantum mechanics: uncertainty relations can be explained by
admitting that coordinates be noncommuting

[xµ, xν ] 6= 0

=⇒ Noncommutative, or Quantum Spacetime
I Spacetime observables (what where smooth functions on classical spacetime)

become operators
I States (what where points of classical spacetime, namely "evaluation maps"

on the space of classical observables ω : f → f (ω) become "quantum
evaluation maps"
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The prototype NC geometry

The simplest instance of NCG is Quantum Mechanics

I Classical Phase-Space as a differentiable manifold is lost
I Classical observables −→ Operators
I Phase space coordinate functions q, p −→ noncommuting operators
I The uncertainty principle ∆q∆p ≥ ~

2 implies the existence of a minimal area
in phase space

I classical states (points on phase space) −→ vectors in Hilbert space
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The Wigner-Weyl-Moyal approach

QM can be described in a classical-like setting
I Operators −→ Symbols (functions on TRn)

Â −→ fÂ(q, p) = Tr ÂΩ̂(q, p)

with
Ω̂(q, p) =

∫
dηdξ e i(η·P̂+ξ·Q̂)e−i(η·p+ξ·q) (~ = 1)

the Weyl-Stratonovich operator or simply quantizer (dequantizer) operator
I state ρ −→Wρ̂(q, p) = Tr ρ̂Ω̂(q, p) the Wigner function
I operator product −→ star product ?

Â · B̂ −→ fÂ ? fB̂(q, p) = Tr (ÂB̂Ω̂(q, p))

I this yields in particular q ? p − p ? q = i

I (F(T ∗Rn), ?~) prototype NC algebra
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Standard picture of gauge and matter fields-Review
I M = R4 space–time
I matter fields describing particles are vector fields, namely maps from

space–time to vectors: such maps are formalised as sections of vector bundles
I what kind of vectors: they carry a representation of the gauge group

determined by the interaction they feel; physics says that the representation
is the fundamental one (the group characterises the kind of vector bundle)

electrically charged matter fields are 1-dim complex vector fields (wrt the
group U(1)
fields carrying a weak charge are two-dim complex vector fields (wrt the group
SU(2)
fields carrying strong charge are three-dim complex vector fields (wrt the
group SU(3)

Namely matter fields are organised in multiplets, of dimension depending on
the interaction. They can carry more that one representation (e.g. the
electron is a 1-dim complex vector field under U(1) but part of a doublet,
with its neutrino under SU(2)
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I gauge fields, Aµ, Fµν represent the radiation fields, namely the bosons which
mediate the interactions (electromagnetic, weak, strong, gravitational in
some sense); they are Lie algebra valued components of forms

A = Aa
µdx

µτa τa ∈ g g = u(1), su(2), su(3)
F = F a

µνdx
µ ∧ dxντa F a

µν = ∂µAν − ∂Aµ − iAb
µA

c
ν f

a
bc

More formally: A is a Lie algebra valued connection one-form; F is the
curvature two-form of A: F = DA = dA+ A ∧ A

I gauge group: smooth maps from space–time to some unitary Lie group

Ĝ = {g : x ∈ R4 → g(x) ∈ G}
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I radiation fields are responsible for the modification of derivatives of vector
fields: a connection is needed (think in analogy with gravitational field, which
curves space–time)

∂µψψψ → ∇µψψψ
ψψψ = eiψi , ei are basis sections; i = 1, ..n runs over the dimension of the
representation

∇µψψψ = ei∂µψi +∇µ(ei )ψi

∇ : vectors → vectors is the (Koszul) connection, namely how derivatives
should be performed when acting no longer on scalars, but on vectors

∇(ei ) = −i(A)jiej −→ ∇µ(ei ) = −i(A(∂µ))jiej

A(∂µ) = Aµ is the connection one form component in space-time. It is also a
n × n matrix, n the dimension of the representation
F (∂µ, ∂ν)ψψψ = [∇µ,∇ν ]ψψψ is the field strength; It is a two-form component in
space–time. It is also a n × n matrix, n the dimension of the representation
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NC theory of gauge and matter fields

