
Author Name REST-for-Physics SchoolKonrad Altenmüller

24.01.2023 – Konrad Altenmüller – konrad.altenmueller@unizar.es

1.1 Basic ROOT Concepts

mailto:konrad.altenmueller@unizar.es

Author Name REST-for-Physics School

Our main objective in this session is to provide enough information to understand the basics
and to break the walls that may impede others to use ROOT in a first instance.

There are many ROOT components, concepts and features that we are not covering in our
lectures.

Those concepts are already properly described inside the ROOT courses, where you will
also find working tutorials.

We hope that these lectures will help you as an introduction to ROOT, and as
contextualization of the REST-for-Physics framework lectures.

Session motivation

https://root.cern/get_started/courses/
https://root.cern/tutorials/

Author Name REST-for-Physics SchoolKonrad Altenmüller

ROOT Basics

3

Author Name REST-for-Physics SchoolKonrad Altenmüller 4

What is ROOT?

● A software framework for data analysis coordinated by CERN
○ Visualization of data (e.g. histograms, graphs, …)
○ Mathematical transformation of data (e.g. Fourier transforms, peak search,…)
○ Efficient tools to store and process (large amounts of) data
○ Powerful libraries for complex analyses

○ Programming interface to be used in custom projects
○ GUI

○ Based on C++

● REST is an expansion of the ROOT framework

Author Name REST-for-Physics SchoolKonrad Altenmüller 5

ROOT in physics research

Borexino: multivariate analysis of
solar neutrino spectrum,
measurement of CNO neutrino flux

N
at
ur
e

vo
lu

m
e

58
7,

 p
ag

es
 5

77
–5

82
 (2

02
0)

LHC: Discovery of the Higgs boson

Alice geometry, produced with ROOT

Ph
ys

ic
s

Le
tte

rs
 B

, V
ol

um
e

71
6,

 Is
su

e
1,

 1
7

S
ep

te
m

be
r 2

01
2

https://www.nature.com/
https://www.sciencedirect.com/journal/physics-letters-b
https://www.sciencedirect.com/journal/physics-letters-b/vol/716/issue/1

Author Name REST-for-Physics SchoolKonrad Altenmüller 6

ROOT in physics research

ROOT GUI to display events

Statistical analysis, exclusion curves

Astrophysics

Author Name REST-for-Physics SchoolKonrad Altenmüller 7

Application of ROOT

For what should I use root?
● Analysis or plots that are often repeated (running macros)
● Established data analysis that runs very fast
● Analysis of large amounts of data
● Customized analysis framework for a large experiment

When it could be better to use other software
● Quick and pretty plots (Gnuplot, …)
● Analysis prototyping, or some quick one-time analysis

(more convenient to use some interpreted programming
language like Python, MATLAB, or pyROOT)

You should know
● Effective use requires knowledge of basic programming

concepts.
● There are a good manual, user guides, tutorials and a helpful

and active forum (see links at end of lecture!)

Author Name REST-for-Physics SchoolKonrad Altenmüller 8

ROOT Basics

● Command line based interface:

● You can use it like a calculator:

● You can write C++ code

● You can plot functions:

>root
root [0]

root [0] 1 + 1
(int) 2

root [2] cout << "Hello world" << endl;
Hello world

root [0] TF1 f1("f1","sin(x)/x",0.,10.);
root [1] f1.Draw()

Author Name REST-for-Physics SchoolKonrad Altenmüller 9

ROOT Basics

Controlling Root:

● Obtain full list of commands or

● Execute a macro (macro needs to contain a function similar to
filename)

● Load a macro and then call the function within, e.g.

