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What are we hoping for?

Energy scale of inflation

Precise measurements of dark energy
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5.3.3 Line-of-Sight Solution

In Chapter 3, we have seen that recombination occurs over a very short amount of time, �z ⇠ 10.

To simplify matters, we will work with the idealised approximation of instantaneous recombi-

nation. The CMB photons were then emitted at a fixed time ⌘⇤ = ⌘rec. This moment is often

called last-scattering. Equation (5.3.60) can then be integrated from the time of emission ⌘) to

the time of observation ⌘0 (i.e. today),
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To relate this to the temperature anisotropy, we note that
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where T̄ (⌘) is the mean temperature. Taylor-expanding the log’s in (5.3.61) to first order in

�T/T̄ , and keeping in mind that a0T̄0 = a⇤T̄⇤, we find

�T

T̄

����
0

=
�T

T̄

����
⇤
+ ( ⇤ � 0) +

Z
⌘0

⌘⇤

d⌘
@

@⌘
( + �) . (5.3.63)

The term  0 only a↵ects the monopole perturbation, so it is unobservable5 and therefore usually

dropped from the equation. The fractional temperature perturbation at last scattering can be

expressed in terms of the density contrast of photons,6
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Equation (5.3.63) then reads
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So far, we have ignored the motion of the electrons at the surface of last scattering. Including

this leads to an extra Doppler shift in the received energy of photons when referenced to an

observer comoving with the electrons at last scattering (see Fig. 5.5),
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Putting everything together, we obtain the following important result
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Let us summarise the various contributions to the total temperature anisotropy:

• The term 1

4
�� can be thought of as the intrinsic temperature variation over the background

last-scattering surface.

5The total monopole is, of course, observable but its perturbation depends on the point identification with the

background cosmology, i.e. is gauge-dependent.
6Recall that ⇢� / T 4 for blackbody radiation at temperature T .
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Figure 5.5: The motion of electrons at the surface of last scattering produces an additional temperature
anisotropy.

• The term  arises from the gravitational redshift when climbing out of a potential well at

last scattering. The combination 1

4
�� + is often called the Sachs-Wolfe term.

• The Doppler term n̂ · ve describes the blueshift from last scattering o↵ electrons moving

towards the observer.

• Finally, the integrated Sachs-Wolfe term describes the e↵ect of gravitational redshifting

from evolution of the potentials along the line-of-sight.

Figure 5.6 illustrates the contributions that each of the terms in (5.3.67) makes to the power

spectrum of the CMB temperature anisotropies (see §5.3.4). We see that the ISW contribution is

subdominant and that the shape of the power spectrum is mostly determined by the Sachs-Wolfe

and Doppler contributions.

SW
Total

ISW
Doppler

Figure 5.6: Contributions of the various terms in (5.3.67) to the temperature-anisotropy power spectrum.

density fluct.
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Comment.—For adiabatic initial conditions (i.e. �� ⇡ 4

3
�m) and on large scales (�m ⇡ �2�), the

Sachs-Wolfe term becomes
1

4
�� + = �2�

3
+ ⇡ 1

3
� . (5.3.68)

This shows that, on large scales, an overdense region ( ⇡ � < 0) appears as a cold spot on the sky.

While the temperature at the bottom of the potential well is hotter than the average (� 2

3
�), photons

lose more energy ( ) as they climb out of the potential well, resulting in a cold spot ( 1
3
� < 0).

5.3.4 CMB Power Spectrum

A map of the cosmic microwave background radiation describes the variation of the CMB tem-

perature as a function of direction, �T (n̂). We will be interested in the statistical correlations

between temperature fluctuations in two di↵erent directions n̂ and n̂0 (see Fig. 5.7), averaged

over the entire sky.

Figure 5.7: Left: Illustration of the two-point correlation function of the temperature anisotropy �T (n̂).
Right: Illustration of the temperature anisotropy created by a single plane wave inhomogeneity are recom-
bination.

If the initial conditions are statistically isotropic, then we expect these correlations only to

depend on the relative orientation of n̂ and n̂0. In that case, we can write the two-point

correlation function as ⌦
�T (n̂)�T (n̂0)

↵
=

X

l

2l + 1
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where n̂ · n̂0 ⌘ cos ✓ and Pl are Legendre polynomials. The expansion coe�cients Cl are the

angular power spectrum (cf. Fig. 5.8). If the fluctuations are Gaussian, then the power spectrum

contains all the information of the CMB map.

