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Physics at quantum gravity scales?

_ Appropriate space-time probe is not a point particle.

_ Concept of symmetry needs to be generalized.

_ Field content needs to be extended.

_ Wilsonian separation of scales (probably) fails in QG regime.

Different aspects made precise in string theory, holography, matrix/tensor models....



Symmetries for quantum gravity?

In string theory space-time probe is spatially extended, eg strings and branes

 can wrap compactified spaces  dualities in string theory, eg T-duality

 couple to higher gauge potential  higher gauge theories

 low-energy effective dynamics  non-commutative/non-associative deformation

 natural framework for the description of generalized symmetries in the quantum
gravity regime  homotopy Lie algebras, e.g., A∞, L∞, Stasheff ’63, Stasheff, Schlesinger ’77
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In this talk

GOAL

Argue that homotopy Lie algebras are useful for construction of consistent
non-commutative deformations (in field theory).

PLAN

L∞-algebra

Drinfel’d twist of L∞-algebra

From kinematics to dynamics



On L∞-algebras

L∞-algebra  generalizations of differential graded Lie algebras with possibly
infinitely-many graded antisymmetric brackets satisfying higher versions of the Jacobi
identity.

Quantization
I BV formalism ∼ L∞-algebra Zwiebach ‘92
I Deformation quantization: formality thm ∼ L∞ quasi-isomorphism Kontsevich ‘97;

Poisson sigma model quantization Cattaneo, Felder, ‘99
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On L∞-algebras

L∞-algebra  generalizations of differential graded Lie algebras.

Quantization  BV-BRST, deformation quantization

Geometry
I Graded geometry: L∞-algebra (cyclic) ≡ Q(P) manifolds AKSZ ‘95
I Generalized geometry of Courant, double field theory and exceptional algebroids

Roytenberg, Weinstein ‘98; Deser, Saemann ‘16, LJ, Grewcoe ‘20; Cederwall, Palmkvist ’18



On L∞-algebras

L∞-algebra  generalizations of differential graded Lie algebras.

Quantization  BV-BRST, deformation quantization

Graded and generalized geometry

NC/NA field theory and gravity
I ?-product: bootstraping nc gauge theories using L∞ Blumenhagen et al ‘18, cf. Patrizia’s talk
I Drinfel’d twist and braided L∞ Dimitrijević Ćirić et al ‘21, Nguyen, Schenkel, Szabo ‘21
I HS in unfolded formalism Vasiliev



L∞ - coalgebra formulation
Lada, Stasheff ’92, Lada, Markl ’94

An L∞ algebra is a Z-graded vector space

X =
⊕
d∈Z

Xd

with multilinear graded symmetric maps bi : X⊗i → X of degree 1 such that the
coderivation D =

∑
i=0 bi is nilpotent.

D2 = 0  homotopy relations for the maps bi , e.g.

b1(b0) = 0 ,

b2(b0, x) + b2
1(x) = 0 ,

b3(b0, x1, x2) + b2(b1(x1), x2) + (−1)|x1||x2|b2(b1(x2), x1) + b1(b2(x1, x2)) = 0 .

Note that for b0 = 0 we talk about flat L∞-algebra and b1 is differential.



L∞ - coalgebra formulation

Extend the maps bi on the whole graded symmetric tensor algebra over field K =: S0X

S(X ) :=
∞⊕
n=0

SnX ,

with graded symmetric tensor product ∨.

The maps bi : S jX → S j−i+1X act as a coderivation:

bi (x1 ∨ . . . ∨ xj) =
∑

σ∈Sh(i,j−i)

ε(σ; x)bi (xσ(1), . . . , xσ(i)) ∨ xσ(i+1) ∨ . . . ∨ xσ(j) , j ≥ i ,

where ε(σ; x) is the Koszul sign, and Sh(p,m − p) ∈ Sm denotes those permutations
ordered as σ(1) < · · · < σ(p) and σ(p + 1) < · · · < σ(m).

Introducing the permutation map τσ : X⊗i → X⊗i

bi ◦ id∨j =
∑

σ∈Sh(i,j−i)

(bi ∨ id∨(j−i)) ◦ τσ , j ≥ i .



L∞ - coalgebra formulation

Degree 1 coderivation D : S(X )→ S(X ) satisfies the co-Leibniz property:

∆ ◦ D = (1⊗ D + D ⊗ 1) ◦∆ ,

with the coproduct map map ∆ : S(X )→ S(X )⊗ S(X )

∆ ◦ id∨m =
m∑

p=0

∑
σ∈Sh(p,m−p)

(id∨p ⊗ id∨(m−p)) ◦ τσ , p,m ≥ 0 ,

 L∞-algebra as a coalgebra with coderivation and counit ε : S(X )→ K , where
ε(1) = 1 and ε(x) = 0, x ∈ X .
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L∞  Hopf algebra

Graded symmetric tensor algebra S(X ) has an algebra structure given by the graded
symmetric tensor product ∨ and a unit map η : K → S(X ), where η(1) = 1.