● Quit root .q

.? .help

.L <filename.C> main()

.X <filename.C>

Author Name REST-for-Physics SchoolKonrad Altenmüller 10

ROOT Files

● ROOT files contain ROOT objects, e.g. data in form of a TTree object, or a histogram
as a TH1D

● Can be browsed with a GUI
● Open a file with ROOT, open the object browser:

>root file.root
root [0] new TBrowser()

Author Name REST-for-Physics SchoolKonrad Altenmüller

Writing ROOT Macros (1)

11

Author Name REST-for-Physics SchoolKonrad Altenmüller

ROOT Macros

12

ROOT Macro: a little program that can be launched within ROOT to do something useful
● Write a text file, e.g
● Enter some C++ code

○ Include libraries / classes so that you can use their functions (not necessary if
you run the macro within ROOT):

○ Write a function:

● Run your Macro with ROOT:

myFunction.C

> root
root [0] .L myFunction.C
root [1] myFunction()

void myFunction() {
 < ... your lines of C++ code ... >
}

#include <TH1D.h> // ROOT class to create histograms
#include <TMath.h> // ROOT class that provides math functions
#include <string.h> // C++ class for strings

Start root
Load macro / compile it
Execute your function from the macro

Author Name REST-for-Physics SchoolKonrad Altenmüller

The most important classes: TTree

13

Author Name REST-for-Physics SchoolKonrad Altenmüller 14

Trees

● Trees are optimized for reduced disk space and selecting, high-throughput columnar
access with reduced memory usage.

● E.g. used by LHC experiments

A tree consists of a list of independent columns – called branches
● A branch can contain values of any type (data types, C++ objects, ROOT objects)

○ For example every entry in the column could contain a digitized signal (e.g. as a
vector)

○ When reading the tree, you can select to process only the branches you want
→ increased efficiency

Branches provide the structure, the data is accessible through objects inheriting from the
the TLeaf class

Author Name REST-for-Physics SchoolKonrad Altenmüller 15

Trees

The most important functions to read trees:

● Launch root with file loaded:
○ Open the GUI:

or
○ Examine the tree in the terminal:

> root myFile.root

root [0] new TBrowser()

root [0] .ls
root [1] myTree->Print()

root [2] myTree->Scan()
root [3] myTree->Scan(“myColumn1:myColumn2”)

root [4] myTree->Show(42)

root [5] myTree->Draw(“myColumn1”)

list content of the file (e.g. trees)
get info on branches in the tree

show the data in the tree as a table
get a table of the selected branches

get the values for entry 42

draw histogram of column content

Author Name REST-for-Physics SchoolKonrad Altenmüller 16

Trees

Add a new branch to a tree and fill it with data:

In modern ROOT, reading / writing trees and high level processing of the data is done with
RDataFrame (see later)

vector<double> myData;
double value;

auto newBranch = myTree->Branch("new branch", &value);

for (auto i : myData){

value = i;

 newBranch->Fill();

}

myTree->Write();

Your vector with data
Initialize the variable to be filled

Create a new branch in the tree

Loop over data and fill the branch

Write tree to current directory

Author Name REST-for-Physics SchoolKonrad Altenmüller

The most important classes: Creating and drawing histograms

17

Author Name REST-for-Physics SchoolKonrad Altenmüller 18

Histograms

There are several classes to deal with histograms, all deriving from TH1:
● Most commonly used: TH1D for the 1-D case, TH2D for the 2-D and TH3D for 3-D

● Initialize a histogram:

● Fill data from your vector vector<double> data into the histogram:

● Draw the histogram on a canvas (the canvas is mandatory!), and save it:

TH1* h1 = new TH1D("h1", "h1 title", 100, 0.0, 4.0); The * means that the variable
is assigned to a pointer

Number of bins
Lower limit

Upper limit

for (unsigned int i; i < data.size(); i++) h1->Fill(data[i]);

TCanvas* c = new TCanvas();
h1->Draw();
c->Print("c.pdf");

Author Name REST-for-Physics SchoolKonrad Altenmüller 19

Set up your plot

The appearance of your plot is controlled by methods of TH1, TCanvas, TAxis, TLegend,
TStyle, TColor ... (very confusing)

● Draw options:
○ “SAME” Superimpose on previous histogram on the same canvas / pad
○ “E” Draw error bars

For 2D histograms:
○ “COLZ” Color depending on count in bin
○ “CONT” Contour plot
○ “SURF” Surface plot

● Set color palette:

h1->Draw(“OPTION”);

gStyle->SetPalette(kRainBow);