The right panel in Figure 5.7 illustrates the temperature variations created by a single plane

wave inhomogeneity. The CMB anisotropies observed on the sky are a superposition of many

such plane waves with amplitudes that are weighted by the spectrum of primordial curvature

perturbations �2

R(k). In Chapter 6, we will show that the initial conditions of the primordial

There is a simple geometrical connection between the Fourier

modes in k-space and the angular power spectrum

CMB angular power spectrum
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large scales small scales

Figure 5.2: The matter power spectrum P�(k) at z = 0 in linear theory (solid) and with non-linear correc-
tions (dashed). On large scales, P�(k) grows as k. The power spectrum turns over around keq ⇠ 0.01Mpc

�1

corresponding to the horizon size at matter-radiation equality. Beyond the peak, the power falls as k
�3.

Visible are small amplitude baryon acoustic oscillations in the spectrum.

These scalings are easy to understand by consulting the Poisson equation, r2� = 4⇡Ga
2
⇢̄m�m,

which implies P�(k) / k
4
P�(k). The spectrum of � therefore directly related to the time-

evolved spectrum of �:

• Modes with k < keq only enter the horizon during the matter era when their amplitude

remains constant. For these modes, the gravitational potential hasn’t undergone any

evolution and its power spectrum takes the scale-invariant form P�(k) / k
�3. The matter

power spectrum for those scales therefore is

P�(k) / k
4 ⇥ k

�3 = k . (5.1.24)

• Modes with k > keq, on the other hand, have entered the horizon during the radiation

era. As we have seen in §4.3.3, for these modes, the gravitational potential decays as

a
�2 / ⌘

�2. The amount of suppression of � is determined by the amount time that the

mode has spent inside the horizon which follows from the horizon crossing condition k⌘ = 1.

Modes with larger k enter the horizon earlier and will be more suppressed, namely by a

factor of (k/keq)�2 coming from the (⌘/⌘eq)�2 suppression of the potential. The matter

power spectrum for k > keq therefore is

P�(k) / k
4 ⇥ k

�3 ⇥ (k�2)2 = k
�3

. (5.1.25)

Finally, note that the evolution of P�(k, z) during the matter era is proportional to a
2 =

(1 + z)�2, cf. eq. (5.1.15).

5.2 Acoustic Oscillations

5.2.1 Radiation Fluctuations

In this section, we wish to determine the evolution of perturbations in the radiation density.

We will first ignore the coupling between photons and baryons. In §4.3.1, we showed that the
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Linear matter correlation function
6

ture are not absent. The presence of this feature is the
cause for the common wisdom that SPT does not work
for the correlation function. As the good performance of
the IR-resummed EFT proves, the failure is not related
to the high-k behavior of the perturbation theory but
to the missing non-perturbative treatment of motions.
One can indeed see that the IR-resummed EFT provides
a good description of the correlation function down to
10 h�1Mpc separations [? ].

Another feature of fig. ?? that is worth emphasizing is
the shift of the peak compared to the linear correlation
function. This shift is expected to be due to corrections
to ⇠̃g of order ⌃2⇠0g/`BAO, which are smaller than the
broadening e↵ects by a factor of �/`BAO [? ]. They
are not entirely fixed by symmetries since the cross cor-
relation between a displacement and other nonuniversal
e↵ects — e.g. arising from living in an over dense re-
gion — caused by a long wavelength mode contributes at
the same level. Nevertheless, they can be calculated in
perturbation theory and are included, to leading order,
in the 1-loop result, which predicts the position of the
peak reasonably well. On the other hand, the BAO re-
construction schemes, to be discussed below, reproduce
the original peak by virtue of undoing the displacements
caused by the long modes which also eliminates the above
mentioned cross correlations.

For comparison, we have also plotted in fig. ?? the
Zel’dovich correlation function, which is known to give
a relatively accurate description of the BAO spread. We
will next argue that the success of the Zel’dovich approx-
imation is because it can be formulated as (??).

Zel’dovich approximation.— The matter correlation
function can be related to the correlation function of the
relative displacement �s(z) of two points with initial
(Lagrangian) separation z:

1+⇠(x) =

Z
d3k

(2⇡)3
eik·x

Z
d3ze�ik·z

D
e�k·�s(z)

E
. (23)

In the Zel’dovich approximation, �s is replaced by its
linear expression, and the above expectation value is triv-
ially expressed in terms of the variance

Aij(z) =
⌦
�si(z)�sj(z)

↵

=

Z
d3q

qiqj

q4
Plin(q) sin

2

⇣q · z

2

⌘
.

