
LECTURE 1

The Schwarzschild metric

ds2 = −
(

1− 2M

r

)
dt2 +

dr2

1− 2M
r

+ r2dΩ2 (1)

becomes singular at r = 2M . Since a photon of frequency ω at radius r is redshifted to
frequency

√
−gtt(r)ω as it travels to infinity (where −gtt = 1), then r = 2M is a surface of

infinite redshift. We have nevertheless seen that this surface can be reached in finite affine
parameter by null (light-ray) trajectories. Indeed, using Eddington-Finkelstein coordinates
adapted to ingoing light rays, we found that the geometry is smooth there1.

In order to further illuminate the geometry near r = 2M we will explore it in other ways.

1.a Rindler spacetime near the horizon and surface gravity

Go close to r = 2M by taking

r − 2M ' ξ2

8M
(2)

with ξ �
√
M .

• Prove that, then,

ds2 ' − ξ2

16M2
dt2 + dξ2 + 4M2dΩ2 . (3)

The term for the 2-sphere with constant radius 2M is not important in what follows2. It is
the (t, ξ) part of the metric that matters to us here: it is reminiscent of the plane in polar
coordinates

ds2 = ρ2dφ2 + dρ2 , (4)

and in fact it becomes of this form if we make φ→ it/(4M), ρ→ ξ. We know that in this case
ρ = 0 is just a coordinate singularity, and we can remove it by changing to cartesian coordinates
x = ρ cosφ, y = ρ sinφ. Following this lead, change coordinates as

X = ξ cosh(t/(4M)) , T = ξ sinh(t/(4M)) . (5)

• Show that the metric becomes

− 1

16M2
ξ2dt2 + dξ2 = −dT 2 + dX2 . (6)

Thus we see that the metric on the left, which is called Rindler spacetime, is locally equivalent
to 2D Minkowski space. So even if the Rindler metric is singular at the horizon (ξ = 0), a simple
change of coordinates allows to extend it across the horizon as smoothly as in Minkowski space.

1It is not difficult to see that r = 2M is also reached in finite proper time by timelike (particle) trajectories.
The so-called Painlevé-Gullstrand coordinates are adapted to radially infalling particles and yield a metric that
is manifestly regular at r = 2M .

2Strictly, since we are focusing on length scales much smaller than the sphere radius 2M , this sphere should
be approximated by a plane.



Notice that X2−T 2 = ξ2. Thus the horizon ξ = 0 is manifestly a null surface in Minkowski
(actually two surfaces: T ±X = 0), and trajectories of constant ξ 6= 0 are hyperbolas, which
we know are trajectories of uniform acceleration equal to 1/ξ. So Rindler spacetime is the
geometry of observers following trajectories of uniform acceleration. Of course we know that in
order to hover at fixed r above a black hole and not fall in it, you must accelerate away from
it. We have found that, close to the horizon, you are approximately a Rindler observer.

More generally, one can prove (see Optional exercise for the static case) that the geometry
near a black hole horizon takes the form

ds2 ≈ −κ2x2dτ 2 + dx2 + r20dΩ , (7)

where κ is a constant called the surface gravity of the horizon. For the Schwarzschild black
hole we have

κ =
1

4M
. (8)

κ has dimensions of inverse time, which is like acceleration (in natural units c = 1). Its
operational meaning is as follows: Imagine an observer at a large distance r � 2M , who is
slowly lowering towards the black hole a unit mass that is attached to the endpoint of a rope.
As the mass is lowered, the tension of the rope increases, and the observer must exert a stronger
force to keep it in place. When the horizon is approached, the tension of the rope near the
mass diverges, but this tension is redshifted (as can be seen from stress-energy conservation)
upwards along the rope. As a result, to hold the unit mass hovering right above the horizon,
the observer at infinity must pull the rope with a finite force equal to κ.

1.b Outgoing Eddington-Finkelstein coordinates

In the Schwarzschild spacetime, argue that radially outgoing light rays are given by

t = r∗ + const (9)

where the tortoise coordinate r∗ is defined by

dr∗ =
dr∣∣1− 2M

r

∣∣ . (10)

• Show that if we now introduce a new coordinate u = t− r∗, such that outgoing light rays
are u = const, and change coordinates (t, r) → (u, r), then the metric in these coordinates is
regular at r = 2M .
• Find that the equation for radial light rays is also solved by: r = 2M (which are the light

rays that generate the horizon); and u = −2r∗ + const. Verify that the latter agrees with the
solution that we found using the coordinate v = t+ r∗, i.e, v = const.
• Draw the trajectories of these light rays in a diagram where the vertical axis is u+r (which

at large r and t approaches t) and the horizontal axis is r. Observe that, now, the outgoing
light rays u = const cross the horizon outwards, while the ingoing light rays u = −2r∗ + const
never cross the horizon, but only approach it asymptotically to the future. That is, light (and
henceforth particles) can escape from inside the horizon, but never enter it — precisely the
opposite of what we found earlier! What is going on here? (You are encouraged to try exercise
1.d for a fuller understanding).



