Non-commutative deformations from homotopy Lie algebras

Larisa Jonke

Division of Theoretical Physics Rudjer Bošković Institute, Zagreb

Workshop on theoretical and experimental advances in quantum gravity Belgrade, September 2022 CA18108 - Quantum gravity phenomenology in the multi-messenger approach

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Physics at quantum gravity scales?

- Appropriate space-time probe is not a point particle.
- Concept of symmetry needs to be generalized.
- Field content needs to be extended.
- Wilsonian separation of scales (probably) fails in QG regime.

Different aspects made precise in string theory, holography, matrix/tensor models....

Symmetries for quantum gravity?

In string theory space-time probe is spatially extended, eg strings and branes

- \rightsquigarrow can wrap compactified spaces \rightsquigarrow dualities in string theory, eg T-duality
- \rightsquigarrow couple to higher gauge potential \rightsquigarrow higher gauge theories
- → low-energy effective dynamics → non-commutative/non-associative deformation

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Symmetries for quantum gravity?

In string theory space-time probe is spatially extended, eg strings and branes \rightsquigarrow can wrap compactified spaces \rightsquigarrow dualities in string theory, eg T-duality \rightsquigarrow couple to higher gauge potential \rightsquigarrow higher gauge theories \rightsquigarrow low-energy effective dynamics \rightsquigarrow non-commutative/non-associative deformation

 \sim natural framework for the description of generalized symmetries in the quantum gravity regime \sim homotopy Lie algebras, e.g., A_{∞} , L_{∞} , Stasheff '63, Stasheff, Schlesinger '77

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

In this talk

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

GOAL

Argue that homotopy Lie algebras are useful for construction of consistent non-commutative deformations (in field theory).

PLAN

- L_{∞} -algebra
- Drinfel'd twist of L_{∞} -algebra
- From kinematics to dynamics

 L_{∞} -algebra \rightsquigarrow generalizations of differential graded Lie algebras with possibly infinitely-many graded antisymmetric brackets satisfying higher versions of the Jacobi identity.

 L_{∞} -algebra \rightsquigarrow generalizations of differential graded Lie algebras with possibly infinitely-many graded antisymmetric brackets satisfying higher versions of the Jacobi identity.

- Quantization
 - $\blacktriangleright \ BV \ formalism \sim L_\infty \text{-algebra} \ {\tt Zwiebach \ '92}$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

 L_{∞} -algebra \rightsquigarrow generalizations of differential graded Lie algebras.

- Quantization \rightsquigarrow BV-BRST, deformation quantization
- Geometry
 - Graded geometry: L_{∞} -algebra (cyclic) $\equiv Q(P)$ manifolds AKSZ '95
 - Generalized geometry of Courant, double field theory and exceptional algebroids Roytenberg, Weinstein '98; Deser, Saemann '16, LJ, Grewcoe '20; Cederwall, Palmkvist '18

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 L_{∞} -algebra \rightsquigarrow generalizations of differential graded Lie algebras.

- $\bullet~$ Quantization \rightsquigarrow BV-BRST, deformation quantization
- Graded and generalized geometry
- $\bullet~\text{NC/NA}$ field theory and gravity
 - *-product: bootstraping nc gauge theories using L_∞ Blumenhagen et al '18, cf. Patrizia's talk

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

- \blacktriangleright Drinfel'd twist and braided L $_\infty$ Dimitrijević Ćirić et al '21, Nguyen, Schenkel, Szabo '21
- HS in unfolded formalism Vasiliev

Lada, Stasheff '92, Lada, Markl '94

An L_{∞} algebra is a \mathbb{Z} -graded vector space

$$X = \bigoplus_{d \in \mathbb{Z}} X_d$$

with multilinear graded symmetric maps $b_i: X^{\otimes i} \to X$ of degree 1 such that the coderivation $D = \sum_{i=0} b_i$ is nilpotent.

$$D^2 = 0 \rightsquigarrow \text{homotopy relations for the maps } b_i, \text{ e.g.}$$

$$b_1(b_0) = 0,$$

$$b_2(b_0, x) + b_1^2(x) = 0,$$

$$b_3(b_0, x_1, x_2) + b_2(b_1(x_1), x_2) + (-1)^{|x_1||x_2|} b_2(b_1(x_2), x_1) + b_1(b_2(x_1, x_2)) = 0.$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Note that for $b_0 = 0$ we talk about *flat* L_{∞} -algebra and b_1 is differential.