(24)

Let us define Zel’dovich power spectrum as the result of
the inner integral in (??) at k 6= 0:

Pz(k) =

Z
d3ze�ik·ze�

1

2
Aij

(z)kikj

, (25)

which in the presence of the BAO feature contains an
oscillating component Pw

z (k). This can be approximated
by the product of a non-smoothed piece times a broad-
ening factor, as in (??): Define Aij

S (z,⇤), and Aij
L (z,⇤)

by the same integral as in (??), but taken, respectively,

linear

IR-resummed linear

IR-resummed 1-loop

Zel'dovich

80 90 100 110 120

5

10

15

20

r [h-1Mpc]
10

4 �

FIG. 5. Various theoretical approximations to the acoustic
peak in the correlation function as well as simulation mea-
surements. Solid: linear, dashed: IR-resummed linear, dot-
dashed: IR-resummed 1-loop, and dotted: Zel’dovich.

over short modes q > ⇤, and long modes q < ⇤. So we
have

Aij(z) = Aij
S (z,⇤) +Aij

L (z,⇤). (26)

A Zel’dovich power spectrum in the absence of the long
modes Pz,S(k,⇤), where ⇤ ⌧ k, can now be defined by

replacing Aij
! Aij

S in (??). This is the analog of the
last factor in (??): it contains the full nonlinear e↵ect of
the short modes in the Zel’dovich approximation, but no
long modes whatsoever.
Consider now the full Pz(k). The integral in (??) is

dominated by z = O(1/k), and, if k is in the support of
Pw
z (k), by z = ±`BAOk̂+O(1/k). The second contribu-

tion is what we called Pw
z (k). Here, Aij

L (z) is first of all
appreciable, and second, it can be approximated to be a
constant given by its value at z = `BAOk̂ to yield

Pw
z (k) ⇡ e�

1

2
Aij

L (`BAOk̂,⇤)kikj

Pw
z,S(k,⇤)

⇡ e�⌃
2

⇤
k2

Pw
z,S(k,⇤).

(27)

The second equality holds up to terms suppressed by
�/`BAO. Replacing ⇤ ! ✏k results in the desired ana-
log of (??).
Hence, the Zel’dovich approximation, despite being a

crude model of short scale dynamics, gives an accurate
description of BAO broadening by taking into account
the leading displacement caused by all longer wavelength



What do we actually measure?
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Isn’t the CMB good enough?

1) Approaching the limit, given by the number of pixels:    Npix. ≈ ℓ2
max. ∼ 107

also fix rd. Hence, the ↵-analysis and our method should be technically similar if we
fix rd in the ↵-analysis and !b,!cdm from our side.

Another important observation is that the ↵-analysis assumes H(zeff) and DA(zeff)

to be completely independent from each other, while in reality they are related by
construction,18

DA(z) =
1

1 + z

Z z

0

dz
0

H(z0)
. (6.1)

In ⇤CDM a prior on !m completely fixes the relation between the two at any redshift.
Once we impose this relation,19 the limits on H and DA from the ↵-analysis coincide
with the limits obtained with our method (modulo some small difference which can
be explained by the use of slightly different priors and theoretical models, see App. D
for more detail). This can be seen in Fig. 5 and Tabs. 6, 7.

One can notice that the ⇤CDM priors have a very dramatic effect on the mea-
surements of H and DA, whose errorbars reduce by a factor of few compared to the
basic ↵-analysis without any priors. However, the effect on DV is not very strong.
This reflects the observation that DV is the best measured combination of DA and H,
which is extracted directly from the monopole, while H and DA are measured from
the quadrupole, which has significantly bigger statistical errors.20 This statement is
not obvious from our analysis as the errorbars on all three distances H, DA, and DV

are comparable in ⇤CDM.
In order to better understand the situation we analyze the BOSS data assuming

a generic dynamical dark energy (DDE) model, described by the following Friedman
equation:

H
2(z) = H

2

0

⇣
⌦m(1 + z)3 + ⌦⇤ + ⌦de(1 + z)w0+wa

z
1+z

⌘
. (6.3)

We assume the following flat priors on wa and w0:

⌦de 2 (0, 1) , w0 2 (�2,�0.33) , wa 2 (�5, 5) , (6.4)

18We work in the unit system with c = 1.
19To that end we have run mock MCMC chains that fitted DA and H from the Gaussian likelihood

for rd assuming ⇤CDM. Then we found the principal component of these variables and imposed
this as a prior in the MCMC chains which sampled ↵ parameters.