[Connes, Dubois-Violette, Grosse, Madore, Wess, Chaichian, Gracia-Bondia, Jurco, Schupp, Schraml,

Szabo, Sheikh-Jabbari, Wallet, Wulkenhaar, Steinacker, Lizzi, Buric, Radovanovic, Presnajder, Chepelev,

Roiban, Seiberg, Witten, van Raamsdonk, Alvarez- Gaumé, Rivasseau, Aschieri, Zoupanos, Dimitrijevic,

Jonke ....]

The“classical picture" of noncommutative gauge and matter fields is described in
terms of

- a noncommutative algebra (A, ?) representing space-time (it replaces F(M))
- a right A-module, M, representing matter fields (it replaces vector bundles)
- a group of unitary automorphisms of M acting on fields from the left,
representing gauge transformations.

The dynamics of fields is described by means of a natural differential calculus
based on derivations of the NC algebra;
The gauge connection is the standard noncommutative analogue of the Koszul
connection.
Therefore, the first problem to address is to have a well defined differential
calculus, namely, an algebra of ?-derivations of A such that

Da(f ? g) = Daf ? g + f ? Dag
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Differential calculus
Given the star product of fields in the form

f ? g = f · g +
i

2
Θab(x) ∂af ∂bg + . . .

ordinary derivations violate the Leibniz rule,

∂c(f ? g) = (∂c f ) ? g + f ? (∂cg) +
i

2
∂cΘab(x) ∂af ∂bg + . . .

unless Θ is constant =⇒ star derivations are realised by star commutators

Daf = (Θ−1)ab[xb, f ]?
Θ→0−→ ∂af

Lie algebra type star products, [x j , xk ]? = c jkl x l do admit a generalisation
according to

Dj f = k[x j , f ]?

with k a suitable dimensionful constant, but the limit, Θ→ 0, does not yield the
standard commutative result.
Alternatively, one can use twisted differential calculus for those NC algebras whose
star product is defined in terms of a twist.
Summarising: ordinary derivations in general violate the Leibniz rule, whereas
twisted or star derivations might not reproduce the correct commutative limit.
The problem is not new ...
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Derivations based differential calculus

[Dubois-Violette, Michor, Madore, Masson, Wallet...] It generalises the algebraic description
of standard differential calculus to the NC case. In the commutative case vector
fields are identified with derivations of F(M), one-forms and the exterior
derivative d are defined by duality
df (X ) = X (f );α = g · df ; dα(X ,Y ) = X (α(Y ))− Y (α(X ))− α([X ,Y ])
d2f (X ,Y ) = X (df (Y ))− Y (df (X ))− df ([X ,Y ]) =
X (Y (f ))− Y (X (f ))− [X ,Y ](f ) = 0
Higher forms are constructed analogously.
Thus, to define a differential calculus on a noncommutative algebra, A we need a
Lie algebra L and a representation of L in terms of derivations of A. Derivations,
have to be independent and sufficient ( A set of derivations is said to be sufficient
when the only elements which are annihilated by all of them are in the centre of
the algebra). That is, we need L, ρ such that

ρ(X ) (f ? g) = (ρ(X )f ) ? g + f ? (ρ(X )g) , X ∈ L, f , g ∈ A

Assuming such structures are given, the first step for the construction of a
differential calculus is the identification of zero forms with the algebra itself
Ω0 = A.
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Then the exterior derivative is implicitly defined by df (X ) = ρ(X )f It
automatically verifies the Leibniz rule because ρ(X ) are ?-derivations

d(f ? g)(X ) = (ρ(X )f ) ? g + f ? (ρ(X )g)

moreover d2 = 0
because the ?-derivations close a Lie algebra. The second step consists in defining
Ω1 as a left A module that is

gdf (X ) = g ? (ρ(X )f )

