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Already in 1960s, Kibble and Sciama proposed a new
theory of gravity, the Poincaré gauge theory (PG), based
on gauging the Poincaré group of spacetime symmetries.
PG is characterized by a Riemann-Cartan (RC) geometry
of spacetime, in which both the torsion and the curvature
are essential ingredients of the gravitational dynamics.
Nowadays, PG is a well-established approach to gravity,
representing a natural gauge-field-theoretic extension of
general relativity (GR).
In the past half century, many investigations of PG have
been aimed at clarifying different aspects of both the
geometric and dynamical roles of torsion. In particular,
successes in constructing exact solutions with torsion
naturally raised the question of how their conserved
charges are influenced by the presence of torsion.
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The expressions for the conserved charges in PG were
first found for asymptotically flat solutions. In the
Hamiltonian approach to PG the conserved charges are
represented by a boundary term, defined by requiring the
variation of the canonical gauge generator to be a
well-defined (differentiable) functional on the phase space.
A covariant version of the Hamiltonian approach,
introduced later by Nester, turned out to be an important
step in understanding the conservation laws. This was
clearly demonstrated by Hecht and Nester, in their analysis
of the conserved charges for asymptotically flat or (A)dS.
Despite an intensive activity in exploring the notion of
conserved charges in the generic four-dimensional (4D)
PG, systematic studies of black hole entropy in the
presence of torsion have been largely neglected so far.
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In the 1990s, understanding of the classical black hole
entropy reached a level that can be best characterized by
Wald’s words: “Black hole entropy is the Noether charge".
The question we addressed is whether such a challenging
idea can improve our understanding of black hole entropy
in PG and a few years ago we proposed a general
canonical approach to black hole entropy in PG.
We constructed the canonical gauge generator in the first
order formulation of PG, which improved form is used to
obtain the variational equation for the asymptotic canonical
charge, located at the spatial 2-boundary at infinity.
Following the idea that “entropy is the canonical charge at
horizon," we are led to define black hole entropy by the
same variational equation, located at black hole horizon.
The differentiability of the gauge generator guarantees the
validity of the first law of black hole thermodynamics.
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Applying this approach to a number of black holes with or
without torsion such we found somewhat unexpected
result: in spite of many geometric and dynamic differences
with respect to GR, entropy of black holes in PG without
matter, as well as the associated first law, follow essentially
the same pattern as in GR, up to a multiplicative constant.
In the present talk, we extend our investigation of entropy
by introducing Maxwell field as a matter source for gravity
(PG-Maxwell system).
The analysis is focussed on exploring thermodynamic
properties of the generalized KN-AdS black hole,
constructed by Baekler et al. in the late 1980s.
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Notations and conventions

Our conventions are as follows.
The greek indices (µ, ν, . . . ) refer to the coordinate frame,
with a time-space splitting expressed by µ = (0, α).
The latin indices (i , j , . . . ) refer to the local Lorentz frame.
ϑi is the orthonormal tetrad (1-form), ei is the dual basis
(frame), with ei ⌋ϑk = δk

i , and the Lorentz metric is
ηij = (1,−1,−1,−1).
The volume 4-form is ϵ̂ = ϑ0ϑ1ϑ2ϑ3, the Hodge dual of a
form α is ⋆α, with ⋆1 = ϵ̂, and the totally antisymmetric
tensor is defined by ⋆(ϑiϑjϑmϑn) = εijmn, where ε0123 = +1.
The exterior product of forms is implicit.
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Lagrangian formalism

In PG the torsion T i = dϑi + ωi
kϑ

k and the curvature
R ij = dωij + ωi

kω
kj (2-forms) are the gravitational field

strengths, associated to the Poincaré gauge potentials, the
tetrad ϑi and the Lorentz connection ωij , respectively. Our
physical system contains also the Maxwell field
characterised by the field strength F = dA (2-form), where
A is the electromagnetic gauge potential (1-form).
Dynamical properties of the PG-Maxwell system are
defined by the total Lagrangian