20It is useful to compare our limits with the ones obtained in the main BOSS Fourier-space BAO
and FS power spectrum analyses, see Refs. [6, 82]. These are

DV (zeff = 0.38) = 1493± 28 [Mpc] , DV (zeff = 0.61) = 2133± 36 [Mpc] , (FS) ,
DV (zeff = 0.38) = 1479± 23 [Mpc] , DV (zeff = 0.61) = 2141± 36 [Mpc] , (pre-recon BAO) ,

DV (zeff = 0.38) = 1474± 17 [Mpc] , DV (zeff = 0.61) = 2144± 20 [Mpc] , (post-recon BAO) .

(6.2)

Note that these limits were obtained by using slightly different datasamples (NGC+SGC), kmax

cuts and the theoretical model, and hence should be compared to our results shown in this section
with some caution.

– 26 –

CDMΛ H0rs(!cdm,!b) (9)

2



Isn’t the CMB good enough?

BAO

2) Degeneracies in the CMB have to be broken by the external data
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Blind analysis, very large volume, realistic galaxies
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FIG. 13. Posterior distributions from the post-unblinding analyses where one or two additional bias parameters are floated.

1. Residual shot noise

It is known that dark matter halos or associated galax-
ies are not a Poisson sample of the underlying hypothet-
ical continuous distribution [e.g., 114, 115]. As explained
in Sec. III C, the standard shot noise contribution is al-
ready subtracted in the power spectra data files provided
by the Japan Team. The subtracted shot noise contribu-
tion is, strictly speaking, not really an estimate of the ad-
ditional fluctuations associated with the connection be-

tween the underlying smooth field and the discrete point
distribution, but simply the “zero-lag” correlator inher-
ent in a point process. Therefore, the assumption of the
zero shot-noise like term adopted in the blinded analyses
presented in the main text is not guaranteed to be valid.
We study here the impact of adding a nuisance parame-
ter to model the residual shot term, which is relevant for
the monopole moment.

The green contours in Fig. 13 show the result at four
di↵erent kmax as indicated in the figure legend. They

How well does PT work?
Nishimichi et al. (2020)



Application to BOSS data
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Figure 1: Left panel : The posterior distribution for the late-Universe parameters
H0,⌦m and �8 obtained with priors on !b from Planck (gray contours) and BBN (blue
contours). For comparison we also show the Planck 2018 posterior (red contours) for
the same model (flat ⇤CDM with massive neutrinos). Right panel : The monopole
(black dots) and quadrupole (blue dots) power spectra moments of the BOSS data for
high-z (upper panel) and low-z (lower panel) north galactic cap (NGC) samples, along
with the best-fit theoretical model curves. The corresponding best-fit theoretical
spectra are plotted in solid black and blue. H0 is quoted in units [km/s/Mpc].

adopted in this work allows for a clear comparison between the two experiments at
the level of the fundamental ⇤CDM parameters. Our measurement of H0 is driven by
the geometric location of the BAO peaks, whereas the limits on ⌦m result from the
combination of both the geometric (distance) and shape information. �8 is measured
through redshift-space distortions. We performed several tests to ensure that our
constraints are saturated with these three effects, and confirmed that distance ratio
measurements implemented through the Alcock-Paczynski effect can only marginally
affect the cosmological parameters of ⇤CDM. However, the situation changes in
its extensions, in which the Alcock-Paczynski effect becomes a significant source of
information.

It is important to emphasize that we did not assume strong priors on the power
spectrum shape in our analysis, in contrast with the previous full-shape studies,
which used such priors. In order to explore the relation with those previous works
we ran an analysis with very tight shape priors and obtained essentially the same
results as in Tab. 1. However, in that case ⌦m cannot be viewed as an independently
measured parameter, since the shape priors completely fix the relation between ⌦m

– 6 –

Galaxy map

Full-shape analysis
Similar to CMB, directly measures “shape” parameters

all cosmological parameters

no CMB input needed

Different from the standard

fixed-shape analysis!



