
GRAVITINOS IN HIGH-SCALE 
SUPERSYMMETRIC MODELS

COST 2022, Belgrade
sept  2, 2022

1

E. Dudas – CNRS and E. Polytechnique   

Quentin Bonnefoy (DESY-TH), Gabriele Casagrande (CPHT-Ecole 
Polytechnique),  E.D., [arXiv:2206.13451 [hep-th]]

and also
E.D., M.A.G.Garcia, Y.Mambrini, K.A.Olive, M.Peloso and S.Verner, 

Phys. Rev. D103 (2021), 123519  [arXiv:2104.03749 [hep-th]]



Outline
1) Spin 3/2, potential problems
2) Gravitino sound speed in supergravity
3) Causality and positivity bounds
4) Alternative minimal models of inflation
5)  Perspectives

2

E. Dudas – CNRS and E. Polytechnique   



3

E. Dudas – CNRS and E. Polytechnique   

1) Spin 3/2, potential problems
• In supergravity, the gravitino         becomes massive by
absorbing the goldstino G                                             

 µ
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The consistency of  low-energy actions  for the spin 3/2  Rarita-
Schwinger field has a long history :

• 1941: Rarita-Schwinger action
• 1969: Velo-Zwanziger pointed out potential acausal 

propagation for a charged gravitino in an e.m. background
• 1977: Deser-Zumino proved that gravitino propagation in 

minimal supergravity is causal
• 2001: Deser-Waldron proved that gravitino propagation in 

gauged supergravities is causal
......

• 2021 – Gravitino swampland conjecture, gravitino mass 
conjecture (Cribiori,Lust,Scalisi; Castellano,Font, Herraez,Ibanez, 2021) 
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History strongly suggest that usual supergravities have no 
problems with gravitino propagation. 

SUSY/SUGRA (linearly realized): nb. bosons = nb. fermions 
Nonlinear SUSY/SUGRA: nb. bosons      nb. fermions 

Inflation models in standard SUGRA’s have at least one 
complex scalar field (often several).
Recently, simple nonlinear SUGRA models were constructed.   
More minimal inflationary models, fewer fields. 
(Antoniadis,E.D.,Ferrara&Sagnotti; Kallosh,Linde & coll, 2014) 

Possible to construct minimal models with only:  
graviton,  massive gravitino and inflaton (real scalar)

<latexit sha1_base64="9U9sgeuSPxNGkg4LRas/PEfchLY="></latexit>
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Simplest nonlinear SUSY’s: constrained superfields ( talk F. 
Quevedo). 

Why non-linear SUSY ?    Anti D3 brane in KKLT, strings with
broken/nonlinear SUSY, split SUSY…

(Rocek,78)  introduced a constrained, nilpotent superfield

6

whose solution is no fundamental scalar
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Superspace fermionic
coordinate

auxiliary field

<latexit sha1_base64="ZSns1ORKKRQd1a8KmulIlRyrJMo="></latexit>

S2 = 0

<latexit sha1_base64="X1Cv401uz5aEwwP8sYmhXcEfaDk="></latexit>
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The talk deals with the « speed of sound »       of gravitino in 
SUGRA, in inflation and more general time-dependent sols 

Normally

<latexit sha1_base64="lv+BHs6dgBBh3u1JXjbA63q46H0="></latexit>cs
<latexit sha1_base64="rIj7ZJWWK969/KCNA/XejXRkiK4="></latexit>

0 < cs  1

Recently, two potential problematic behaviours were discussed:

• at particular points on the inflationary trajectory
<latexit sha1_base64="Pi1OXI+5DRaiMiiA0FGhuialri0="></latexit>

cs = 0
Large (catastrophic) production of gravitinos 

•
<latexit sha1_base64="ytzBQ/dvma4XjDi6NkpfK50s+VA="></latexit>

cs > 1 acausal behaviour at particular points on the  
inflationary trajectory in specific SUGRA models

2) Gravitino sound speed in supergravity (SUGRA)

(Hasegawa, Terada et al, 2017;  Kolb, Long, McDonough, 2021). 
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<latexit sha1_base64="vZ1p3ME+UP+XUIss+GG6yYk1sm8="></latexit>