Because of noncommutativity, the wedge product

df ∧? dg(X ,Y ) = df (X ) ? dg(Y )− df (Y ) ? dg(X )

is not anticommutative df ∧? dg 6= −dg ∧? df .
In a similar way to Ω1, Ω2 is defined as a left A module, ω = f ? dg ∧? dh
Higher Ωp are built analogously.
Derivations have to be independent: namely no functions belonging to the center
of the algebra exist s.t. fµXµ = 0 and sufficient, namely if α(Xµ) = 0 ∀µ→ α is
central
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Scalar field theory on the Moyal space

Moyal space:

It is the simplest noncommutative space, modelled on the phase space of
quantum mechanics:

First, go to dual description in terms of algebra of functions on classical phase
space
Quantize (make it "noncommutative phase space")
Phase space is not a smooth manifold anymore
Noncommutativity can be described in terms of a star product: quantum
mechanics in the Moyal approach

I Do the same for space-time → [x̂i , x̂j ] = iθij
- θ constant
- replace with an algebra of functions on space-time (assume it

even-dim.), with noncommutative star product. For coordinate functions

xi ? xj − xj ? xi = iθij
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The Moyal algebra A = R2n
θ

(F(R2n), ?θ) =: R2n
θ is the Moyal algebra

- Technically the star product is defined for Schwartz functions S(R2n)

f ? g(x) =
1

(2π)2n

∫
f (x +

1
2

Θu)g(x + v)e iu·v

Θ is block diagonal, antisymmetric with θ real.

Θ = θ

 0 −1
1 0

..


- Extended =⇒ R2n

θ is unital and involutive under complex conjugation. It
contains S, polynomials, constants [Varilly, Gracia-Bondia IJMP ’89, Soloviev
arxiv-1012.0669 ]

f ?θ g(x) = exp
( i
2

Θµν ∂

∂uµ
∂

∂vµ
)
f (u)g(v)|u=v=x

[xµ, xν ]?θ = iθµν

which describes space-time noncommutativity and implies the presence of a
minimal area ' θ
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The differential calculus over the Moyal algebra

Minimal derivation based differential calculus [DuboisViolette-Masson-Wallet,

Marmo-V.-Zampini]

As a minimal Lie algebra we can choose translations {Pµ} (but we could choose a
bigger algebra: the largest algebra of derivations being isp(4,R))

ρ(Pµ) := ∂µ = −iθ−1µν [xν , ·]?

generate the minimal Lie algebra of derivations of R2n
θ

These are
- inner
- not a left module over R2n

θ , but only over the center of the algebra because
f ? ∂µ(g ? h) 6= f ? ∂µg ? h + g ? f ? ∂µh

- d , iPµ defined algebraically,
df (Pµ) = Pµ(f ) = −iθ−1µν [xν , f ]?,

iPµ
ω(Pν) = ω(Pµ,Pν) = f ? (dg(Pµ) ? dh(Pν)− dg(Pν) ? dh(Pµ));

Integration ∫
f ? g =

∫
g ? f =

∫
f · g

=⇒ the integral is a trace
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The scalar action functional
Once we have a differential calculus and an integral we can make sense of the
Euclidean action functional

S [ϕ] =

∫
R4

Dµϕ ? D
µϕ+ m2ϕ?2 +

λ

4!
ϕ?4

where Dµ → ∂µ are the star-derivations above.
Since the product is closed, the free action is the same as the undeformed theory,
as well as the tree level propagator. But the 4-vertex is deformed. In momentum
space

∆(0) =
1

p2 + m2 , V? = −i λ
4!
δ3

(
4∑

a=1

ka

)∏
a<b

exp(− i

2
θijkaikbj)