L = LG + LM , . (2.1)

where LG = LG(ϑ
i ,T i ,R ij) is a parity even PG Lagrangian,

assumed to be at most quadratic in the field strengths, and
LM = LM(ϑi ,F ) describes the Maxwell field interacting with
gravity.
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After introducing the covariant field momenta,
Hi := ∂LG/∂T i and Hij := ∂LG/∂R ij , and the associated
energy-momentum and spin currents, Ei := ∂LG/∂ϑ

i and
Eij := ∂LG/∂ω

ij , the gravitational field equations read

δϑi : ∇Hi + Ei = −τi , (2.2a)
δωij : ∇Hij + Eij = 0 , (2.2b)

where τi := ∂LM/∂ϑi is the Maxwell energy-momentum
current , while the spin current vanishes,
σij := ∂LM/∂ωij = 0.
The variation of L with respect to the electromagnetic
potential A yields the Maxwell equation,

δA : dH = 0 , (2.2c)

where H := ∂LM/∂A is the electromagnetic covariant
momentum.
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The total Lagrangian has the form

LG = −⋆(a0R + 2Λ) + T i
3∑

n=1

⋆(an
(n)Ti) +

1
2

R ij
6∑

n=1

⋆(bn
(n)Rij) ,

LM := 4a1

(
−1

2
F ⋆F

)
, F := dA . (2.3)

(a0, Λ,an,bn) are the gravitational coupling constants, and
(n)Ti ,

(n)Rij are irreducible parts of the field strengths.
The explicit formulas for the covariant momenta read

Hi = 2
2∑

m=1

⋆(an
(m)Ti) , Hij = −2a0

⋆(ϑiϑj) + 2
6∑

n=1

⋆(bn
(n)Rij)

H = −4a1
⋆F . (2.4)
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Thermodynamics

The Hamiltonian approach to black hole entropy in PG is
based on the ideas developed originally in GR, according
to which the asymptotic charges as well as entropy, can be
defined by certain boundary terms.
Consider a stationary black hole spacetime whose spatial
section Σ has a two-component boundary, one component
at infinity and the other at horizon, ∂Σ = S∞ ∪ SH .
Asymptotic charges and entropy of a PG-Maxwell black
hole are determined by the boundary integral

δΓ∞ =

∮
S∞

δB(ξ) , δΓH =

∮
SH

δB(ξ) , (2.5a)

δB(ξ) := (ξ ⌋ϑi)δHi + δϑi(ξ ⌋Hi) +
1
2
(ξ ⌋ωij)δHij +

1
2
δωij(ξ ⌋ δHij)

+(ξ ⌋A)δH + (δA)(ξ ⌋H) . (2.5b)
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δB is obtained from the canonical generator.
The Killing vectors ξ (ξ = ∂t , ∂φ or their linear combination)
are chosen so that the boundary integrals (Γ∞, ΓH) could
be physically interpreted in terms of the asymptotic
charges, black hole entropy, and Maxwell term.
We require the operation δ to satisfy the following rules:
(r1) On S∞, the variation δ acts on the parameters of a black

hole solution, but not on the parameters of the background.
(r2) On SH , the variation δ must keep surface gravity constant.
(r3) When the boundary terms are δ-integrable and finite, they

can be given the usual thermodynamic interpretation.

The regularity of the generator reveals the relation

δΓ∞ − δΓH = 0 , (2.6)

which is equivalent to the first law of black hole
thermodynamics. The Maxwell contribution to δB is an
essential part of the first law.
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Metric and tetrad

We shall now analyse basic properties of KN-AdS black
holes as solutions of the PG-Maxwell system.
The metric of a KN-AdS black hole in Boyer-Lindquist (BL)
coordinates has the form

ds2 =
∆

ρ2

(
dt+

a
α
sin2 θdφ

)2
−ρ2

∆
dr2−ρ2

f
dθ2− f

ρ2 sin2 θ
[
adt+

(r2 + a2)

α
dφ

]2
,

(3.1a)

∆(r) := (r2 + a2)(1 + λr2)− 2(mr − q2) , α := 1 − λa2 ,

ρ2(r , θ) := r2 + a2 cos2 θ , f (θ) := 1 − λa2 cos2 θ . (3.1b)

Here, m,a and q are the parameters characterising energy,
angular momentum and electric charge of the solution, and
λ = −Λ/3a0.
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The orthonormal tetrad associated to the metric is chosen
in the form

ϑ0 = N
(

dt +
a
α
sin2 θ dφ

)
, ϑ1 =

dr
N

, ϑ2 = Pdθ ,

ϑ3 =
sin θ

P

[
a dt +

(r2 + a2)