!2 = c2sk
2 + a2m2

The sound speed          is defined from the dispersion relation<latexit sha1_base64="AEHqVk5l11uFoX1fouD1sx5f85A="></latexit>cs

The transverse spin 3/2 component in a FRW background 
has a standard dispersion relation with

For the longitudinal component: 

<latexit sha1_base64="plpKHMaXJaD/8py+e2f0d/aedik="></latexit>

cs = 1

<latexit sha1_base64="/tttiNSj9NEsMweESMtmmDweQiA="></latexit>

cs < 1 Slow gravitino     (Benakli,Darmé, Oz, 2014) 

<latexit sha1_base64="pMCO+fLczWov0//b+Lz/oDtznhw="></latexit>

cs > 1 possible for particular nonlinear SUGRA models with
orthogonal constraint
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3

gravitino sound speed c2s,

c2s =

(

p− 3m2
3/2

)2

(

ρ+ 3m2
3/2

)2 +
4ṁ2

3/2
(

ρ+ 3m2
3/2

)2 , (3)

where p is the pressure, ρ is the energy density, and dot
denotes the derivative with respect to cosmological time.
Ref. [44] provides a rather compact expression for this
quantity in a supergravity model, namely

c2s = 1−
4

(|ϕ̇|2 + |F |2)2
{

|ϕ̇|2|F |2 − |ϕ̇ · F ∗|2
}

, (4)

where ϕ is the multiplet of scalar fields in the model, and
the F -term is

F i ≡ eK/2Kij∗ Dj∗W
∗ , (5)

where, using standard supergravity notation, Kij∗ is the
inverse of the Kähler metric

Kij∗ ≡
∂2K

∂ϕi ∂ϕj∗ , (6)

while

DiW ≡
∂W

∂ϕi
+
∂K

∂ϕi
W . (7)

The dot operator in Eq. (4) denotes a scalar product
with the Kähler metric (6), namely |ϕ̇|2 = ϕ̇iKij∗ ϕ̇j∗,
and analogously for the other terms. Notice that due to
the Cauchy-Schwarz type inequality |ϕ̇|2|F |2 ≥ |ϕ̇ · F ∗|2,
causality cs ≤ 1 is always guaranteed to hold.

In the case of a single chiral superfield, the two terms
in the curly bracket in Eq. (4) are equal to each other,
and therefore cs = 1. Thus, c2s % 1 is expected whenever
a single field dominates the kinetic energy and supersym-
metry breaking in the model.

Ref. [44] considered the case in which multiple fields
are relevant, and they conspire to give a vanishing or
nearly vanishing c2s. This can be achieved if

ϕ̇ · F ∗ = 0 and ϕ̇ · ϕ̇∗ = F · F ∗ ⇒ c2s = 0 . (8)

Note that the first of these conditions, ϕ̇ · F ∗ = 0, is
realized whenever the gravitino mass is constant. These
conditions can be satisfied during inflaton oscillations af-
ter inflation. Typically, the inflaton dominates the ki-
netic energy, so the condition ϕ̇ · F ∗ % 0 generically re-
quires that the F -term associated with the inflaton is
small. Barring cancellations, this would typically require
that both W and ∂W

∂φ , where φ denotes the inflaton field,
are small. We note that the potential energy is given
by

V = F · F ∗ − 3 eK |W |2 , (9)

which we can approximate by V % F · F ∗ if W is small.
Then the second condition in (8) simply demands that
the kinetic and the potential energy are equal to each
other, which happens twice per period of the inflaton os-
cillations. In Section III, we discuss several supergravity
models of inflation where these conditions are and are
not achieved.

III. GRAVITINO SOUND SPEED IN SPECIFIC
MODELS

In this section we consider several specific supergrav-
ity models where c2s is very small, or is of order one, to
emphasize what aspects of the model can lead to a slow
gravitino.