Optional exercises for Lecture 1

1.c Surface gravity for static spherical black holes

Consider a static, spherically symmetric metric of the generic form

ds2 = −f(r)dt2 +
dr2

g(r)
+ r2dΩ . (11)

Assume that f(r) and g(r) vanish linearly at r = r0, i.e., f(r) = (r − r0)f ′0 +O(r − r0)2 and
similarly for g(r).
• Show that near r = r0 they take the form of Rindler spacetime3

ds2 ≈ −κ2x2dτ 2 + dx2 + r20dΩ , (12)

with

κ =
1

2

√
f ′(r0)g′(r0) . (13)

NB: horizons with κ 6= 0 are called non-extremal, non-degenerate, or bifurcate horizons. Hori-
zons with κ = 0 (such as when f and g have double zeroes) are called extremal or degenerate,
and they require separate treatment.

1.d Kruskal coordinates

Change to null ingoing and outgoing coordinates (t, r) → (u = t − r∗, v = t + r∗) and
examine whether in (u, v) coordinates the metric at r = 2M is regular or not (Answer: it is
not).

Try instead a related set of null coordinates (U, V ), defined by

U = −2Me−u/4M , V = 2Mev/4M , (14)

and, from them, introduce new time and space coordinates

T =
1

2
(U + V ) , X =

1

2
(U − V ) . (15)

• Verify that, near r = 2M , these coordinates become, up to constant factors, the same as
the (T,X) coordinates we introduced above in the Rindler limit of the solution. Therefore, in
these coordinates, the horizon will be manifestly smooth.
• Write the Schwarzschild solution in terms of them, to find

ds2 = 8M
e−r/2M

r

(
−dT 2 + dX2

)
+ r2dΩ2 (16)

where r(T,X) is given implicitly by the relation

2M(r − 2M)er/2M = −T 2 +X2 . (17)

3See footnote 2 again. The transverse space does not play any role in this analysis.



The only singularity in these coordinates is at r = 0. The geometry can then be smoothly
(analytically) extended along all the horizons (future and past), resulting in the Kruskal max-
imal analytic extension of the Schwarzschild solution. You can try to piece together all of the
information we have obtained above to try to draw a picture of the Kruskal geometry in the
(T,X) plane. (This takes some work, but the result is rewarding).

NB: Although Kruskal coordinates help clarify the global nature of the maximal Schwarzschild
geometry, the implicit nature of (17) often makes them impractical. Eddington-Finkelstein
coordinates are usually the most efficient way of verifying horizon regularity.



LECTURE 2

2. Wave propagation in Schwarzschild spacetime

Consider the propagation of a massless scalar field in a spacetime of the form4

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2(dθ2 + sin2 θdϕ2) . (18)

• Write down the form of the wave equation

�Φ ≡ ∇i∇iΦ =
1√
−g

∂i
(√
−ggij∂jΦ

)
= 0 (19)

(keep it in a compact form).
• Observe that the angular part is the same as in the wave equation in flat space, so

the angular dependence can be separated and solved by introducing the spherical harmonics
Ylm(θ, ϕ). Then, write the wave equation for the radial field modes φωlm(r) in the decomposition

Φ(xµ) = e−iωtYlm(θ, ϕ)φωlm(r) . (20)

• We know that in flat space (which is approached as f → 1) it is convenient to introduce
a new radial field variable ψωlm defined as

φωlm =
ψωlm
r

. (21)

In addition, for the propagation of massless excitations in the black hole background it is
convenient to introduce the tortoise coordinate r∗ defined as

dr∗ =
dr

f(r)
. (22)

With these changes, you must find an equation of the form

−∂
2ψωlm(r∗)

∂r2∗
=
(
ω2 − Vl(r)

)
ψωlm(r∗) (23)

in terms of an effective potential Vl(r) (which you can leave expressed in terms of r, with the
understanding that r is a function of r∗).

• For the Schwarzschild spacetime, with

f = 1− 2M

r
, (24)

sketch the shape of potential Vl vs. r∗/M for different values of l.

Vl is the effective radial potential that a massless scalar wave feels when propagating in this
background. We have mapped this problem to one of waves in a one-dimensional potential
that extends in the range r∗ ∈ (−∞,+∞). There are many questions that can be answered
qualitatively from the shape of this potential. For instance: argue that there are not any bound
states of the scalar field in the black hole background. This shows (at the perturbative level)
that the black hole does not admit ‘scalar hair’.

4This is not the most general static spherical metric. Doing this exercise for the general case is only a little
more involved.