Exercise: Compute the one-loop corrections to the propagator

✫✪
✬✩

p

q

−p ✫✪
✬✩
✫✪
✬✩
✫✪
✬✩
✫✪
✬✩

qqqq
p −p

(a) (b)
∆

(1)
pl = 1

3

∫
dDq

(2π)D
1

q2+m2 ∆
(1)
np = 1

6

∫
dDq

(2π)D
e iq∧p

q2+m2
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UV/IR mixing
[Minwalla−VanRaamsdonk−Seiberg, Chepelev−Roiban(2000)]

in D=4 Π
(1)
np = C1

(θp)2 + m2C2 log(θp)2 + F (p) UV finite by IR divergent when
inserted in higher loops. The model is non-renormalizable
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Linear noncommutativity: the case R3
λ

In order to appreciate the importance of differential calculus consider the case
Θ = Θ(x). The simplest case is Θij(x) = c ijk x

k , with c ijk structure constants.

An example is the noncommutative space R3
λ first introduced in [Hammou, Lagraa,

Sheikh-Jabbari’ 01] as quadratic subalgebra of (R4
θ, ?V ).

ϕ ? ψ (za, z̄a) = ϕ(z , z̄) exp(θ
←−
∂ za

−→
∂ z̄a)ψ(z , z̄), a = 1, 2

by means of xµ = 1
2 z̄

aσab
µ zb, µ = 0, .., 3. The subalgebra generated by xµ is

closed wrt the star product implying

[xi , xj ]? = iλεkijxk check!

and ∑
i

x2i = x20

and x0 star-commutes with xi . Thus we can alternatively define R3
λ as the

star-commutant of x0.
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The algebra R3
λ

The induced ?-product for R3
λ reads

ϕ ? ψ (x) = exp

[
λ

2
(
δijx0 + iεkijxk

) ∂

∂ui

∂

∂vj

]
ϕ(u)ψ(v)|u=v=x

=⇒ for coordinate functions

xi ? xj = xixj +
λ

2
(
x0δij + iεkijxk

)
x0 ? xi = xi ? x0 = x0xi +

λ

2
xi

x0 ? x0 = = x0(x0 +
λ

2
) =

∑
i

xi ? xi − λx0

One can introduce a matrix basis [V., Wallet ’13]:

v j
mm̃(x) =

e−2
x0
λ

λ2j
(x0 + x3)j+m(x0 − x3)j−m̃ (x1 − ix2)m̃−m√

(j + m)!(j −m)!(j + m̃)!(j − m̃)!
j ∈ N

2
, m, m̃ ∈ (−j , j)

=⇒
v j
mm̃ ? v

j̃
nñ(x) = δj j̃δm̃

Then, the star product in R3
λ becomes a block-diagonal infinite-matrix product

and the integral becomes a trace.
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In the matrix basis

x+ = λ
∑
j,m

√
(j + m)(j −m + 1)v j

mm−1

x− = λ
∑
j,m

√
(j −m)(j + m + 1)v j

mm+1

x3 = λ
∑
j,m

mv j
mm

x0 = λ
∑
j,m

jv j
mm

x+ ? v
j
mm̃ = λ

√
(j + m + 1)(j −m)v j

m+1m̃

x− ? v
j
mm̃ = λ

√
(j −m + 1)(j + m)v j

m−1m̃

x3 ? v
j
mm̃ = λmv j

mm̃

x0 ? v
j
mm̃ = λ j v j

mm̃

and analogous expressions when star multiplying from the right
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Derivations of the algebra R3
λ

In order to introduce a dynamics described by an action functional we need
derivations. In the commutative case one uses the Kustaanheimo-Stiefel (KS)
map:

- R3 −{0} and R4 −{0} are given the structure of trivial bundles over spheres,
R3 − {0} ' S2 × R+, R4 − {0} ' S3 × R+;

- then use the Hopf fibration πH : S3 → S2, with the identification of S3 with
SU(2),

πH : s ∈ SU(2)→ ~x ∈ S2, : sσ3s
−1 = x iσi

where s = y0σ0 + iyiσi , yµ are real coordinates on R4 s.t. yµyµ = 1;
- extend the Hopf map to R4 − {0} → R3 − {0}, relaxing the radius constraint
⇒ yµy