We start our discussion from a model constructed in
[44], where Φ is the inflaton superfield while S is a super-
field responsible for supersymmetry breaking. Ref. [44]
imposes that this field is nilpotent, S2 = 0. To study the
relevance of this assumption we instead use a strong sta-
bilization mechanism for S [12, 65–71] (see also Section
V below):

K = −
(

Φ− Φ̄
)2

2
+

S S̄

1 + m2

M2 |Φ|2
−
(

S S̄
)2

Λ2
,

W = M S +W0 . (10)

The resulting potential is extremized along the real
directions Φ = Φ̄ = φ√

2
, S = S̄ = s√

2
. The minimum of

the potential with respect to s is φ−dependent and given
by:

〈s〉φ =
Λ2

√
6
(

m2φ2

2M2 + 1
)2 +O

(

Λ4
)

. (11)

We see that, as is typical for strong stabilization, 〈s〉φ
vanishes in the limit Λ → 0. Inserting this into the po-
tential, leads to

V =
m2φ2

2
+

M2

3






1−

1
(

m2φ2

2M2 + 1
)2






Λ2 +O

(

Λ4
)

.

(12)
In both Eqs. (11) and (12), the parameter W0 has been

set to W0 = M√
3

(

1− Λ2

6 +O
(

Λ4
)

)

, so to have a vanish-

ing potential in the minimum at φ = 0. In the minimum,
the gravitino mass is given by

m3/2

∣

∣

∣

φ=0
=

M√
3
+O

(

Λ2
)

. (13)

From Eqs. (12) and (13) we see that m corresponds to
the inflaton mass, while (assuming gravity mediation),
M to the supersymmetry breaking scale in the model.
Therefore, the ratio (m/M)2 ∼ (m/m3/2)

2 appearing in

A general expression for longitudinal gravitino sound speed is

energy density

pressure time-derivative
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∣
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Therefore, the ratio (m/M)2 ∼ (m/m3/2)

2 appearing in

Obs:    Cauchy-Schwarz inequality causality
respected in standard SUGRA’s

<latexit sha1_base64="fLMmNrLbNbtwU5zMNcUWx3BmUIQ="></latexit>

cs  1
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Few models with problems:  ex.   « orthogonal constraint » for 
the inflaton multiplet         (Ferrara,Kallosh,Thaler)

7

The closed system of equations for θ and Υ is

(

γ0 ∂0 + iγi ki N +M
)

X = 0 , X =

(

θ̃
Υ̃

)

,

(41)
where θ̃ and Υ̃, are canonically-normalized fields, related
to the original fields by

θ ≡
2iγi ki

(α a3)1/2
θ̃ , Υ ≡

∆

2

(α

a

)1/2
Υ̃ , (42)

(with ∆ to be defined shortly), and where

N =

(

−α1

α − γ0 α2

α −γ0∆
−γ0 ∆ −α1

α + γ0 α2

α

)

, (43)

while the expression for M is not important for the
present discussion, and can be found in [41].

Disregarding the presence of the field Υ amounts to the
system studied in [44, 45]. The square of the gravitino
sound speed would then be given by the square of the
N11 element (we note that, due to the signature we have
chosen, γ0 is anti-hermitian),

N11 N
†
11 =

|α1|2 + |α2|2

α2
= c2s . (44)

Namely, using the expressions (40) leads precisely to the
sound speed (4). The complete system however has also
off-diagonal elements, with

∆ =
√

1− c2s . (45)

Therefore, when the coefficient c2s vanishes,

c2s = 0 → ∆ = 1 , N =

(

0 −γ0
−γ0 0

)

, (46)

leading to a non-singular matrix N , and therefore to a
nonvanishing sound speed for the physical eigenstates
of the system. Consequently none of the models dis-
cussed in Section 3 have catastrophic production of grav-
itinos. Problems can only arise if Υ can be ignored as
is the case when a second, orthogonal nilpotency condi-
tion, is applied as discussed in the next section. Then,
the only problematic models would be those defined in
Eqs. (10) and (24), in the case where the inflaton multi-
plet Φ is subject to the additional orthogonal constraint
S(Φ−Φ) = 0. Indeed, this additional constraint removes
the inflatino from the spectrum (hence Υ = 0) and the
speed of sound in these models hits zero at some point
during the inflationary evolution. As we will see, such
models seem suspicious from the viewpoint of a funda-
mental theory of gravity.