α
dφ

]
, N =

√
∆/ρ , P = ρ/

√
f .(3.2)

The larger root of ∆(r) = 0 defines the outer horizon, and
the angular velocity and surface gravity have the GR form

ω+ =
aα

r2
+ + a2

, Ω+ := ω+ + λa =
a(1 + λr2

+)

r2
+ + a2

, (3.3)

κ =
r2
+ + 3λr4

+ + λa2r2
+ − a2 − 2q2

2r+(r2
+ + a2)

, (3.4)

and the area of the horizon is AH =
∫

r+ ϑ2ϑ3 =
4π(r2

++a2)
α .
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Torsion, connection and curvature

Riemann-Cartan geometry of PG is characterized by a
nonvanishing torsion. For KN-AdS black holes, the ansatz
for torsion is formally the same as for the Kerr-AdS case

T 0 = T 1 =
1
N

[
− V1ϑ

0ϑ1 − 2V4ϑ
2ϑ3

]
+

1
N2

[
V2ϑ

−ϑ2 + V3ϑ
−ϑ3

]
,

T 2 :=
1
N

[
V5ϑ

−ϑ2 + V4ϑ
−ϑ3

]
,T 3 :=

1
N

[
− V4ϑ

−ϑ2 + V5ϑ
−ϑ3

]
, (3.5)

V1 =
1
ρ4

[
(mr − 2q2)r − ma2 cos2 θ

]
,V2 = − 1

ρ4P
(mr − q2)a2 sin θ cos θ ,

V3 =
1

ρ4P
(mr − q2)ra sin θ ,V4 =

1
ρ4 (mr − q2)a cos θ ,V5 =

1
ρ4 (mr − q2)r ,

where ϑ− = ϑ0 − ϑ1 and the metric function N and the
torsion functions Vn are modified by the presence of the
nonvanishing electric charge parameter q2.
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Having introduced torsion, the Riemann-Cartan connection
can be expresses as

ωij = ω̃ij + K ij , (3.6)

where ω̃ij is Levi-Chivita (Riemannian) connection and K ij

is the contortion 1-form, implicitly defined by the relation
T i = K i

kbk .
The curvature 2-form R ij = dωij + ωi

kω
kj has only two

nonvanishing irreducible parts:

(6)R ij = λϑiϑj , (4)RAc =
λ

∆
(mr − q2)ϑ−ϑc . (3.7)

The quadratic invariants (Euler, Pontryagin and Nieh-Yan)
are given by

IE := (1/2)εijmnR ijRmn ≡ ⋆RmnRmn = 12λ2ϵ̂ ,

IP := R ijRij = 0 , INY = T iTi − Rijbibj = 0 . (3.8)
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PG-Maxwell field equations

The covariant momenta Hi and Hij , are given by

Hi = 2a1
⋆( (1)Ti−2 (2)Ti) , Hij = −2(a0−λb6)

⋆(ϑiϑj)+2b4
⋆ (4)Rij .

The Maxwell potential in a KN-AdS spacetime is

A := − qer
ρ
√
∆
ϑ0 ≡ −qer

ρ2

(
dt +

a
α
sin2 θdφ

)
, (3.9)

where qe is the electromagnetic charge parameter. This
expression is a natural generalization of the spherically
symmetric form A = −(qe/r)dt .
The related field strength and the covariant momentum are

F = −qe

ρ4

[
(r2 − a2 cos2 θ)ϑ0ϑ1 + 2ar cos θ ϑ2ϑ3

]
,

H = −4a1
qe

ρ4

[
(r2 − a2 cos2 θ)ϑ2ϑ3 − 2ar cos θ ϑ0ϑ1

]
.
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When all the previous results taken into account, the
explicit calculation shows that basic dynamical variables
(ϑi , ωij ,A) of a KN-AdS black hole solve the PG-Maxwell
field equations if the Lagrangian parameters (an,bn, Λ) and
the solution parameters (λ,q,qe) satisfy the relations

2a1 + a2 = 0 , a0 − a1 − λ(b4 + b6) = 0 ,

3λa0 + Λ = 0 , q2
e = 2q2 . (3.10)