µ = R2;
- finally introduce g = Rs and define

πKS : g ∈ R4 − {0} → ~x ∈ R3 − {0}, xkσk = gσ3g
† = R2sσ3s

−1;

which gives quadratic expressions for the xµ and x0 = R2/4. (Exercise)
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Derivations of the algebra R3
λ

Projectable vector fields are defined by the condition [Di ,Y0] = 0, with
Y0 = y0∂y3 − y3∂y0 + y1∂y2 − y2∂y1 generator of the fibre U(1).
They correspond to the three rotation generators and the dilation
Yi = y0

∂
∂yi
− yi

∂
∂y0
− εijkyj ∂

∂yk
, D = yµ

∂
∂yµ

=⇒

πKS∗(Yi ) = Xi = εijkxj
∂

∂xk
, πKS∗(D) = xi

∂

∂xi

When passing to the noncommutative case the three rotations are still derivations
of the algebra R3

λ and may be given the form of inner derivations

Xi (ϕ) = − i

λ
[xi , ϕ]? , i = 1, .., 3

- they satisfy the Leibniz rule
- they are independent (even though xi ? Xi (ϕ) + Xi (ϕ) ? xi = 0, derivations
are not a module over the algebra in the NC case)

- and sufficient ("constant" functions are in the center of the algebra)
The dilation is not a derivation as it does not satisfy the Leibniz rule (check by
applying it to the star product of coordinates).
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The scalar field theory g ϕ?4

X star product
X derivations
X integration

Well defined scalar action:

S [ϕ] = S [ϕ] =

∫
ϕ ? (∆ + µ2)ϕ+

g

4!
ϕ ? ϕ ? ϕ ? ϕ

with the Laplacian: ∆ϕ = α
∑

i D
2
i ϕ+ β x0 ? x0 ? ϕ

The second term is introduced to reproduce radial dynamics,
x0 ? ϕ = x0ϕ+ λ

2 xi∂iϕ.
Other proposals exist. There remain two main problems:

- the commutative limit;
- the radial dynamics (clear in the matrix basis: j does not change)

The model has been studied at one-loop in the matrix basis [Vitale, Wallet ’13]
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Noncommutative gauge theory on R2n
θ

To make sense of noncommutative gauge and matter fields we need
X a noncommutative algebra (A, ?) representing space-time (it replaces F(M))
X A differential calculus based on derivations of the NC algebra which allows to

introduce the dynamics;
- a NC analogue of matter fields, compatible with ? multiplication by
functions, which replaces the notion of vector bundles

- a group of unitary automorphisms acting on fields from the left, representing
gauge transformations;

- a NC analogue of gauge connection

For QED the gauge group is Û(1), implying that charged matter fields are 1-dim
complex vector fields (sections of 1-d complex vector bundle), namely a right
module over F(R4)
=⇒ The NC generalization is
- a 1-dim complex right module (one generator) over R2n

θ

H = C⊗ R2n
θ

with Hermitian structure h : h(ψψψ1,ψψψ2) = ψ†1 ? ψ2
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General setting
For non-Abelian gauge theories (gauge group ŜU(N)) charged matter fields are
typically complex vector fields in the fundamental representation of the group (–>
sections of N-dim complex vector bundles)
=⇒ The NC generalization is
- a N-dim complex right module (N generators) over R2n

θ

H = CN ⊗ R2n
θ

- Gauge transformations are defined as automorphisms of H compatible both with
the structure of right R2n

θ -module
g(ψψψf ) = g(ψψψ)f

and with the Hermitian structure h : H×H → R2n
θ

h(gψψψ1), g(ψψψ2)) = h(ψψψ1,ψψψ2) ∀ψψψ1,ψψψ2 ∈ H
- A connection (discuss classical definition on the bb) is a linear map
∇ : Der(R2n