LECTURE 3

3a. Rotation parameters for stars, planets, and other objects

• Estimate, assuming rigid rotation, the dimensionless rotation parameter a∗ = a/M , which
in conventional units is a∗ = cJ/(GM2), for: (a) the Sun; (b) the Earth; (c) a rapidly rotating
neutron star, of mass ' 1.5M�, radius ' 10 km and rotation period ' 1.5 ms; (d) a ball with
radius 1 cm, weight 1 g, spinning at 1 Hz.
• Comment on the results, in particular how/why they differ so much from the maximum

value for a Kerr black hole a∗ = 1.

3b. Extension across the Kerr horizon

In the Kerr solution, change to Eddington-Finkelstein ingoing coordinates (t, φ)→ (v, φ̃) as

dv = dt+ (r2 + a2)
dr

∆
, dφ̃ = dφ+ a

dr

∆
. (25)

• Write the metric in coordinates (v, r, θ, φ̃) and show that it is regular at the points r±
where ∆ = 0.
• Find the change to outgoing E-F coordinates (t, φ) → (u, φ̂) that allow to extend the

metric across the past horizon.

3c. Superradiance

Consider a complex massless scalar field Φ, which satisfies the Klein-Gordon equation

∇µ∇µΦ = 0 . (26)

For this field we can construct a current

Jµ = i(Φ∇µΦ∗ − Φ∗∇µΦ) , (27)

which gives the flux of the field (e.g., the flux of particles associated to the field, when it is
quantized).
• Show that this current is conserved when the Klein-Gordon equation is satisfied.

Now scatter this field off a rotating black hole. Due to the symmetries of the Kerr metric
and the linearity of the Klein-Gordon equation, we can expand the field into modes and then
consider them individually, i.e.,

Φ = Φωm(r, θ)e−iωteimφ . (28)

• Show that the flux F across the horizon

F = −Jµξµ , (29)

where ξ is the horizon generator
ξ = ∂t + ΩH∂φ , (30)

is negative for modes satisfying ω < mΩH . In other words, there is a positive flux of these
modes out of the horizon: they will reflect off the black hole with larger amplitude than they
came in with. This is called superradiance.



LECTURE 4

4. Entropy of astrophysical black holes

The Bekenstein-Hawking entropy

SBH =
c3

~G
AH
4

(31)

is enormous for astrophysical black holes. Here we have taken Boltzmann’s constant kB = 1, so
temperature is measured in units of energy and the entropy is dimensionless. Ignoring rotation
(which would only introduce corrections by factors of order one) we can write

SBH ' 1077

(
M

M�

)2

, (32)

where M� = 2× 1033 g is the mass of the Sun. In the following, we will try to obtain order-of-
magnitude estimates of the entropy of astrophysical black holes and compare it to the entropies
of other relevant systems. Our assumptions will be rather crude and may be off by one or even
two orders of magnitude, but the comparisons will still be significant.

• Entropy of a star. A very crude estimate (but sufficient for our purposes) of the entropy
of the Sun is the following. For an ideal gas of n particles, the entropy is S ∼ n. Regard the
Sun as a ball of a gas of particles of mass equal to the proton mass, mp ∼ 10−24g. What is
then the entropy of the Sun? What is the entropy of a black hole of the same mass?

• Entropy of a galaxy. Estimate in the same manner the entropy of the galaxy from the
following sources:

1. Luminous matter (stars), if the luminous mass in the galaxy is Mgalaxy ∼ 1011M�.

2. Central black hole. There is significant evidence that our galaxy contains a central black
hole with mass M• ' 4× 106M�.

3. Stellar-mass black holes. The number of black holes of stellar mass ∼ M� in the galaxy
is estimated to be ∼ 108.

Which of these three contributions to the entropy of the galaxy is the largest?

• Entropy of the Universe. Estimate the following contributions to the entropy of the
Universe:

1. Luminous matter (stars in galaxies): take the radius of the Universe to be ∼ 1010 ly (ly =
light year), and consider that each galaxy occupies a sphere of radius ∼ 105−106 ly, with
ou galaxy being a typical galaxy.

2. Cosmic microwave background radiation at T ∼ 3K ∼ 10−4eV. The entropy of a gas of
photons at temperature T in a volume V is S ∼ V T 3 (with ~ = 1 = c). (Hint: write T
in terms of the wavelength of the radiation).



3. Entropy in black holes at galactic centers. Assume that each galaxy has a central black
hole of mass ∼ 106 − 109M�.

You must have found that the total entropy of the Universe is overwhelmingly dominated
by black hole entropy. If you have any suggestion for what could be the ultimate meaning (if
any) of this striking fact,5 I would like to know.

5Which adds to the better known enigmas that the total energy of the Universe is dominated by dark energy,
and the total mass by dark matter.