Thus, according to our conventions, the electromagnetic
charge parameter qe differs from the metric charge
parameter q. However, none of them coincides with the
asymptotic Maxwell charge, as will be shown.
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The asymptotic values of energy and angular momentum
are defined by the boundary term δB(ξ) in (2.5).
Let us mention that Carter and Henneaux and Teitelboim
demonstrated that the asymptotic metric of Kerr-AdS
spacetimes cannot be properly described in BL
coordinates. They found a new set of coordinates in which
this deficiency is brought under control. However, our
variational approach allows a simpler procedure, in which
only the subset (t , φ) of the BL coordinates is transformed

T = t , ϕ = φ− λat . (4.1a)

Consequently. the components of metric transform as

gTφ = gtφ + gφφ ,

Ω+ :=

(
gTφ

gφφ

)
r+

= ω+ + λa =
a(1 + λr2

+)

r2
+ + a2

. (4.1b)
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Angular momentum

It is interesting to note that the contribution of the Maxwell
field in the expression δB(ξ), yields vanishing boundary
terms at infinity, but not at horizon.
The angular momentum is defined by δEφ := δΓ∞(∂φ). The
nonvanishing contributions are

ω13
φδH13 + δω13H13φ = 2a1δ

(ma
α2

)
dΩ′ ,

b0
φδH0 + δb0H0φ = 4a1δ

(ma
α2

)
dΩ′ ,

dΩ := sin θdθdφ → 4π , dΩ′ := sin3 θdθdφ → 2
3

4π .

Summing up the two terms, one obtains

δEφ = 16πa1δ
(ma
α2

)
. (4.2)
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Energy

Going over to energy, we calculate the nonvanishing
contributions to δEt = δΓ∞(∂t),

δω12H12t + δω13H13t = 2a1mδ
(1
α

)
dΩ ,

b0
tδH0 = 4a1δ

(m
α

)
dΩ .

Hence,

δEt = 16πa1

[
m
2
δ
(1
α

)
+ δ

(m
α

)]
.

The result is not δ-integrable but, as we mentioned above,
it can be corrected by moving to the untwisted coordinates

δET = δEt + λaδEφ = 16πa1δ
( m
α2

)
. (4.3)
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First we analyse the PG part of the boundary term at
horizon, δΓH , where the Killing vector ξ is given by

ξ := ∂T − Ω+∂ϕ = ∂t − ω+∂φ . (5.1)

This part defines the black hole entropy. After very lengthy
calculation we get

(δΓH)
PG = 8πa1κδ

( r2
+ + a2

α

)
= T δS ,

S := 16πa1
π(r2

+ + a2)

α
, (5.2)

where T := κ/2π is the temperature.
Thus, entropy is as the conserved charges proportional to
the GR value.
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Maxwell boundary term and the first law

The asymptotic electric charge Q can be defined byl

Q = −
∫

S∞

H = 4a1

∫
S∞

qe

ρ4 (r
2−a2 cos2 θ)b2b3 = 16πa1

qe

α
.

(5.3)
The electric potential Φ is defined by

Φ := Aξ

∣∣∣∞
r+

= −qer+
ρ2
+N

b0
ξ

∣∣∣∞
r+

=
qer+

r2
+ + a2

. (5.4)

Then, the Maxwell contribution on horizon has the form

(δΓH)
M = AξδH + (δA)Hξ = AξδH = Φ δQ . (5.5)

Combining this relation with the already obtained results,
one can immediately conclude that the first law δΓH = δΓ∞
takes the form

T δS +ΦδQ = δET − Ω+δEφ . (5.6)
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We introduced the natural extension of the canonical
approach to black hole entropy to non-vacuum solutions,
by including Maxwell field as a matter source of gravity.
We studied the thermodynamic properties of KN-AdS black
holes, encoded in the boundary terms at infinity and
horizon, δΓ∞ and δΓH , respectively.
Analysing energy and angular momentum as the boundary
terms at infinity, we found that their KN-AdS values are
exactly the same as for the uncharged Kerr-AdS solution
This is in agreement with the fact that the asymptotic
Maxwell contribution vanishes. Moreover, these asymptotic
charges are proportional to the related GR expressions.
The boundary term at horizon produces entropy and an
external, Maxwell term, such that both of them are also
proportional to the corresponding GR expressions. Then,
the first law is described by the general relation δΓ∞ = δΓH .
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