θ )×H → H satisfying
I ∇X (ψψψf ) = ψψψX (f ) +∇X (ψψψ)f ,∇cX (ψψψ) = c∇X (ψψψ) c in the center
I ∇X+Y (ψψψ) = ∇X (ψψψ) +∇Y (ψψψ)
I Hermiticity:

X (h(ψψψ1,ψψψ2)) = h(∇X (ψψψ1),ψψψ2) + h(ψψψ1,∇X (ψψψ2)),∀ψψψ1,ψψψ2 ∈ H
- Curvature is the linear map F(X ,Y ) : H → H defined by

F(X ,Y )ψψψ =i ([∇X ,∇Y ]ψψψ −∇[X ,Y ])ψψψ
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Noncommutative QED on R2n
θ

In this case H has only one generator, e —> ψψψ = eψ,ψ ∈ R2n
θ

• The connection is completely determined by its action on the module generator:
∇X (ψψψ) = ∇X (e)ψ + eX (ψ), with ∇X (e)† = −∇X (e).
=⇒ The 1-form connection A:

I A : X → A(X ) := i∇X (e), ∀X ∈ Der(R2n
θ )

I ∇µ(e) =: −iA(∂µ) = −ieAµ
I so that

∇µψψψ := ∇µ(eψ) = e(∂µψ − iAµ ? ψ)

• Gauge transformations can be identified with the unitaries U(R2n
θ )

Indeed

g(ψψψ) = g(eψ) = g(e) ? ψ = e fg ? ψ
h(g(ψψψ1), g(ψψψ2)) = h(e, e)(fg ? ψ1) ? fg ? ψ2 = h(ψψψ1,ψψψ2) −→
fg ? fg = 1

=⇒ fg ∈ U(R2n
θ )
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Properties of the gauge connection

I gauge covariance: (∇A
µ)g (ψψψ) := g(∇A

µ(g−1ψψψ)) = ∇Ag

µ (ψψψ)
with
Ag
µ = fg ? Aµ ? fg−1 + ifg ? ∂µfg−1

I Curvature:
Fµν = ([∇A

µ,∇A
ν ]−∇A

[∂µ,∂ν ]) = e(∂µAν − ∂νAµ − i [Aµ,Aν ]?)

Fg
µν = ([∇A

µ,∇A
ν ]−∇A

[∂µ,∂ν ])
check

= e(fg ? Fµν ? fg−1)

Implying
F g
µν ? F

g
µν = fg ? Fµν ? Fµν ? fg−1
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The QED action on R2n
θ

A natural candidate is
S =

∫
d2nx Fµν ? F

µν

Symmetries
I because of cyclicity of the product it is gauge invariant
I it is invariant under standard observer Poincaré transformations
I but yields new pathologies w.r.t. the commutative case: UV/IR mixing,

Gribov ambiguity
Space-time symmetries
Moyal product has been shown to be covariant under observer (passive)
transformations belonging to the Weyl group (undeformed Poincaré + dilations;
-more generally under linear affine transformations-) [GraciaBondia- R.Ruiz-Lizzi-Vitale ’06]

[Ω · f ] ?Ω·Θ [Ω · g ] = Ω · (f ?Θ g), Ω = (L, a)

[Ω · f ](x) = f (L−1(x − a), Ω ·Θ = LΘLt
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Infinitesimal generators:
- They are the standard ones G = εαβx

β∂α + aβ∂β

- not derivations of the star product (precisely because the Lie derivative of Θ
has to be taken into account)

- However: since the product depends on Θ even if starting functions don’t, it
is convenient to consider a (x ,Θ)-space on which

Ω · (x ,Θ) = (Lx + a, LΘLt) =⇒

the infinitesimal generators in (x ,Θ)-space are

PΘ
µ = −∂µ, DΘ = −x · ∂ − θµν ∂

∂θµν

MΘ
µν = xµ∂ν − xν∂µ + θρµ

∂

∂θρν
− θρν

∂

∂θρµ

ExerciseThey close the standard Weyl algebra and are derivations of the star
product