V. MODELS WITH ORTHOGONAL
NILPOTENT SUPERFIELDS

In the cases considered in this paper, the goldstino G
belongs to a chiral multiplet and has a scalar superpart-
ner (the sgoldstino), which, once supersymmetry is bro-
ken, acquires a non-supersymmetric mass. Decoupling

the sgoldstino by giving it an infinite mass leads to a
non-linear realization of supersymmetry. A particularly
simple way non-linear realization can be obtained is by
imposing the nilpotent constraint [46–54]

S2 = 0 . (47)

When supersymmetry is broken by means of a non-
trivial FS $= 0, the constraint is solved by

S =
G2

2FS
+
√
2θG+ θ2FS . (48)

Here and in what follows, we discuss the constraints at
the level of global supersymmetry for simplicity. The
generalization to supergravity can be found in the litera-
ture [48]-[59]. The constraint (47) can be interpreted as
the infrared limit of a very heavy sgoldstino. This can be
obtained starting from a microscopic Lagrangian of the
type [47]:

K = |S|2 −
1

Λ2
|S|4 , W = W0 +W1S , (49)

in the limit Λ → 0. Indeed, the sgoldstino mass m2
S =

4FS2

Λ2 is sent to infinity in this limit, leading to a nonlin-
ear realization of supersymmetry in the IR. The limit
Λ → 0 has its limitations [72], since it implies field-
theory dynamics in some heavy sector, which after de-
coupling, leaves behind the “strong stabilization" term
1
Λ2 |S|4. Modulo these subtleties, the UV Lagrangian
(49) contains only two derivatives and is pretty stan-
dard.

The situation is different for the orthogonal constraint
on the chiral superfield Φ that removes the imaginary
part of the scalar, the fermion, and the auxiliary field
[47, 55–59]:

S(Φ− Φ) = 0 . (50)

It was shown in [59] that (50) is equivalent to the follow-
ing set of constraints

|S|2(Φ− Φ) = 0 , (51)

|S|2Dα̇Φ = 0 , (52)

|S|2D2
Φ = 0 . (53)

Each constraint above eliminates one component field:
Eq. (51) eliminates the scalar, Eq. (52) eliminates the
fermion, whereas Eq. (53) eliminates the auxiliary field
in the Φ multiplet. The constraint (50) can be ob-
tained starting from a microscopic Lagrangian contain-
ing three additional terms [59], which generate non-
supersymmetric masses for the component fields that we
remove:

∫

d4θ
[m2

b

2f2
|S|2(Φ− Φ)2 −

gFΦ

f2
|S|2D2ΦD

2
Φ
]

−
mζ

2f2

∫

d4θ
[

|S|2DαΦDαΦ+ c.c.
]

. (54)

<latexit sha1_base64="DyYpIfb3xsCmPqJ7U/jTYAH/Yy0=">AAACynicjVHLSsNAFD2Nr1pfVZdugq3gqiQK6rLoxoWLCvYBbZFkOm2HpkmYTIRS3PkDbvXDxD/Qv/DOmIJaRCckOXPuOXfm3uvHgUiU47zmrIXFpeWV/GphbX1jc6u4vdNIolQyXmdREMmW7yU8ECGvK6EC3ool98Z+wJv+6ELHm3dcJiIKb9Qk5t2xNwhFXzBPEdUs253aUJRviyWn4phlzwM3AyVkqxYVX9BBDxEYUozBEUIRDuAhoacNFw5i4rqYEicJCRPnuEeBvCmpOCk8Ykf0HdCunbEh7XXOxLgZnRLQK8lp44A8EekkYX2abeKpyazZ33JPTU59twn9/SzXmFiFIbF/+WbK//p0LQp9nJkaBNUUG0ZXx7IsqemKvrn9pSpFGWLiNO5RXBJmxjnrs208iald99Yz8Tej1Kzes0yb4l3fkgbs/hznPGgcVdyTyvH1Ual6no06jz3s45DmeYoqLlFD3VT5iCc8W1eWtCbW9FNq5TLPLr4t6+EDt+ORLA==</latexit>

�

Only =inflaton is a dynamical degree of freedom.
, the inflatino and the auxiliary field

are determined by the constraint.  