The algebra and coalgebra structure on S(X ) make up a bialgebra, that admits a graded
antipode map S

S(x1 ∨ · · · ∨ xm) = (−1)m(−1)
∑m

i=2

∑i−1
j=1 |xi ||xj |xm ∨ · · · ∨ x1 .

 the homotopy Lie algebra defined by the coalgebra structure on the graded
symmetric tensor space S(X ) extends to a cocommutative and coassociative Hopf
algebra with compatible coderivation. Grewcoe, LJ, Kodzoman, Manolakos, ’22
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Non-commutative deformation

 introduce non-(co)commutative deformation using Drinfel’d twist. cf. Andrzej’s talk

Using invertible twist element F =: f α ⊗ fα ∈ H ⊗ H

(F ⊗ 1)(∆⊗ id)F = (1⊗F)(id ⊗∆)F ,

(ε⊗ id)F = 1⊗ 1 = (id ⊗ ε)F ,

we obtain (HF ,∨,∆F ,SF , ε), where HF is the same as H as vector spaces and:

∆F (h) = F∆(h)F−1, h ∈ H ,

and SF = S for Abelian twist.

 twisted L∞ or (LF∞,∨,∆F , S , ε)
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Drinfel’d twist

In the spirit of deformation quantisation, while twisting Hopf algebra we simultaneously
twist its modules. Taking Hopf algebra L∞ as its own module
 (L?∞,∨?,∆?, S?, ε):

x1 ∨? x2 = f̄ α(x1) ∨ f̄α(x2) ,

∆?(x) = x ⊗ 1 + R̄α ⊗ R̄α(x) ,

S?(x) = −R̄α(x)R̄α .

The R-matrix R ∈ S(X )⊗ S(X ) is an invertible matrix induced by the twist

R = fα f̄
β ⊗ f α f̄β =: Rα ⊗ Rα ,R−1 = R̄α ⊗ R̄α ,

The inverse R-matrix controls noncommutativity of the ∨?-product and provides the
representation of permutation group, e.g.,

τσR(x1 ∨? x2) = (−1)|x1||x2|R̄α(x2) ∨? R̄α(x1) ,



Braided L∞-algebra

Extend the coproduct to whole tensor algebra:

∆? ◦ id∨?m =
∑

σ∈Sh(p,m−p)

(id∨?p ⊗ id∨?(m−p)) ◦ τσR , p,m ≥ 0 .

The compatible coderivation D? =
∑∞

i=0 b
?
i is defined in terms of braided graded

symmetric maps b?i

b?i ◦ id∨?j =
∑

σ∈Sh(i,j−i)

(b?i ∨? id∨?(j−i)) ◦ τσR , j ≥ i ,

b?i (x1, . . . , xm, xm+1, . . . , xi ) = (−1)|xm||xm+1|b?i (x1, . . . , R̄
α(xm+1), R̄α(xm), . . . , xi ) ,

and the condition D2
? = 0 reproduces the deformed homotopy relations.

 braided L∞-algebra obtained in Dimitrijević Ćirić et al ‘21.



L?∞ vs. LF∞

As Hopf algebras L?∞ and LF∞ are isomorphic Aschieri et al ’05, Schenkel ’12

∃ map ϕ : L?∞ → LF∞ such that

ϕ(x1 ∨? x2) = ϕ(x1) ∨ ϕ(x2) ,

∆? = (ϕ−1 ⊗ ϕ−1) ◦∆F ◦ ϕ ,

S? = ϕ−1 ◦ SF ◦ ϕ .

On the other hand, we take L?∞-algebra as a module of LF∞ with an L∞-action on an
L∞-algebra given by an L∞-morphism Mehta, Zambon ’12. Thus we obtain

D? = ϕ−1DFϕ .
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From kinematics to dynamics
Hohm, Zwiebach ‘17; Jurčo et al. ‘18, ‘20; Giotopoulos, Szabo ’21

What do we have so far?

L∞  symmetry (gauge) algebra

MC equations  eoms ∑
i

1
i!
bi (x , . . . , x) = 0 , x ∈ X0

δcx =
∑
i

1
i!
bi+1(x , . . . , x , c) , c ∈ X−1

To define a classical action and/or solution of classical master equation we need:

Tensor product (of complexes)

Inner product  cyclic L∞

SMC[x ] ≡
∑
i>0

1

(i + 1)!
〈x , bi (x , . . . , x)〉.
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Outlook: From classical to quantum

Q = D∗  BRST operator

Evaluate bi on basis of X  structure constants of L∞-algebra:

bi (τα1 , ..., ταi ) = Cβα1...αi
τβ

Use to define cohomological vector Q of degree 1

Q =
∞∑
i=0

1

i !
Cβα1...αi

zα1 · · · zαi
∂

∂zβ

with zαi basis of X?.

In Batalin-Vilkovisky formalism Q becomes BRST operator and zαi physical fields.



Outlook: From classical to quantum

Q = D∗  BRST operator

Quantum homotopy algebra  loop amplitudes Jurco, Macrelli, Saemann, Wolf ’20

Braided BV for theories with nc braided symmetries Dimitrijević Ćirić et al. ’22

Effective field theories from homotopy transfer e.g. Arvanitakis, Hohm, Hull, Lekeu ’21



THANK YOU!