G θ(f ? g) = G θf ? g + f ? G θg
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Weyl invariance of the QED action

Aα does not depend on Θ –>
I PΘ

αAµ = −∂αAµ
I MΘ

αβAµ = (xα∂β − xβ∂α)Aµ + gαµAβ − gανAα

I DΘAµ = −(1 + x · ∂)Aµ

For the field strength Fµν = ∂µAν − ∂νAµ − i [Aµ,Aν ]?Θ use the fact that GΘ are
? derivations –>
I PΘ

α Fµν = ∂αFµν
I MΘ

αβFµν = (xα∂β − xβ∂α)Fµν + gµαFβν − gµβFαν + gναFβµ − gνβFαµ

I DΘFµν = −(2 + x · ∂)Fµν

namely the same as for commutative case =⇒ the action is invariant

Remark. There is a difference wrt commutative 4-d QED: Special conformal
invariance is lost because quadratic (or higher) in x =⇒

[xµxν∂ρ]Θ(f ? g)
check
6= [xµxν∂ρ]Θf ? g + f ? [xµxν∂ρ]Θg

with [xµxν∂ρ]Θ = xµxν∂ρ + (θαµxν + θαν xµ) ∂
∂θαρ
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Comparison with the twist approach

Moyal product is not covariant under Poincaré particle (active) transformations,
where the background field Θ does not change.
But it is covariant under Θ-Poincaré particle transformations: the universal
enveloping algebra of the Lie algebra p, with twisted coproduct (Hopf algebra
UF (p)).

Recap:

Given H Hopf algebra, denote by id the identity map of H onto itself, by ∆
the coproduct map, and by η the counit map from the Hopf algebra to the
scalars.
Consider an invertible element F in H ⊗ H that satisfies the conditions

(1⊗F)(id⊗∆)F = (F ⊗ 1)(∆⊗ id)F (η ⊗ id)F = (id⊗ η)F = 1

F is said to be a counital 2-cocycle for H (the twist)
∆F (h) = F∆(h)F−1, with h in H, defines a new coproduct in H

The algebra underlying H endowed with ∆F is the Hopf algebra HF (twisted
Hopf algebra)
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If H has a representation in an associative algebra A (here F (R4)) with product
m:

m(a⊗ b) = ab

h · (ab) = h ·m (a⊗ b) = m
(
∆(h) · (a⊗ b)

)
, h ∈ H

the twisting of ∆ introduces in A a twisted product mF defined by

mF (a⊗ b) = m
(
F−1 · (a⊗ b)

)
which is associative.
HF is represented in (A,mF ) by its action through ∆F (h),

h ·mF (a⊗ b) = h ·m
(
F−1 · (a⊗ b)

)
= m

(
∆(h)F−1 · (a⊗ b)

)
= m

(
F−1∆F (h) · (a⊗ b)

)
= mF

(
∆F (h) · (a⊗ b)

)
∗∗

=⇒ A ?-product defined in terms of a twist is always twist-covariant, by definition
=⇒ An action functional invariant under some space-time transformations always
yields a twisted action invariant wrt the corresponding twisted transformations;
these should be understood as particle (active) transformations

Patrizia Vitale (Dipartimento di Fisica Università di Napoli “Federico II” and INFN)Noncommutative Field and Gauge Theory COST CA18108 2nd Training School Belgrade, Serbia 3.9-10.9 2022 34 / 46



Back to QED on R4
Θ

Consider the Lie algebra of diffeomorphisms, D(R4), whose generators are vector
fields with polynomial coefficients on R4

I As Hopf algebra H take the enveloping algebra U(D):
∆ is first defined for h ∈ D by ∆(h) = 1⊗ h + h ⊗ 1, and then
multiplicatively extended to all of U(D) by ∆(hh′) = ∆(h)∆(h′);