In particular is a bilinear in fermions and does not appear
in the scalar potential :   

<latexit sha1_base64="qBvxlB7s4w59lCvm/JfqAnNxu0Y=">AAACz3icjVHLSsNAFD2Nr/quunQTbAVXJamgLotuXLZiH9AUSdJpOzQvkolSiuLWH3CrfyX+gf6Fd8YU1CI6IcmZc+85M/deJ/J4IgzjNafNzS8sLuWXV1bX1jc2C1vbzSRMY5c13NAL47ZjJ8zjAWsILjzWjmJm+47HWs7oTMZb1yxOeBhcinHEur49CHifu7YgyirpF0y3dCsa8tJVoWiUDbX0WWBmoIhs1cLCCyz0EMJFCh8MAQRhDzYSejowYSAirosJcTEhruIMt1ghbUpZjDJsYkf0HdCuk7EB7aVnotQuneLRG5NSxz5pQsqLCcvTdBVPlbNkf/OeKE95tzH9nczLJ1ZgSOxfumnmf3WyFoE+TlQNnGqKFCOrczOXVHVF3lz/UpUgh4g4iXsUjwm7Sjnts640iapd9tZW8TeVKVm5d7PcFO/yljRg8+c4Z0GzUjaPyof1SrF6mo06j13s4YDmeYwqzlFDg7wjPOIJz1pdu9HutPvPVC2XaXbwbWkPH/G1ktE=</latexit>

Re �
<latexit sha1_base64="7ILRG/HlXNEe4lPZ+cEVmcESdm4="></latexit>

Im �
<latexit sha1_base64="8hO0/UnhSfg5CZb+xwvgfbGzIMA="></latexit>

 �
<latexit sha1_base64="AzOP2wsdL72+GFEviaPD1gh2mLo="></latexit>

F�

<latexit sha1_base64="AzOP2wsdL72+GFEviaPD1gh2mLo="></latexit>

F� <latexit sha1_base64="Qe/tm5ixyMmqzsiwHnX3ad7zR7c="></latexit>

F� 6= eK/2K�īDi⇤W ⇤

<latexit sha1_base64="kO8rWDy6RJubX49VbvLynf6P8D0="></latexit>

0 < cis  1
For the (large)  majority of SUGRA models we investigated , 
we found no problems :                                              
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Consequences:

- No inflatino gravitino sound
speed problem can arise (model-dependent) 

- Cauchy-Schwarz argument for                                 
not valid. Examples (orthogonal constraint)  with ! 

<latexit sha1_base64="MrIAK8Rr5Sx4FfDs0i1a5u3d//k="></latexit>

cs  1
<latexit sha1_base64="ytzBQ/dvma4XjDi6NkpfK50s+VA="></latexit>

cs > 1

Potential pathological behaviour reminiscent of the 
swampland program !   (Vafa,Ooguri)

However, the UV origin of the orthogonal constraint is not clear
(Dall’Agata,E.D.,Farakos, 2006; Bonnefoy,Casagrande, E.D) 

<latexit sha1_base64="Wy4DGCDUkAneBf5RxjXjnc4Xwik="></latexit>

cs = 0
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3)  Causality and positivity bounds
(Q.Bonnefoy,G. Casagrande & E.D., [arXiv:2206.13451 [hep-th]]) 

• The potential acausal behaviour concerns the longitudinal 
component of  the gravitino. 

• Gravitino equivalence theorem: at high-energy, gravitino 
longitudinal component described by the goldstino, 
enhanced couplings to matter.   
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Is the acausality found in SUGRA captured by the low-energy
lagrangian of the goldstino coupled to matter, in the decoupling
limit ?<latexit sha1_base64="QeFbjNVe2P0vYjVyhBtERBYclKU="></latexit>
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Throughout our paper, we will consider the most general superpotential W and Kahler
potential K, not necessarily renormalizable. The dot operator in Eq. (2.7) denotes a scalar
product with the Kähler metric (2.9), namely �'̇�2 = '̇i

Kij∗ '̇j∗, and similarly for the other
terms3. Finally, due to the Cauchy-Schwarz type inequality �'̇�2�F �2 ≥ �'̇ ⋅ F ∗�2, causality
cs ≤ 1 is always guaranteed to hold. [ED: The argument can be extended to include D-term
contributions to the scalar potential, which change the sound speed according to
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1
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∗
�
2
� . (2.11)

The subluminality condition is strongest when D = 0 and therefore models with only F-
terms are the most constraining.]