Extend the maps b_i on the whole graded symmetric tensor algebra over field $K =: S^0 X$

$$\mathsf{S}(X):=\bigoplus_{n=0}^{\infty}S^nX$$
,

with graded symmetric tensor product \lor .

The maps $b_i: S^j X \to S^{j-i+1} X$ act as a coderivation:

$$b_i(x_1 \vee \ldots \vee x_j) = \sum_{\sigma \in Sh(i,j-i)} \epsilon(\sigma; x) b_i(x_{\sigma(1)}, \ldots, x_{\sigma(i)}) \vee x_{\sigma(i+1)} \vee \ldots \vee x_{\sigma(j)} , j \ge i ,$$

where $\epsilon(\sigma; x)$ is the Koszul sign, and $\operatorname{Sh}(p, m - p) \in S_m$ denotes those permutations ordered as $\sigma(1) < \cdots < \sigma(p)$ and $\sigma(p+1) < \cdots < \sigma(m)$.

Introducing the permutation map $\tau^{\sigma}: X^{\otimes i} \rightarrow X^{\otimes i}$

$$b_i \circ \mathrm{id}^{\vee j} = \sum_{\sigma \in \mathrm{Sh}(i,j-i)} (b_i \vee \mathrm{id}^{\vee (j-i)}) \circ \tau^{\sigma} \;, \qquad j \geq i \;.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Degree 1 coderivation $D : S(X) \rightarrow S(X)$ satisfies the co-Leibniz property:

$$\Delta \circ D = (1 \otimes D + D \otimes 1) \circ \Delta$$
,

with the coproduct map map $\Delta:\mathsf{S}(X) o\mathsf{S}(X)\otimes\mathsf{S}(X)$

$$\Delta \circ \mathrm{id}^{\vee m} = \sum_{\rho=0}^{m} \sum_{\sigma \in \mathrm{Sh}(\rho,m-p)} (\mathrm{id}^{\vee \rho} \otimes \mathrm{id}^{\vee (m-\rho)}) \circ \tau^{\sigma} \ , \ \rho,m \geq 0 \ ,$$

▲□▶▲□▶★≣▶★≣▶ = ● のへで

Degree 1 coderivation $D : S(X) \rightarrow S(X)$ satisfies the co-Leibniz property:

$$\Delta \circ D = (1 \otimes D + D \otimes 1) \circ \Delta$$
,

with the coproduct map map $\Delta:\mathsf{S}(X) o\mathsf{S}(X)\otimes\mathsf{S}(X)$

$$\Delta \circ \mathrm{id}^{\vee m} = \sum_{p=0}^{m} \sum_{\sigma \in \mathrm{Sh}(p,m-p)} (\mathrm{id}^{\vee p} \otimes \mathrm{id}^{\vee (m-p)}) \circ \tau^{\sigma} \ , \ p,m \geq 0 \ ,$$

→ L_{∞} -algebra as a coalgebra with coderivation and counit ε : S(X) → K, where $\varepsilon(1) = 1$ and $\varepsilon(x) = 0, x \in X$.

$L_{\infty} \rightsquigarrow \mathsf{Hopf} \mathsf{ algebra}$

Graded symmetric tensor algebra S(X) has an algebra structure given by the graded symmetric tensor product \lor and a unit map $\eta : K \to S(X)$, where $\eta(1) = 1$.

The algebra and coalgebra structure on S(X) make up a bialgebra, that admits a graded antipode map S

$$S(x_1 \vee \cdots \vee x_m) = (-1)^m (-1)^{\sum_{i=2}^m \sum_{j=1}^{i-1} |x_i| |x_j|} x_m \vee \cdots \vee x_1$$
.