I for the algebra A carrying a representation of U(D), take the algebra of
functions on spacetime with the ordinary multiplication m(f ⊗ g) = fg ;

I for F , take FΘ = exp(− i
2 θ

µν∂µ ⊗ ∂ν). This is clearly in U(D)⊗ U(D), has
an inverse

F−1Θ = exp( i
2
µν∂µ ⊗ ∂ν)

and satisfies the cocycle condition
The Moyal product is then recovered as the twisted product

mΘ(f ⊗ g) = m
(
FΘ
−1 · (f ⊗ g)

)
= f ?Θ g

The action of a generator h on the Moyal product is determined
by ∆Θ(h) = FΘ∆(h)FΘ

−1 and conversely.
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For the generators of translations, Lorentz transformations and dilations the
following expressions were obtained [Kulish, Matlock]

∆Θ(Pµ) = Pµ ⊗ 1 + 1⊗ Pµ

∆Θ(Mµν) = Mµν ⊗ 1 + 1⊗Mµν

+ i
2 θ

αβ
[
(gµαPν − gναPµ)⊗ Pβ + Pα ⊗ (gµβPν − gνβPµ)

]
∆Θ(D) = D ⊗ 1 + 1⊗ D − i θµνPµ ⊗ Pν

From these formulas it was concluded that Poincaré invariance can be
maintained in noncommutative field theory although twisted.
But this is not specific of Poincaré invariance
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Note that Eq. ∗∗ places no restriction on the generator h except that of being an
infinitesimal diffeomorphism
This is why the generators Kµ of special conformal transformation could be added
to the list of computed ∆Θ(h) [Matlock, Lizzi Vaydia V.].
I Because we are in the enveloping algebra, ∗∗ applies to differential operators

of any order
I the method is thus a recipe to encode the action of arbitrary differential

operators with polynomial coefficients on Moyal products
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Exercise
Show that

∂α(f ?Θ g) = ∂αf ?Θ g + f ?Θ ∂αg

xα(f ?Θ g) = xαf ?Θ g − i

2
θαβf ?Θ ∂βg = f ?Θ xαg +

i

2
θαβ ∂βf ?Θ g

and use it to check the twisted coproduct of infinitesimal spacetime
transformations generated by xµ1 ...xµN∂ν

∆Θ(xµ1 ...xµN∂ν) = xµ1 ...xµN∂ν ⊗ 1 + 1⊗ xµ1 ...xµN∂ν

+
N∑

k=1

( i
2

)k ∑
N≥ck>...>c1≥1

θµc1αc1 ... θµck
αck

[
∂αc1

...∂αck
⊗ xµ1 ... ^c1 ... ^ck ... xµN ∂ν

+(−1)k xµ1 ... ^c1 ... ^ck ... xµN ∂ν ⊗ ∂αc1
...∂αck

]
[^c1 indicates that the factor xµc1 is removed]
Moreover,

mΘ

(
∆Θ(xµ1 · · · xµN∂ν) · (xα ⊗ xβ − xβ ⊗ xα)

) check
= 0

namely, θαβ remains unchanged. The twisted coproduct formulation accounts
only for particle transformations
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Twist vs covariance

To summarize: for G in the affine group (generators at most linear in coordinates)
the relation between the covariant and twist approaches can be accounted by the
following equation

mΘ

(
∆Θ(G ) · (f ⊗ g)

)
= GΘmΘ(f ⊗ g)− 1

2
δGθ

αβ ∂

∂θαβ
mΘ(f ⊗ g) ,

where δGθαβ is the Lie derivative of the tensor Θ = θαβ∂α ⊗ ∂β with respect to G
For instance for dilatations one has

mΘ

(
∆Θ(D) · (f ⊗ g)

)
= DΘ(f ?Θ g) + θαβ

∂

∂θαβ
(f ?Θ g) .

Furthermore, observer and twist covariances boil down to

observer : GΘmΘ = mΘ∆(G ) twist : G mΘ = mΘ∆Θ(G ) .
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