Application to BOSS data

Figure 5. CMB-independent cosmological constraints obtained from this work for the baseline
⌫⇤CDM model, as tabulated in Tab. 2. The ‘FS+BAO’ dataset refers to the combination of full-shape
(FS) modelling of unreconstructed power spectra via a one-loop full-shape model and BAO-modelling
of reconstructed power spectra to compute Alcock-Paczynski parameters, incorporating the theoretical
error methodology of Ref. [66], with a joint sample covariance used to unite the two approaches. The
‘FS’ dataset (equivalent to the full-shape analysis of Sec. 2.3) was presented in Ref. [52] and ‘Planck
2018’ refers to Ref. [1]. This plot shows the cosmological constraints obtained from combination of
four BOSS DR12 data chunks, which are displayed separately in Fig. 6. H0 is quoted in km s�1Mpc�1

units.

a result of the paucity of modes in the large-scale regime, which are particularly sensitive to
ns.

In Fig. 6 we show the constraints obtained from analyzing each of the four data chunks
separately, with corresponding parameters given in Tab. 5 of Appendix B. Note that, even in

– 23 –

Ivanov, MS, Zaldarriaga (2019)
d’Amico, Gleyzes, Kokron, Markovic, Senatore, Zhang, Beutler, Gil Marin (2019)

Philcox, Ivanov, MS, Zaldarriaga (2020)

1) Datasets are consistent

2) BOSS H0 and  comparable to Planck Ωm

H0 = 68.6 ± 1.1 km/s/Mpc
H0 = 67.8 ± 0.7 km/s/Mpc (fixing the tilt)

Here we use the BBN prior on ωb
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FIG. 13. Posterior distributions for the parameters extracted from the joint Planck 2018 TT+TE+EE+low `+lensing + BOSS
FS+BAO data. We show the results obtained using the standard FS+BAO likelihood (in blue) and the EFT-based likelihood
(in red). For reference, we also display the constraints from the Planck 2018 primary CMB data alone (TT+TE+EE), obtained
in [1]. The gray band shows the H0 measurement from SH0ES, for comparison. The dark-shaded and light-shaded contours
mark 68% and 95% confidence intervals, respectively.

28

FIG. 13. Posterior distributions for the parameters extracted from the joint Planck 2018 TT+TE+EE+low `+lensing + BOSS
FS+BAO data. We show the results obtained using the standard FS+BAO likelihood (in blue) and the EFT-based likelihood
(in red). For reference, we also display the constraints from the Planck 2018 primary CMB data alone (TT+TE+EE), obtained
in [1]. The gray band shows the H0 measurement from SH0ES, for comparison. The dark-shaded and light-shaded contours
mark 68% and 95% confidence intervals, respectively.

28

FIG. 13. Posterior distributions for the parameters extracted from the joint Planck 2018 TT+TE+EE+low `+lensing + BOSS
FS+BAO data. We show the results obtained using the standard FS+BAO likelihood (in blue) and the EFT-based likelihood
(in red). For reference, we also display the constraints from the Planck 2018 primary CMB data alone (TT+TE+EE), obtained
in [1]. The gray band shows the H0 measurement from SH0ES, for comparison. The dark-shaded and light-shaded contours
mark 68% and 95% confidence intervals, respectively.
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Figure 14: Joint posterior distributions for an axion with a mass of 10�32 eV for three
experimental setups. We note an improvement on the constraint on the axion fraction when
breaking the degeneracy with H0 present with the CMB data. The gray shaded area represent
the confidence interval for h from the SH0ES measurement [81].

Figure 15: 68% (dark-colored) and 95% (light-colored) confidence level bounds on the axion
density from the CMB data, galaxy clustering and the combined measurements.

prior favours a higher value of As which is slightly degenerate with the axion fraction at
that mass as shown in Fig. 16. Another contributing factor is that the CMB prior does not
constrain the axion fraction as well as for the axion masses below 10�25 eV. Performing a
joint likelihood analysis rather than imposing a prior on the cosmological parameters may
allow for stronger constraints for this mass bin and is left for future work. We note however
that galaxy clustering measurements alone improve existing constraints on the axion fraction
at that mass by over a factor of 4.5 (see Table 3).
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FIG. 2: Constraints for Weyl-fermion light relics in the

mX � T
(0)
X parameter space, obtained from a joint anal-

ysis of P18 + BOSS-FS + WLens datasets. We find no
preference for relics throughout, and display specific up-
per bounds on present-day temperature for relics of fixed
mass. Other types of relics (such as scalars or vectors)
have identical signatures to Weyl fermions with di↵erent
parameters, so this search rules out LiMRs of any spin.