Author Name REST-for-Physics SchoolKonrad Altenmüller 20

Set up your plot

● Setting log scale (e.g. on Y axis): (yes, it is a property of the
canvas)

● Setting axis labels:

● Creating a legend:

● Choosing line color and style:

c->SetLogY()

auto legend = new TLegend(0.7,0.5,0.9,0.9);
legend->AddEntry(“h1”, “raw data”);
legend->AddEntry(“h2”, “processed data”);
legend->Draw(“Same”);

h1->GetXaxis()->SetTitle("Energy [keV]");
h1->GetYaxis()->SetTitle("Counts");

the numbers define the
position of the legend
box (x1,y1,x2,y2)
→ trial and error

h1->SetLineWidth(3);
g1->SetLineStyle(2); # dashed graph

h1->SetLineColor(2);
h1->SetFillColor(kBlue, 0.35);
h1->SetFillColorAlpha(kBlue, 0.35); Less ugly colors possible by using TColor

Author Name REST-for-Physics SchoolKonrad Altenmüller 21

Histograms

Draw option “LEGO1”

Draw option “COLZ”

Draw option “E1”

Without draw option

Examples of histograms

Author Name REST-for-Physics SchoolKonrad Altenmüller 22

Example: Histogram

Create a histogram of timestamps from a measurement, and estimate the run duration

> root myFile.root
root[0] AnalysisTree->Draw("timeStamp")

IAXO-D0: Run 1855, subrun 0

Quick histogram created from the tree, but
information is poorly presented
● UNIX time (seconds since Jan 01,

1970 UTC)
● Overlapping tick labels
● Only a single sub-run (can’t plot data

from multiple files)
● Unknown binwidth → we can’t

quickly see the count rate

We can do better!

Author Name REST-for-Physics SchoolKonrad Altenmüller 23

Example: Histogram

Step 1: extract a vector<double> timestamps from the file. Simplest way is with
RDataFrame (we will look at this class later)

ROOT::RDataFrame data("AnalysisTree", “myFile.root”);
auto result = data.Take<double>("timeStamp");
vector<double> timestamps = result.GetValue();

double tmax = data.Max("timeStamp").GetValue();
double tmin = data.Min("timeStamp").GetValue();

Also get max and min value of timestamps:

Step 2: initialize some variables and define some parameters

double binw = 60;
int rate_threshold = 10;

int bincount;
int run_duration = 0;

// bin width in seconds, set to 1 minute
// rate threshold in counts per binw. If the rate is below, the detector is regarded to off, and the
 bin is not counted towards the measurement time.
 Set to 10 counts / minute

// counts in bin
// total duration of run

Author Name REST-for-Physics SchoolKonrad Altenmüller 24

Example: Histogram

TH1D* h = new TH1D("timestamps", "timestamps", (tmax - tmin) / binw, tmin, tmax);
for (auto i : timestamps) h->Fill(i);

Step 4: fill histogram with data

Author Name REST-for-Physics SchoolKonrad Altenmüller 25

Example: Histogram

TH1D* h = new TH1D("timestamps", "timestamps", (tmax - tmin) / binw, tmin, tmax);
for (auto i : timestamps) h->Fill(i);

Step 4: fill histogram with data
The number of bins need to be an integer → we have to
round the duration to a multiple of 60!

Author Name REST-for-Physics SchoolKonrad Altenmüller 26

Example: Histogram

tmax = tmin + (round((tmax - tmin + binw / 2) / binw) * binw);

Step 3: round tmax - tmin to the next larger multiple of the bin width (60)

TH1D* h = new TH1D("timestamps", "timestamps", (tmax - tmin) / binw, tmin, tmax);
for (auto i : timestamps) h->Fill(i);
binw = h->GetBinWidth(1);

Step 4: fill histogram with data

Author Name REST-for-Physics SchoolKonrad Altenmüller 27

Example: Histogram

tmax = tmin + (round((tmax - tmin + binw / 2) / binw) * binw);

Step 3: round tmax - tmin to the next larger multiple of the bin width (60)