The proof above does not apply to higher-derivative theories and for some realizations
with nonlinear supersymmetry, which we will analyze here from several perspectives. The
pressure and energy density associated to the scalar ' are given by

p =K��̄'̇
2
− V (') , ⇢ =K��̄'̇

2
+ V (') . (2.12)

It was shown in [18] that the sound speed (2.6) applies actually to the case where there
is no fermion/inflatino in the spectrum. A particularly interesting example in this class of
models is the orthogonal constraint defined by

S(� − �̄) = 0 , (2.13)

where � is a chiral superfield and S is a chiral nilpotent goldstino superfield, whose scalar
component s is expressed in terms of a goldstino bilinear. This constraint turns the imag-
inary part of the scalar, the fermion and the auxiliary field contained in � into functions
of the goldstino G and the real part ' of the scalar in �, which vanishes when G → 0 (see
Section 3 for more details). Decomposing � = A+iB (' is then the lowest, scalar component
of A and B vanishes when G→ 0), the generic SUGRA lagrangian is defined by [14]

K = h (A)B
2
+ SS̄ , W = f(�)S + g(�) , (2.14)

where h is a real function, while f, g are holomorphic. As said above, the sgoldstino scalar
s and the auxiliary field F� in � are expressed in terms of fermionic terms, which implies
that the scalar potential is given by

V = �f(')�
2
− 3�g(')�2 , (2.15)

and the sound speed (2.6) reads

c
2
s = 1 −

4'̇2

�
h(')
2 '̇2 + �f(')�2�

2 �
h(')

2
�f(')�

2
− �g

′
(')�

2
� . (2.16)

3
We work in Planck units MP = 1, but restoring MP whenever needed can simply be achieved by

dimensional analysis.
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General lagrangian orthogonal constraint

where
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Yes !   Ex: The goldstino lagrangian contains a higher-
derivative operator of the form

Operator subject to positivity constraints from dispersion relation 
arguments, enforce 

<latexit sha1_base64="jb+tR1jk5f2WMizA+Pz8YDV28mY=">AAAC0HicjVHLTsJAFD3UF+ILdemmEUxckRYTdUl04xKNPBIgpB0GbOiLdmokxBi3/oBb/SrjH+hfeGcsiUqMTtP2zLn3nJl7rx26TiwM4zWjzc0vLC5ll3Mrq2vrG/nNrXocJBHjNRa4QdS0rZi7js9rwhEub4YRtzzb5Q17eCrjjWsexU7gX4pxyDueNfCdvsMsQVSnqLNurLddPtLNYjdfMEqGWvosMFNQQLqqQf4FbfQQgCGBBw4fgrALCzE9LZgwEBLXwYS4iJCj4hy3yJE2oSxOGRaxQ/oOaNdKWZ/20jNWakanuPRGpNSxR5qA8iLC8jRdxRPlLNnfvCfKU95tTH879fKIFbgi9i/dNPO/OlmLQB/HqgaHagoVI6tjqUuiuiJvrn+pSpBDSJzEPYpHhJlSTvusK02sape9tVT8TWVKVu5ZmpvgXd6SBmz+HOcsqJdL5mHp4LxcqJyko85iB7vYp3keoYIzVFEj7xEe8YRn7UK70e60+89ULZNqtvFtaQ8f5PyTLw==</latexit>

cs  1
§ The issue arises due to the « elimination » of the auxiliary field

by the orthogonal constraint, no simple physical interpretation.  

