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Physics at quantum gravity scales?

« Appropriate space-time probe is not a point particle.
# Concept of symmetry needs to be generalized.

%« Field content needs to be extended.

« Wilsonian separation of scales (probably) fails in QG regime.

Different aspects made precise in string theory, holography, matrix/tensor models....



Symmetries for quantum gravity?

In string theory space-time probe is spatially extended, eg strings and branes
~~ can wrap compactified spaces ~~ dualities in string theory, eg T-duality
~+ couple to higher gauge potential ~~ higher gauge theories

~ low-energy effective dynamics ~» non-commutative/non-associative deformation



Symmetries for quantum gravity?

In string theory space-time probe is spatially extended, eg strings and branes
~~ can wrap compactified spaces ~~ dualities in string theory, eg T-duality
~+ couple to higher gauge potential ~~ higher gauge theories

~ low-energy effective dynamics ~» non-commutative/non-associative deformation

~» natural framework for the description of generalized symmetries in the quantum
gravity regime ~~» homotopy Lie algebras, e.g., Ao, Loo, Stasheff '63, Stasheff, Schlesinger '77



In this talk

GOAL

Argue that homotopy Lie algebras are useful for construction of consistent
non-commutative deformations (in field theory).

PLAN
o L.-algebra
@ Drinfel'd twist of L..-algebra

@ From kinematics to dynamics



On L.-algebras

L.-algebra ~~ generalizations of differential graded Lie algebras with possibly
infinitely-many graded antisymmetric brackets satisfying higher versions of the Jacobi
identity.



On L.-algebras

L.-algebra ~~ generalizations of differential graded Lie algebras with possibly
infinitely-many graded antisymmetric brackets satisfying higher versions of the Jacobi
identity.

@ Quantization
> BV formalism ~ Loo-algebra Zwiebach ‘92
> Deformation quantization: formality thm ~ Lo, quasi-isomorphism Kontsevich ‘97;
Poisson sigma model quantization Cattaneo, Felder, ‘99



On L.-algebras

Loo-algebra ~~ generalizations of differential graded Lie algebras.

@ Quantization ~ BV-BRST, deformation quantization
o Geometry
> Graded geometry: Loo-algebra (cyclic) = Q(P) manifolds AksZ ‘95
> Generalized geometry of Courant, double field theory and exceptional algebroids
Roytenberg, Weinstein ‘98; Deser, Saemann ‘16, LJ, Grewcoe ‘20; Cederwall, Palmkvist '18



On L.-algebras

Loo-algebra ~~ generalizations of differential graded Lie algebras.

@ Quantization ~» BV-BRST, deformation quantization

@ Graded and generalized geometry

o NC/NA field theory and gravity
> x-product: bootstraping nc gauge theories using Loc Blumenhagen et al ‘18, cf. Patrizia's talk
» Drinfel’d twist and braided Lo Dimitrijevié¢ Ciri¢ et al ‘21, Nguyen, Schenkel, Szabo ‘21
> HS in unfolded formalism Vasiliev



Lo - coalgebra formulation
Lada, Stasheff '92, Lada, Markl '94

An L. algebra is a Z-graded vector space
X =P X
dez

with multilinear graded symmetric maps b; : X®' — X of degree 1 such that the
coderivation D = 3",/ b; is nilpotent.

D? = 0 ~» homotopy relations for the maps b;, e.g.
bi(by) =0,
ba(bo, x) + bi(x) =0,
bs(bo, x1, x2) + ba(b1(x1), x2) + (—1)|Xl‘|x2|b2(b1(x2),Xl) + bi(b2(x1,x2)) =0 .

Note that for by = 0 we talk about flat L.-algebra and b; is differential.



Lo - coalgebra formulation

Extend the maps b; on the whole graded symmetric tensor algebra over field K =: S°X

with graded symmetric tensor product V.
The maps b; : X — §7"*1X act as a coderivation:

b,’(X1 V...V Xj) = Z 6(0’; X)[J,'(Xc,(l)7 c. ,Xg(,-)) V Xo(i+1) V...V Xo(j) J>0
oesh(ij—i)

where ¢(o; x) is the Koszul sign, and Sh(p, m — p) € S, denotes those permutations
ordered as 0(1) < --- < o(p) and o(p+1) < --- < o(m).

Introducing the permutation map 7° : X®' — X

bioid” = M (bvidUT)or”, >,
o€eSh(ij—i)



Lo - coalgebra formulation

Degree 1 coderivation D : S(X) — S(X) satisfies the co-Leibniz property:

AoD=(1®D+D®1)o A,

with the coproduct map map A : S(X) — S(X) ® S(X)

Aocidm=>" > (id"”®id" " P)or”, pm>0,

p=0 oc€Sh(p,m—p)



Lo - coalgebra formulation

Degree 1 coderivation D : S(X) — S(X) satisfies the co-Leibniz property:
AoD=(1®D+D®1)o A,
with the coproduct map map A : S(X) — S(X) ® S(X)

Aocidm=>" > (id"”®id" " P)or”, pm>0,

p=0 oc€Sh(p,m—p)

~~ Loo-algebra as a coalgebra with coderivation and counit € : S(X) — K, where
e(l)=1and e(x) =0, x € X.



Lo ~ Hopf algebra

Graded symmetric tensor algebra S(X) has an algebra structure given by the graded
symmetric tensor product V and a unit map 1 : K — S(X), where n(1) = 1.

The algebra and coalgebra structure on S(X) make up a bialgebra, that admits a graded
antipode map S

m i—1
S(a V- Vxm) = (—1)"(=1)ZF Xl vy



Lo ~ Hopf algebra

Graded symmetric tensor algebra S(X) has an algebra structure given by the graded
symmetric tensor product V and a unit map 1 : K — S(X), where n(1) = 1.

