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Introduction: Deformed symmetries

e Several quantum gravity scenarios predict that fundamental symmetries
should be deformed: they acquire «quantum» features.

* The natural mathematical objects to study these deformations are quantum
groups, algebras of functions on regular groups, with a non-commutative
product.

e The group parameters become operators in the deformed case: we want to
study and give physical meaning to the states on which these operators act.

* As a case study, we will consider the SU,(2) quantum group, to investigate
purely rotated systems.



SU(2) coordinatization and Euler Angles

* In classical and quantum mechanics, rotation transformations are governed by
the group SU(2)

SU(2)9U=(C a) P 2+ 2 =1

a = eX sin Q c = e'? cos 9
2 2

e SU(2) parameters and Euler Angles
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* qisa«small» deformation parameter, larger than 0 and close to 1.

e7mpotent states on coquantum on Uq(2)Uqg(2), Suq(2)SUq(2), and s0q(3) - Uwe Franz Adam Skalski and Reiji Tomatsu - Journal of Noncommutative Geometry



Homomorphism between SU,(2) and SO,(3)

Cq (50(3)) = C,(SU(2)/Z,), realizing the g-analogue of the SU(2) to SO(3)
homomorphism

* A 3x3 matrix representation is given by

%(az —qc? + (a)? = q(c")?) %(—a2 + gc? + (a*)* — q(c)?) %(1 + g%)(a*c + c*a)

[ 1 [
E(az R (gl E(az e (a’ ) + q(c)?) —5(1 +q%) (a’c —c’a)
—(ac + c*a*) i(ac — c*a*) 1—(1+g*)cc*

* This is not a real valued matrix anymore, it contains operators instead

. Podles, “Symmetries of quantum spaces. subgroups and quotient spaces of quantumsu (2) andso
(3) groups,” Communications in Mathematical Physics, vol. 170, no. 1, pp. 1-20, 1995
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« a = e cos (g) G =68 #sIn (g) (Classical case)



Quantum Euler Angles (1)

 We promote the SU(2)-Euler Angles relations to the quantum case.

 Comparing the phases of a and c to their classical analogues, we identify

e with y and § with ¢. They are continuous and play the same role as
before.

* Exploiting the fact that c is a diagonal operator

g" = Sin <%Tl)> « 0(n) = 2Arcin(q™)



Quantum Euler Angles (2)

O(n) = 2Arcin(q™)
q=0.99




Physical interpretation and Quantum rotations

» Astate |ip) € H is representative of the relative orientation between two
reference frames, A and B.

* Our interpretation is that the mean value of R, on ) will give an estimate of the
entries of the rotation matrix that connects A and B

(WIRgY);;

 However, due to non-commutatitvity, we will have a non vanishing variance for the
matrix elements, in general:

By = JWIREIY; — IRl



Example: rotation around the z-axis

* Consider a state |y) in representation p. The mean value of the rotation matrix
IS:

cos(2y) —sin(2y) O
(XIRqlx)y = sin(2y)  cos(2y) O
0 0 1

* It coincides with a standard SO (3) rotation matrix. Indeed, computing the
uncertainties, we have

A;; = 0 — Sharp rotations around the z-axis



«Physical» states construction

* To effectively describe rotations’ deformations, we demand that our states of
geometry |Y) satisfy

(Rij)_1<l/)|Rq|l/)> = Ajj =0 when q - 1

where (Rl-j) are the entries of a classical rotation matrix.

* Since (¢, x) behave as in the classical case, we must look for states of the
form

¥)= ) ealn 6,2)
n=0

heavily weighted around nn and which satisfy the criteria above,
to properly describe a rotation deformation of Euler angles (¢, x, 8(i1))



Example: rotation of T around the x-axis

* Consider the state |Y) = ‘O; %; 0>. The relevant quantities, working at first

orderin (1 — q), are

1-(1-9q) 0 0
(W|Rql ) = 0 S q) 0 +0(1-q)
0 0 =1 +2(1.—*q)

V2(1-q) v2(1-q) 2(1-9q)
AR,(Jy) = | V2(1—q) V2(1—q) 2(1-¢q) |+0(1—¢q)
J2(1—q) 2(1-q) 0

* As g — 1, these correctly reproduce a rotation of m around the x-axis with
null uncertainty.




Agency dependent space-time

* The choice of the z-axis is “special”. Rotations around it are not affected by
uncertainties.

?

e A rotation of this z-axis of an angle w about the x-axis is affected by a “large’
uncertainty

* An observer A who identifies a sharp object along its z-axis, will identify a
“fuzzy” object along the z-axis of an observer B rotated of an angle T about
the x-axis with respect to A.

* Therefore, the space we infer depends on the choice of the z-axis...in this
sense we say that space is agency dependent
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