<latexit sha1_base64="J69a3Abvk1wWZDtsClN2mOeZBLE=">AAADX3icjVFNT+MwEJ00LJ8LZJcT4mJRFsqBknSlhSNaDnAEiQISoZVj3NYiX3IcJBT1j/DHEEdu7L9gbFxUQCtwlOTNm/fGHk+Ux6JQvv/g1NyJb5NT0zOzc9/nFxa9Hz9Pi6yUjLdZFmfyPKIFj0XK20qomJ/nktMkivlZdL2v82c3XBYiS0/Ubc4vE9pPRU8wqpDqendrJOxJyqpgWPUa4Q2V+UBsdlpD0hi8hmTLilqkvz EuemvZJI0qjKgkB0SQsE+ThHYSEuZUKkHjTkoOUBK+El3MvZjHyXRErnW9ut/0zSIfQWBBHew6yrx7COEKMmBQQgIcUlCIY6BQ4HMBAfiQI3cJFXISkTB5DkOYRW+JKo4Kiuw1fvsYXVg2xVjXLIyb4S4xvhKdBH6hJ0OdRKx3IyZfmsqa/V/tytTUZ7vFf2RrJcgqGCD7mW+k/KpP96KgB7umB4E95YbR3TFbpTS3ok9OxrpSWCFHTuMrzEvEzDhH90yMpzC967ulJv9klJrVMbPaEv7pU+KAg/fj/AhOW83gT/P3cau+99eOehpWYBUaOM8d2INDOII2MAecdWfb8WuP7pS74Hov0ppjPUvwZrnLz6VYwmQ=</latexit>

1
f(')2 (h(')�

2g0(')2

f(')2 )(Ḡi�m@nG) @m' @n'

<latexit sha1_base64="XqKXQ0Re8pdm/0YKoov6CF+2I9E="></latexit>
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• Obs: SUGRA/inflation subluminality condition valid
throughout the inflationary trajectory, positivity constraints
valid only in the ground state  

SUGRA condition is stronger. 

• Causality condition of goldstino propagation in time-
dependent solutions of the goldstino action seems
equivalent to the SUGRA constraint.  
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4)  Alternative minimal models of inflation 

and by the Kähler potential

K = SS̄ +QQ̄ +
1

2
QQ̄ �h1Q + h̄1Q̄� +

h2

4
�QQ̄�

2
, (3.35)

with h1 and h2 constants, respectively complex and real.
By writing explicitly the on-shell lagrangian, we find that the coefficients of the oper-

ators subject to positivity bounds have the appropriate signs for any values of the theory
space parameters, implying that there are no causality constraints to be imposed. There-
fore, unlike the two previous cases, the constraint (3.32) removing the scalar component of
the superfield does not demand that we impose any extra condition in order for the resulting
theory to be causal. [QB: Since (3.32) leaves the auxiliary field FQ unconstrained], this is
further evidence that the causality problems arise only when an auxiliary field is removed,
as pointed out at the end of the last section. [QB: One could object that the problems could
come from the removal of a fermion, which is also implied by the constrains of Sections 3.1
and 3.2, but it turns out not to be the case,] as we will show in the next sections. Indeed,
decoupling a fermion can be achieved microscopically from a two-derivative lagrangian,
albeit modulo a fine-tuning. The tricky constraints are those eliminating auxiliary fields,
which cannot be done, in our opinion, without using higher-derivative operators directly in
the UV, as already anticipated in [32].

4 Evading causality conditions with alternative constraints

In the previous sections, we have studied models realized by various superfields constraints
and showed that the ones that affect the auxiliary field component of a chiral superfield
lead to nontrivial positivity bounds, which restricts the parameter space of the theory and
may indicate that the corresponding UV theory is not a two-derivative one.

Now we go deeper into this analysis, making use of the generalized superfield constraint
formalism developed in [32], where it was shown that one can remove the lowest component
of a superfield QL (where L denotes a possible Lorentz index) by applying the constraint

SS̄QL = 0 . (4.1)

This is solved, implicitly and in superspace, by

QL = −2
D̄↵̇S̄D̄

↵̇
QL

D̄2S̄
−
S̄D̄

2
QL

D̄2S̄
− 2

D
↵
SD↵D̄

2
�S̄QL�

D2SD̄2S̄
− S

D
2
D̄

2
�S̄QL�

D2SD̄2S̄
. (4.2)

The only nontrivial constraint is actually on the lowest component (i.e. ✓ = ✓̄ = 0) of QL.
The power of the constraint (4.1) is that it allows to remove one single component at a
time, and this means that every superfields constraint can be expressed as a combination of
multiple such single, generalized constraints. For instance, the orthogonal constraint (3.4)
can be decomposed into the three following single constraints [32],