TH1D* h = new TH1D("timestamps", "timestamps", (tmax - tmin) / binw, tmin, tmax);
for (auto i : timestamps) h->Fill(i);
binw = h->GetBinWidth(1);

int nbins = h->GetNbinsX();
for (unsigned int i = 0; i < nbins; i++){
 bincount = h->GetBinContent(i);
 if (bincount > rate_threshold) run_duration += binw;
}

Step 4: fill histogram with data

Step 5: check each bin if it is above the threshold and if yes, add it to the run duration

Author Name REST-for-Physics SchoolKonrad Altenmüller 28

Example: Histogram

tmax = tmin + (round((tmax - tmin + binw / 2) / binw) * binw);

Step 3: round tmax - tmin to the next larger multiple of the bin width (60)

TH1D* h = new TH1D("timestamps", "timestamps", (tmax - tmin) / binw, tmin, tmax);
for (auto i : timestamps) h->Fill(i);
binw = h->GetBinWidth(1);

int nbins = h->GetNbinsX();
for (unsigned int i = 0; i < nbins; i++){
 bincount = h->GetBinContent(i);
 if (bincount > rate_threshold) run_duration += binw;
}

Step 4: fill histogram with data

A histogram is not only useful for
plots, but also for calculations!

Step 5: check each bin if it is above the threshold and if yes, add it to the run duration

The variable run_duration now contains the duration of the measurement in seconds!

Author Name REST-for-Physics SchoolKonrad Altenmüller 29

Example: Histogram

TCanvas* c = new TCanvas();
h->Draw();

Step 6: draw the histogram

● Meaningful bin width (we see
counts per minute)

● Still bad Xticks

Run duration:15900 seconds = 265 minutes
= 4.41667 hours

cout << "Run duration:" << run_duration << " seconds = " << (double)run_duration/60 << " minutes = " <<

(double)run_duration/3600 << " hours" << endl;

Author Name REST-for-Physics SchoolKonrad Altenmüller 30

Example: Histogram

TCanvas* c = new TCanvas();
h->GetXaxis()->SetTimeDisplay(1);
h->GetXaxis()->SetTitle(“time”);
h->GetYaxis()->SetTitle(“rate [counts / minute]”);
h->Draw();

Step 6: draw the histogram

Author Name REST-for-Physics SchoolKonrad Altenmüller 31

Example: Histogram

TCanvas* c = new TCanvas();
h->GetXaxis()->SetTimeDisplay(1);
h->GetXaxis()->SetTitle(“time”);
h->GetYaxis()->SetTitle(“rate [counts / minute]”);
h->Draw();

Step 6: draw the histogram

Ready for a
Nature
paper!

Author Name REST-for-Physics SchoolKonrad Altenmüller

The most important classes: Fitting

32

Author Name REST-for-Physics SchoolKonrad Altenmüller 33

Fitting

Several options to choose from:
● Fit() method, implemented for TH1, TGraph and more

○ A large number of fitting algorithms to choose from
○ You can use it with a GUI after drawing a histogram

● Minimization packages:
○ E.g. minuit2, which is very useful for multivariate analysis (actually a C++

minimization engine that can be used stand-alone or with other software)

● ROOT::Fit classes
○ For more specialized fitting methods

● ROOFit library
○ More physics based
○ Modelling of expected data, “toy Monte Carlo” studies

Author Name REST-for-Physics SchoolKonrad Altenmüller 34

Using the fit panel in a histogram

Result

Author Name REST-for-Physics SchoolKonrad Altenmüller 35

What you should know about fitting

What algorithm are there?
● MIGRAD: “standard” in ROOT

○ Heavily relies on first derivatives of data → can crash if your model contains e.g.
a step

● SIMPLEX:
○ Creates a triangle (in the 2D case) around a point and checks in which direction

the function value is lower and continues there
○ Not depending on derivatives → very robust
○ Can take a long time, but it WILL find your minimum

What to keep in mind with constrained fits:
● The errors of the fitted parameters are obtained by varying around the minimum
● If you constrain a parameter, and the minimum value is close to the constraint, the

returned error might be meaningless

Author Name REST-for-Physics SchoolKonrad Altenmüller

Fit a custom function

● Define a custom function (normal distribution):