↵ forest [47] or BAO and weak-lensing data [48]2) and
our constraints are stronger by a factor 2 � 5. We also
investigate here the relative power of each dataset, and
find (i ) the inclusion of full-shape galaxy power-spectrum
information, as opposed to BAO only, strengthens our
constraints by a significant 30%, and (ii ) weak-lensing
data is crucial for obtaining strong limits, as it precisely
measures the abundance of clustering matter, breaking
a degeneracy between !cdm and !X (we encourage the
reader to visit the Supplemental Material for the confi-
dence contours).

Our constraints on LiMRs can be interpreted within
di↵erent particle-physics models: eV-scale extensions to
the neutrino sector, particularly sterile neutrinos, have
been widely proposed and studied [21, 22, 49], dark pho-
tons [15, 16, 50] are well-motivated examples of a vector
LiMR, and scalar relics are straightforwardly realized in
axions and axion-like particles [17–20]. We note, how-
ever, in the latter case that our present data is insensi-
tive to the sub-eV mass candidates typically considered,
though a relic population of hot QCD axions are expected
to have much higher than minimum temperature [51].

As a detailed example, we study the case of the grav-
itino, for which a relic population easily arises in gauge-
mediated SUSY-breaking scenarios [52–54]. While the

2 We note that Ref. [48] assumes a slightly higher relic tempera-
ture, which is less conservative. We recover excellent agreement
with that work under matching assumptions.

FIG. 3: Limits on the mass mX of di↵erent species of
light relic, all at 95% CL and assuming the minimum-
temperature scenario, T

0
X = 0.91 K. Red bars show con-

straints from this work, which are obtained via joint anal-
ysis of all our data sets (P18+BOSS-FS+WLens), whereas
the pink band has BAO-only rather than full-shape
galaxy data. Gray bands represent the previous con-
straints on Weyl fermions from Refs. [47, 48]. Our limits
are a factor of 2 � 5 stronger and extend to other relic

species.

gravitino is intrinsically s = 3/2, only two of its four
modes are thermally populated at the time of its rela-
tivistic decoupling, making it cosmologically equivalent
to a Weyl fermion (s = 1/2), and allowing us to set a
limit on its mass mX < 2.26 eV at 95% CL. This limit is
strictly conservative, as the gravitino decoupling temper-

ature can only be higher than our minimal T
(0)
X = 0.91

K for these models [55]. Our limit cuts into the pre-
dictions of low-energy SUSY-breaking scenarios [13, 14].
Consequently, we are able to set an upper limit on the
SUSY breaking scale, estimated as

p
F ⇡

p
MplmX  70

TeV [48, 52, 54], where Mpl is the reduced Planck mass,
in strong complementarity with upcoming lower bounds
from collider studies [56–58].

In this Letter we present the strongest constraints
to date on cosmological light relics, and the first ever
to make use of full-shape LSS data. The inclusion of
broadband galaxy data as well as state-of-the-art CMB
measurements allows us to improve significantly upon
previous limits, and to present comprehensive bounds
across the parameter space of relics of various species,
masses, and temperatures. We find that low-redshift
weak-lensing data is critical to break key degeneracies,
and the orthogonality of the LiMR signature with the �8

tension allows us to safely incorporate those data.
The coming years will see a dramatic improvement in

the amount of cosmological data available, as new CMB
facilities and galaxy surveys will come online. These data

Light (but Massive) Relics — LiMRs 
Xu, Muñoz, Dvorkin (2021)

4

All in all, our final model for the galaxy power spectra

and bispectra in redshift space is given by

P (k) = PG(k) + fNL

✓
P12(k) +

2b⇣Z1(k)k2

k
2
NL

P11(k)

T (k)

◆
,

B(k1,k2,k3) = BG(k1,k2,k3)

+ fNLZ1(k1)Z1(k2)Z1(k3)B111(k1, k2, k3) ,

(12)

where PG and BG are the standard Gaussian power

spectrum and bispectrum models [26, 58]. In practice,

we compute the Legendre redshift-space multipoles P`

(` = 0, 2, 4) of the galaxy power spectrum and use the

angle-averaged (monopole) bispectrum. We also imple-

ment IR resummation in redshift space [59–64] (to ac-

count for long-wavelength displacement e↵ects) and the

Alcock-Paczynski e↵ect [65] (to account for coordinate

conversions [33]).