The algebra and coalgebra structure on S(X) make up a bialgebra, that admits a graded
antipode map S

S Ve Voxm) = (—1)"(—1)ZF Zm il vy
~ the homotopy Lie algebra defined by the coalgebra structure on the graded

symmetric tensor space S(X) extends to a cocommutative and coassociative Hopf
algebra with compatible coderivation. Grewcoe, LJ, Kodzoman, Manolakos, '22



Non-commutative deformation

~> introduce non-(co)commutative deformation using Drinfel'd twist. cf. Andrzej's talk

Using invertible twist element F =: f* ® f, e H® H

(FR1)(A®id)F =1 F)(ido A)F,
(e®id)F=1®1=(id®e)F,

we obtain (HF,V,A}-, s7, €), where H” is the same as H as vector spaces and:
A7 (k)= FA)F ', heH,

and S7 = S for Abelian twist.



Non-commutative deformation

~> introduce non-(co)commutative deformation using Drinfel'd twist. cf. Andrzej's talk

Using invertible twist element F =: f* ® f, e H® H

(FR1)(A®id)F =1 F)(ido A)F,
(e®id)F=1®1=(id®e)F,

we obtain (HF,V,A}-, 5}-,6), where H” is the same as H as vector spaces and:
A7 (k)= FA)F ', heH,

and S7 = S for Abelian twist.

~ twisted Lo or (LL,V, A7 S €)



Drinfel’d twist

In the spirit of deformation quantisation, while twisting Hopf algebra we simultaneously
twist its modules. Taking Hopf algebra Lo as its own module
s (L5, Vi, A, Sy €):

X1 Vi X2 = FQ(Xl) V fTa(X2) s
A(X)=x®14+R*® Ru(x),
Se(x) = —R*(X)R. .

The R-matrix R € S(X) ® S(X) is an invertible matrix induced by the twist
R=FffPQffB=R*®R, , R'=R*®R. ,

The inverse R-matrix controls noncommutativity of the V.-product and provides the
representation of permutation group, e.g.,

% Vi x2) = (=112 R (%) v, Ra(x1) ,



Braided L..-algebra

Extend the coproduct to whole tensor algebra:

Acoidm= Y (id"P@id"Porz , pm>0.

€Sh(p,m—p)

The compatible coderivation D, = >~ b/ is defined in terms of braided graded
symmetric maps b’

broid"” = S (b viid V) org, i1,
oeSh(i,j—i)

B (X1, - - oy Xy Xt -5 xi) = (=1)PmlPmel g R (xme1)y R (Xm)s - -+, i)

and the condition D? = 0 reproduces the deformed homotopy relations.

~~ braided Loc-algebra obtained in Dimitrijevi¢ Ciri¢ et al ‘21.



*
LDO

vs. LT

As Hopf algebras L%, and LZ are isomorphic Aschieri et al 05, Schenkel 12
I map ¢ : L%, — LZ such that

(xa Ve x2) = p(x1) V p(x) ,
A=(p'@p HoA oy,
S.=¢ptoS"0p.



*
LDO

vs. LT

As Hopf algebras L%, and LZ are isomorphic Aschieri et al 05, Schenkel 12
I map ¢ : L%, — LZ such that

o(x1 Vi x2) = o(x1) V o(x2) ,
A= '@p oA  op,
S.=¢ptoS"0p.

On the other hand, we take L% -algebra as a module of L, with an L..-action on an
Loo-algebra given by an L.o-morphism Mehta, Zambon '12. Thus we obtain

D, = ¢ 'Dryp .



From kinematics to dynamics
Hohm, Zwiebach ‘17; Juro et al. ‘18, ‘20; Giotopoulos, Szabo '21

What do we have so far?

o Lo ~~ symmetry (gauge) algebra
o MC equations ~» eoms
%b,-(x,...,x) =0 , X € Xo

OeX = Tllb,'+1(x7...,X,C) ,CGX—I
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To define a classical action and/or solution of classical master equation we need:

o Tensor product (of complexes)

@ Inner product ~~ cyclic L



From kinematics to dynamics
Hohm, Zwiebach ‘17; Juro et al. ‘18, ‘20; Giotopoulos, Szabo '21

What do we have so far?

o Lo ~~ symmetry (gauge) algebra
o MC equations ~» eoms
%b,-(x,...,x) =0 , X € Xo
OeX = Tllb,'+1(x7...,X,C) ,CEX—I

To define a classical action and/or solution of classical master equation we need:

o Tensor product (of complexes)

@ Inner product ~~ cyclic L

1
Smclx] = ; m(x, bi(x,...,x)).



Outlook: From classical to quantum

@ Q@ = D* ~» BRST operator

Evaluate b; on basis of X ~ structure constants of L..-algebra:
b-( ) — Cﬁ
i\Toys -y Tayj ay...a; T8

Use to define cohomological vector Q of degree 1

_ o~ 1 B ag a; 9
Q*Qﬂcal...aiz ez 8?

with z% basis of X*.

In Batalin-Vilkovisky formalism @ becomes BRST operator and z% physical fields.



Outlook: From classical to quantum

Q = D* ~» BRST operator
Quantum homotopy algebra ~~ loop amplitudes Jurco, Macrelli, Saemann, Wolf '20
Braided BV for theories with nc braided symmetries Dimitrijevi¢ Ciri¢ et al. 22

Effective field theories from homotopy transfer e.g. Arvanitakis, Hohm, Hull, Lekeu 21



THANK YOU!