● Create a TF1 object using the fit function:

● Set start parameters:

● Set parameter limits:

● Give the parameters names:

● Call TH1::Fit:

36

double fitf(double* x, double *par){

double fitval = par[0] * TMath::Exp(-TMath::Power(*x - par[1],2)/(2*TMath::Power(par[2],2)));

return fitval;}

TF1 *func = new TF1("fit",fitf,0,10000,3);

range number of parsfunc->SetParameters(200,4000,800);

func->SetParLimits(1,0,10000);

limit for par 1

func->SetParNames("Constant","Mean_value","Sigma");

h->Fit(func, "L", "", 2000, 6000);

fit option “likelihood method” (chi squared)

● Many more options to customize the fit (algorithms, fitting methods, …)!

Author Name REST-for-Physics SchoolKonrad Altenmüller 37

Fitting

Many predefined functions available in TF1, e.g. h->Fit("gaus");

● gaus, gausn normal distribution (the latter normalized)
● landau, landaun landau distribution
● expo exponential distribution
● pol1,...9, chebychev1,...9 polynomials of various degrees

Many fitting options (see here):

● “L” log likelihood method (chi squared)
● “B” when you use a predefined function, but want to set the parameters
● “I” uses bin integral instead of bin center
● “E” improves error estimation with the Minos technique
● “S” returns full result including covariance matrix
● “Multithread”
● …

https://root.cern/doc/master/classTH1.html#a7e7d34c91d5ebab4fc9bba3ca47dabdd

Author Name REST-for-Physics SchoolKonrad Altenmüller

The most important classes: RDataFrame

38

Author Name REST-for-Physics SchoolKonrad Altenmüller

RDataFrame

39

RDataFrame offers a modern, high-level interface for analysis of data stored in TTree, CSV and other
data formats, in C++ or Python.

● Easy multithreading
● Modular and flexible work flow
● Quickly perform common analysis tasks
● Fully customize the data processing by integrating any C++ code
● Lazy actions: operations are not executed on the spot, but when a results is accessed

Super simple syntax (if you do simple things):

ROOT::RDataFrame df("TreeName", "filename.root");

ROOT::RDF::RNode df2 = ROOT::RDataFrame(0);

df2 = df.Define("energy_calibrated","energy * 0.00145");

df2 = df2.Define("radius","xMean*xMean + yMean*yMean");

df2 = df2.Filter("radius<100");

h = df2.Histo1D({"h","energy_calibrated",100,0,10},"energy");

h->Draw();

// Load tree from file into dataframe
// Initialize new dataframe for processed data
// Define a new column with calibrated energy
// Define a new column with event radius
// Cut events outside a certain radius
// Create a histogram
// Draw it

https://root.cern/doc/master/classTTree.html

Author Name REST-for-Physics SchoolKonrad Altenmüller 40

RDataFrame

Column definitions and filters accept as expression
● A string with the condition, e.g.

df2.Filter("radius < 10 && energy < 10")

● Or any function or callable object, allowing complex calculations, e.g. a C++ lambda
○ Integrate RDataFrame in a function:

○ Define custom functions to define a new column:

double calculation(double l,double u){
df = df.Filter([l,u](double c) {return l <= c && c <= u;}, {“columName”});
// calculate something from the data
}

// assuming a function with signature:

double myComplexCalculation(const RVec<float> &datapoints);

// we can pass it directly to Define

auto df_with_define = df.Define("newColumn", myComplexCalculation, {"datapoints"});

Author Name REST-for-Physics SchoolKonrad Altenmüller 41

RDataFrame

The most useful RDataFrame functions

● Define Define a new column
● DefinePerSample Define a new column with parameters depending on the input file

(when you combine several files)
● Filter Filter your data

● Snapshot Save some (filtered) columns to a file with a root tree

● Count Get the number of events in the dataframe that survived so far

● Histo1D, Histo2D,... Produce a histogram from selected columns
● Max, Min, Mean, Sum Self explanatory

● Take Take a column and return a vector with its content

● GetValue Lazy actions produce a pointer with the result. The value is accessed
with this command