Our model has 14 nuisance parameters: 13 standard

bias parameters and counterterms of Gaussian redshift-

space power spectra and bispectra (present in previous

analyses), plus the scale-dependent PNG bias b⇣ (10). ,

Data and Analysis — We use the twelfth data release

(DR12) [66] of BOSS. The data is split into two redshift

bins with e↵ective means z = 0.38, 0.61, in each of the

Northern and Southern galactic caps, resulting in four in-

dependent data chunks. The survey contains ⇠ 1.2⇥ 106

galaxy positions with a total volume of 6 (h�1Gpc)3.

From each chunk, we use the power spectrum multipoles

(` = 0, 2, 4) for k 2 [0.01, 0.17)hMpc�1, the real-space

power spectrum Q0 for k 2 [0.17, 0.4)hMpc�1 [67], the

redshift-space bispectrum monopoles for triangle config-

urations within the range of ki 2 [0.01, 0.08)hMpc�1 (62

triangles), and the BAO parameters extracted from the

post-reconstructed power spectrum data [68], as in [27].

The power spectra and bispectra are measured with the

window-free estimators [41, 42]. The covariances for each

data chunk are computed from a suite of 2048 MultiDark-

Patchy mocks [69].

We perform the full-shape analysis of the redshift clus-

tering data following the methodology of [27, 33, 34, 68].

We implement the complete theory model for the power

spectra and bispectra of galaxies in redshift space in

an extension of the CLASS-PT code [51] 7 that includes

7 Code available at github.com/Michalychforever/CLASS-

FIG. 1. Marginalized constraints on parameters

(f equil
NL , f

ortho
NL ) from the BOSS data obtained in the conser-

vative baseline analysis (BOSS DR12 (B), gray), and in the

aggressive analysis (BOSS DR12 (A), blue). We also show

results from the full Nseries simulation suite (red), whose

volume is 40 times larger than BOSS. Dashed lines indicate

f
equil
NL = 0, fortho

NL = 0.

all non-Gaussian corrections described above (computed

using the FFTlog approach [70]). We consistently re-

compute the shape of these corrections as we scan over

di↵erent cosmologies in a Markov Chain Monte Carlo

(MCMC) analysis. Up to additional NG contributions,

our analysis is identical to [27].

In our baseline analysis we fix the baryon density to

the BBN measurement [71], the primordial power spec-

trum tilt to the Planck best-fit value [43], and the neu-

trino mass to the minimal value allowed by oscillation

experiments
P

m⌫ = 0.06 eV. We vary the physical

dark matter density !cdm, the reduced Hubble param-

eter h, the amplitude of the primordial scalar fluctua-

tions ln(1010As), and (f equil
NL , f

ortho
NL ) within flat infinitely

wide priors. We use the same priors for nuisance param-

eters as [27]. We also marginalize over the linear PNG

bias, b⇣ = 1.686 ·
18
5 (b1 � 1)b̃⇣ within a Gaussian prior

PT, with custom MontePython likelihoods available at

github.com/oliverphilcox/full shape likelihoods.

Ivanov et al. (2020)
Early dark energyPNG in single-field inflation

Cabass, Ivanov, Philcox, MS, Zaldarriaga (2022)
D’Amico, Lewandowski, Senatore, Zhang (2022)



provement. But once the degeneracy is broken, the gain from adding more of the
bispectrum information is very modest. It would be interesting to understand to
what extent the situation can change after taking into account higher-order multi-
pole moments and the AP effect in the bispectrum, omitted in the present analysis.
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Figure 4. 2d posterior contours and non-normalized 1d marginalized distributions for
the total neutrino mass m⌫ in units [ eV] and other parameters of the base ⇤CDM, see
also Tab. 4 for the corresponding 1� confidence limits. The filled and half-filled contours
represent 68% and 95% confidence limits. The blue dashed lines correspond the Planck
2018 baseline results reproduced with the mock Planck likelihood.
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1) Euclid/DESI ~ Planck

2) much better in combination

Forecast for a Euclid/DESI-like survey