SS̄ �� − �̄� =0, (4.3)
SS̄D↵� =0, (4.4)
SS̄D

2� =0, (4.5)

– 18 –

Orthogonal constraint is « reducible »                     three
« irreducible » constraints (dall’Agata,E.D, Farakos,2016)

eliminates a  scalar

eliminates the fermion 

eliminates the auxiliary field
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Simplest alternative with no potential acausality problems: 
use  only
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The only nontrivial constraint is actually on the lowest component (i.e. ✓ = ✓̄ = 0) of QL.
The power of the constraint (4.1) is that it allows to remove one single component at a
time, and this means that every superfields constraint can be expressed as a combination of
multiple such single, generalized constraints. For instance, the orthogonal constraint (3.4)
can be decomposed into the three following single constraints [32],

SS̄ �� − �̄� =0, (4.3)
SS̄D↵� =0, (4.4)
SS̄D

2� =0, (4.5)
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(Same) minimal spectrum for inflation : 
Graviton, massive gravitino, inflaton

Equivalent alternative (Bonnefoy,Casagrande,E.D): 
orthogonal constraint, but higher-derivative UV action 
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Comparison

Orthogonal constraint vs Alternative constraint
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Ex:   SUGRA inflation model, alternative constraints

all other couplings being left untouched. As in the previous section, �L adds a term to the
scalar potential of (3.27), such that the scalar potential accounting for all auxiliary fields
is recovered.

Having matched to (3.25), we can use the results of Section 3.2, leading to the positivity
bound

̃��̄�f̃ �
2
> ⇠̃�g̃

′
�
2
⇐⇒


HH̄
�f �

2

⇠
> 0 , (5.19)

which is trivially satisfied. Therefore, the addition of L ensured that there is no non-trivial
causality constraint, despite the fact that H is constrained not to contain an auxiliary field.

6 Minimal models of inflation with no causality constraints

The alternative models put forward in the last Sections 4 and 5 have a minimal physical
spectrum from the viewpoint of an inflationary model in supergravity: the graviton, a
massive gravitino and a real scalar, the inflaton. They share this feature with models
using the orthogonal constraint. They have the advantage however to remove any causality
condition on the theory parameter space. We believe the two approaches in 4 and 5 are
equivalent and lead to the same physical observables. In particular, the scalar potential in
both alternative approaches is the usual supersymmetric one. For supergravity models, it
is therefore given by the standard SUGRA formulae [43].

Building minimal models of inflation along these lines is straightforward. Let us con-
sider models for which the two-derivative part of the action is

K = −
1

2
(� − �̄)2 + S̄S , W = f(�)S + g(�) , (6.1)

where S is nilpotent and � contains as the only physical degrees of freedom the inflaton
' = Re(�)�. The scalar potential is

V = �f(')�
2
+ �g

′
(')�

2
− 3�g(')�2 . (6.2)

We restrict for simplicity to the class of models put forward in [44], defined by f =
√
3g, for

which the scalar potential reduces to

V = �g
′
(')�

2
. (6.3)

Let us give two simple examples of inflationary models.

• Starobinsky model

One chooses
g =M

2
�� +

1

a
e
−a�
� + g0 , (6.4)

where M is a mass scale which will fix the energy scale during inflation, whereas g0

will determine supersymmetry breaking in the vacuum. One gets the scalar potential

V (') =M
4
[1 − e−a']2 , (6.5)

which is the usual Starobinsky scalar potential of the inflaton '.
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is the Starobinsky model



20

E. Dudas – CNRS and E. Polytechnique  

Conclusions

- Important to check and impose sound speed
gravitino swampland conjecture 

- Most SUGRA models satisfy it, except peculiar models with
orthogonal constraint (or similar).  

- Subluminality constraints captured by goldstino SUSY 
lagrangians in                      limit and    positivity
constraints, but SUGRA condition is stronger.

- Alternative minimal inflation models, no causality issues
- General interest: consistency constraints on nonlinear

SUSY/SUGRA,  strings with broken SUSY 
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