$L_{\infty} \rightsquigarrow \mathsf{Hopf} \mathsf{ algebra}$

Graded symmetric tensor algebra S(X) has an algebra structure given by the graded symmetric tensor product \lor and a unit map $\eta : K \to S(X)$, where $\eta(1) = 1$.

The algebra and coalgebra structure on S(X) make up a bialgebra, that admits a graded antipode map S

$$S(x_1 \vee \cdots \vee x_m) = (-1)^m (-1)^{\sum_{i=2}^m \sum_{j=1}^{i-1} |x_i| |x_j|} x_m \vee \cdots \vee x_1$$
.

 \rightsquigarrow the homotopy Lie algebra defined by the coalgebra structure on the graded symmetric tensor space S(X) extends to a cocommutative and coassociative Hopf algebra with compatible coderivation. Grewcoe, LJ, Kodzoman, Manolakos, '22

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Non-commutative deformation

→ introduce non-(co)commutative deformation using Drinfel'd twist. cf. Andrzej's talk

Using invertible twist element $\mathcal{F} =: f^{\alpha} \otimes f_{\alpha} \in H \otimes H$

$$(\mathcal{F} \otimes 1)(\Delta \otimes id)\mathcal{F} = (1 \otimes \mathcal{F})(id \otimes \Delta)\mathcal{F} ,$$

 $(\epsilon \otimes id)\mathcal{F} = 1 \otimes 1 = (id \otimes \epsilon)\mathcal{F} ,$

we obtain $(H^{\mathcal{F}}, \lor, \Delta^{\mathcal{F}}, S^{\mathcal{F}}, \epsilon)$, where $H^{\mathcal{F}}$ is the same as H as vector spaces and:

$$\Delta^{\mathcal{F}}(h) = \mathcal{F}\Delta(h)\mathcal{F}^{-1}, \ h \in H$$
,

and $S^{\mathcal{F}} = S$ for Abelian twist.

Non-commutative deformation

→ introduce non-(co)commutative deformation using Drinfel'd twist. cf. Andrzej's talk

Using invertible twist element $\mathcal{F} =: f^{\alpha} \otimes f_{\alpha} \in H \otimes H$

$$(\mathcal{F} \otimes 1)(\Delta \otimes id)\mathcal{F} = (1 \otimes \mathcal{F})(id \otimes \Delta)\mathcal{F}$$
,
 $(\epsilon \otimes id)\mathcal{F} = 1 \otimes 1 = (id \otimes \epsilon)\mathcal{F}$,

we obtain $(H^{\mathcal{F}}, \lor, \Delta^{\mathcal{F}}, S^{\mathcal{F}}, \epsilon)$, where $H^{\mathcal{F}}$ is the same as H as vector spaces and:

$$\Delta^{\mathcal{F}}(h) = \mathcal{F}\Delta(h)\mathcal{F}^{-1}, \ h \in H \ ,$$

and $S^{\mathcal{F}} = S$ for Abelian twist.

 \rightsquigarrow twisted L_{∞} or $(L_{\infty}^{\mathcal{F}}, \lor, \Delta^{\mathcal{F}}, S, \epsilon)$

Drinfel'd twist

In the spirit of deformation quantisation, while twisting Hopf algebra we simultaneously twist its modules. Taking Hopf algebra L_{∞} as its own module $\rightsquigarrow (L_{\infty}^{\star}, \lor_{\star}, \Delta_{\star}, S_{\star}, \epsilon)$:

$$egin{aligned} & x_1 \lor_\star x_2 = ar{f}^lpha(x_1) \lor ar{f}_lpha(x_2) \;, \ & \Delta_\star(x) = x \otimes 1 + ar{R}^lpha \otimes ar{R}_lpha(x) \;, \ & \mathcal{S}_\star(x) = -ar{R}^lpha(x) ar{R}_lpha \; . \end{aligned}$$

