Observational Cosmology

Marko Simonović (CERN)

COST CA18108 S September

COST CA18108 Second Training School

September 2022, Belgrade

Profound impact of cosmology on HEP

Matter-antimatter asymmetry Dark matter Dark energy Inflation

Particle physics, string theory...

What are we hoping for?

Energy scale of inflation Precise measurements of dark energy Ultralight axion-like particles Higher mass/spin particles in PNG

. . .

Goals for these lectures

The most important observations in cosmology (CMB & LSS) Observables Angular power spectra (CMB) and galaxy/matter power spectra (LSS) Comparison of data and theory Estimating S/N for cosmological signals

There is a simple geometrical connection between the Fourier modes in k-space and the angular power spectrum

- Measure the temperature fluctuations
- Estimate the 2-point correlation function
- Alternatively, estimate the power spectrum

scale-invariant power spectrum

Parameter	TT+lowP+lensing 68% limits	TT,TE,EE+lowP+lensing+ext 68% limits
$n_{\rm s}$	0.9677 ± 0.0060	0.9667 ± 0.0040
H_0	67.81 ± 0.92	67.74 ± 0.46
Ω_{Λ}	0.692 ± 0.012	0.6911 ± 0.0062
Ω_m	0.308 ± 0.012	0.3089 ± 0.0062
$\Omega_{ m b}h^2$	0.02226 ± 0.00023	0.02230 ± 0.00014
$\Omega_{\rm c}h^2$	0.1186 ± 0.0020	0.1188 ± 0.0010
σ_8	0.8149 ± 0.0093	0.8159 ± 0.0086
$z_{\rm re}$	$8.8^{+1.7}_{-1.4}$	$8.8^{+1.2}_{-1.1}$
Age/Gyr	13.799 ± 0.038	13.799 ± 0.021

Simple potentials are observationally ruled out!

Interesting target $r \sim 10^{-3}$

Linear matter power spectrum

Linear matter correlation function

What do we actually measure?

Size of galaxy samples as a function of time

Isn't the CMB good enough?

1) Approaching the limit, given by the number of pixels: $N_{\rm pix.} \approx \ell_{\rm max.}^2 \sim 10^7$

$$D_A(z) = \frac{1}{1+z} \int_0^z \frac{dz'}{H(z')} H(z')$$

Isn't the CMB good enough?

2) Degeneracies in the CMB have to be broken by the external data

A dawn of new era in cosmology

CLASS-PT PyBird velocileptors Chudaykin, Ivanov, Philcox, MS (2019) D'Amico, Senatore, Zhang (2019) Chen, Vlah, Castorina, White (2020)

nonlinear MCMC made possible

linear

CMBFAST CAMB **CLASS**

MCMC done routinely

Complete evolution of the vacuum state from inflation to redshift zero

How well does PT work?

Blind analysis, very large volume, realistic galaxies

Nishimichi et al. (2020)

Application to BOSS data

Galaxy map

Different from the standard fixed-shape analysis!

Full-shape analysis

Similar to CMB, directly measures "shape" parameters

all cosmological parameters no CMB input needed

Application to BOSS data

Ivanov, MS, Zaldarriaga (2019) d'Amico, Gleyzes, Kokron, Markovic, Senatore, Zhang, Beutler, Gil Marin (2019) Philcox, Ivanov, MS, Zaldarriaga (2020)

Here we use the BBN prior on ω_h

- $H_0 = 68.6 \pm 1.1 \text{ km/s/Mpc}$
- $H_0 = 67.8 \pm 0.7 \text{ km/s/Mpc}$ (fixing the tilt)
- 1) Datasets are consistent
- 2) BOSS H0 and Ω_m comparable to Planck

Application to BOSS data

Cabass, Ivanov, Philcox, MS, Zaldarriaga (2022) D'Amico, Lewandowski, Senatore, Zhang (2022)

Laguë, Bond, Hložek, Rogers, Marsh, Grin (2021)

- EDE, Planck + standard FS + BAO from BOSS
- EDE, Planck + EFT-FS + BAO from BOSS

Xu, Muñoz, Dvorkin (2021) Light (but Massive) Relics — LiMRs

Forecast for a Euclid/DESI-like survey

Chudaykin, Ivanov (2019)

1) Euclid/DESI ~ Planck

2) much better in combination