The \mathcal{R} -matrix $\mathcal{R} \in S(X) \otimes S(X)$ is an invertible matrix induced by the twist

$$\mathcal{R} = f_{\alpha} \bar{f}^{\beta} \otimes f^{\alpha} \bar{f}_{\beta} =: \mathcal{R}^{\alpha} \otimes \mathcal{R}_{\alpha} \ , \mathcal{R}^{-1} = \bar{\mathcal{R}}^{\alpha} \otimes \bar{\mathcal{R}}_{\alpha} \ ,$$

The inverse \mathcal{R} -matrix controls noncommutativity of the \vee_{\star} -product and provides the representation of permutation group, e.g.,

$$au^\sigma_\mathcal{R}(x_1ee_\star x_2) = (-1)^{|x_1||x_2|} ar{R}^lpha(x_2) ee_\star ar{R}_lpha(x_1) \;,$$

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Braided L_{∞} -algebra

Extend the coproduct to whole tensor algebra:

$$\Delta_{\star} \circ \mathrm{id}^{\vee_{\star} m} = \sum_{\sigma \in \mathrm{Sh}(p, m-p)} (\mathrm{id}^{\vee_{\star} p} \otimes \mathrm{id}^{\vee_{\star} (m-p)}) \circ \tau_{\mathcal{R}}^{\sigma} \ , \ p, m \geq 0 \ .$$

The compatible coderivation $D_{\star} = \sum_{i=0}^{\infty} b_i^{\star}$ is defined in terms of braided graded symmetric maps b_i^{\star}

$$\begin{split} b_i^{\star} \circ \mathrm{id}^{\vee_{\star}j} &= \sum_{\sigma \in \mathrm{Sh}(i,j-i)} (b_i^{\star} \vee_{\star} \mathrm{id}^{\vee_{\star}(j-i)}) \circ \tau_{\mathcal{R}}^{\sigma} \ , \ j \geq i \ , \\ b_i^{\star}(x_1, \dots, x_m, x_{m+1}, \dots, x_i) &= (-1)^{|x_m||x_{m+1}|} b_i^{\star}(x_1, \dots, \bar{R}^{\alpha}(x_{m+1}), \bar{R}_{\alpha}(x_m), \dots, x_i) \ , \end{split}$$

and the condition $D_{\star}^2 = 0$ reproduces the deformed homotopy relations.

 $\rightsquigarrow braided \ L_{\infty} \text{-algebra obtained in Dimitrijević Ćirić et al '21.}$

$$L^{\star}_{\infty}$$
 vs. $L^{\mathcal{F}}_{\infty}$

As Hopf algebras L_{∞}^{\star} and $L_{\infty}^{\mathcal{F}}$ are isomorphic Aschieri et al '05, Schenkel '12 $\exists \max \varphi : L_{\infty}^{\star} \to L_{\infty}^{\mathcal{F}}$ such that

$$\begin{split} \varphi(\mathbf{x}_1 \lor_{\star} \mathbf{x}_2) &= \varphi(\mathbf{x}_1) \lor \varphi(\mathbf{x}_2) \ , \\ \Delta_{\star} &= (\varphi^{-1} \otimes \varphi^{-1}) \circ \Delta^{\mathcal{F}} \circ \varphi \ , \\ S_{\star} &= \varphi^{-1} \circ S^{\mathcal{F}} \circ \varphi \ . \end{split}$$

$$L^{\star}_{\infty}$$
 vs. $L^{\mathcal{F}}_{\infty}$

As Hopf algebras L_{∞}^{\star} and $L_{\infty}^{\mathcal{F}}$ are isomorphic Aschieri et al '05, Schenkel '12 $\exists \max \varphi : L_{\infty}^{\star} \to L_{\infty}^{\mathcal{F}}$ such that

$$\begin{split} \varphi(\mathbf{x}_1 \lor_{\star} \mathbf{x}_2) &= \varphi(\mathbf{x}_1) \lor \varphi(\mathbf{x}_2) ,\\ \Delta_{\star} &= (\varphi^{-1} \otimes \varphi^{-1}) \circ \Delta^{\mathcal{F}} \circ \varphi ,\\ S_{\star} &= \varphi^{-1} \circ S^{\mathcal{F}} \circ \varphi . \end{split}$$

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

On the other hand, we take L_{∞}^{\star} -algebra as a module of $L_{\infty}^{\mathcal{F}}$ with an L_{∞} -action on an L_{∞} -algebra given by an L_{∞} -morphism Mehta, Zambon '12. Thus we obtain

$$D_{\star} = \varphi^{-1} D_{\mathcal{F}} \varphi$$
.

From kinematics to dynamics

Hohm, Zwiebach '17; Jurčo et al. '18, '20; Giotopoulos, Szabo '21

What do we have so far?

- $L_{\infty} \rightsquigarrow$ symmetry (gauge) algebra
- MC equations → eoms

$$\sum_i rac{1}{i!} b_i(x,\ldots,x) = 0 \ , x \in X_0$$
 $\delta_c x = \sum_i rac{1}{i!} b_{i+1}(x,\ldots,x,c) \ , c \in X_{-1}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

From kinematics to dynamics

Hohm, Zwiebach '17; Jurčo et al. '18, '20; Giotopoulos, Szabo '21

What do we have so far?

- $L_{\infty} \rightsquigarrow$ symmetry (gauge) algebra
- MC equations \rightsquigarrow eoms

$$\sum_{i} rac{1}{i!} b_i(x, \dots, x) = 0 \;, x \in X_0$$

 $\delta_c x = \sum_{i} rac{1}{i!} b_{i+1}(x, \dots, x, c) \;, c \in X_{-1}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

To define a classical action and/or solution of classical master equation we need:

- Tensor product (of complexes)
- Inner product \rightsquigarrow cyclic L_{∞}

From kinematics to dynamics

Hohm, Zwiebach '17; Jurčo et al. '18, '20; Giotopoulos, Szabo '21

What do we have so far?

- $L_{\infty} \rightsquigarrow$ symmetry (gauge) algebra
- MC equations \rightsquigarrow eoms

$$\sum_{i}rac{1}{i!}b_{i}(x,...,x) = 0 \;, x \in X_{0}$$

 $\delta_{c}x = \sum_{i}rac{1}{i!}b_{i+1}(x,...,x,c) \;, c \in X_{-1}$

To define a classical action and/or solution of classical master equation we need:

- Tensor product (of complexes)
- Inner product \rightsquigarrow cyclic L_{∞}

$$S_{\mathrm{MC}}[x] \equiv \sum_{i \geqslant 0} \frac{1}{(i+1)!} \langle x, b_i(x, \ldots, x) \rangle.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Outlook: From classical to quantum

• $Q = D^* \rightsquigarrow \mathsf{BRST}$ operator

Evaluate b_i on basis of X \rightsquigarrow structure constants of L_{∞} -algebra:

$$b_i(au_{lpha_1},..., au_{lpha_i})=oldsymbol{C}^eta_{lpha_1...lpha_i} au_eta$$

Use to define cohomological vector Q of degree 1

$$Q = \sum_{i=0}^{\infty} \frac{1}{i!} C^{\beta}_{\alpha_1 \dots \alpha_i} z^{\alpha_1} \cdots z^{\alpha_i} \frac{\partial}{\partial z^{\beta_i}}$$

with z^{α_i} basis of X^{*}.

In Batalin-Vilkovisky formalism Q becomes BRST operator and z^{α_i} physical fields.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Outlook: From classical to quantum

- $Q = D^* \rightsquigarrow \mathsf{BRST}$ operator
- Quantum homotopy algebra \rightsquigarrow loop amplitudes Jurco, Macrelli, Saemann, Wolf '20
- Braided BV for theories with nc braided symmetries Dimitrijević Ćirić et al. '22
- Effective field theories from homotopy transfer e.g. Arvanitakis, Hohm, Hull, Lekeu '21

THANK YOU!