Author Name REST-for-Physics SchoolKonrad Altenmüller 42

TMath

TMath provides an extensive library of commonly used math functions, constants,
operations, …

For example
● Abs, Min, Max, Mean, … common operations
● Pi, G, C, Na, … constants
● Sin, Cos, Tan, … trigonometric functions
● BesselI, BreitWigner, Erf, … functions
● DegToRad, … conversions
● Gcgs, GhbarC, … print commonly used units like g3cm-1s-2

Author Name REST-for-Physics SchoolKonrad Altenmüller

Using ROOT with Python: PyRoot

43

Author Name REST-for-Physics SchoolKonrad Altenmüller 44

PyROOT

With PyROOT you can access the full ROOT from Python while benefiting from the
performance of the ROOT C++ libraries.

● Very useful for analysis prototyping (hit “run” and get your result)
● Also REST libraries can be accessed

To start:
import ROOT

import REST

Author Name REST-for-Physics SchoolKonrad Altenmüller 45

PyROOT

Example / demonstration: use PyROOT together with REST to test parameters for the
IAXO-D0 noise reduction

Author Name REST-for-Physics SchoolKonrad Altenmüller

Writing ROOT Macros (2):
Combining everything we learned

46

Author Name REST-for-Physics SchoolKonrad Altenmüller 47

Exercise: calibrating the detector data

Data Files: /data/R01855/*root

The files contains data from IAXO-D0. In this data a 55Fe source was used.

Task: Calibrate the detector data.

Preparation:

● what lines does the 55Fe source provide? → table of isotopes

http://nucleardata.nuclear.lu.se/toi/nuclide.asp?iZA=260055

Author Name REST-for-Physics SchoolKonrad Altenmüller 48

Exercise: calibrating the detector data
1. Create a macro. Include the necessary classes.

2. Define the fitting function.

3. Define the main function.

4. Load the data into a RDataFrame.

5. Initialize a filtered dataframe.

6. Filter the data. Only keep the data from a spot with 10 mm radius in the detector center (necessary columns: hitsAna_xMean and hitsAna_yMean).

7. Create a histogram of the energy (column tckAna_MaxTrackEnergy).

8. Use TSpectrum::Search() to find peak candidates. Get the position of the peak to use it to define the start parameters of the fit.

9. Create a TF1-object from the fitting function

10. Configure the fit by interacting with the TF1-object: setting parameter values (start parameters), setting parameter constraints, naming the parameters, ...

11. Execute the fit by calling TH1::Fit().

12. Draw the histogram and the fitted function on a canvas.

13. Access the best fit parameters and calculate the calibration factor. Note that the fit has to be performed with the "S" option to extract the parameters.

14. Define a new column in the dataframe with the calibrated energy. Use a C++ lambda function in the definition.

15. Create a new plot with the calibrated energy. Try out some options to adjust style and colors to your liking.

16. (BONUS) Create a 2-D histogram with the detector hit map.

Author Name REST-for-Physics SchoolKonrad Altenmüller 49

Exercise: calibrating the detector data

● Create a macro. Include the necessary classes.
● Define the fitting function

● Define the main function
● Load the data into a RDataFrame
● Initialize a filtered dataframe

● Filter the data. Only keep the data from a spot with 10 mm radius in the detector center
● Create a histogram

??? fitf(???* x, ???* par){

 ??? fitval = par[0] * exp[(*x - par[1])2/(2*par[2]2)];

 return fitval;

}

ROOT::RDataFrame df(???);

ROOT::RDF::RNode df_filtered = ROOT::RDataFrame(0);

auto h1 = df_filtered.???({"name","title", nbins, min, max},"columnName");

auto h = h1.???(); // to convert the RDataFrame ROOT::RDF::RResultPtr<TH1D> to TH1D

Author Name REST-for-Physics SchoolKonrad Altenmüller 50

Exercise: calibrating the detector data

● Use TSpectrum::Search() to find peak candidates. Get the position of the peak to use it to
define the start parameters of the fit.

●
●
●
●
●

● Create a TF1-object from the fitting function

● Configure the fit by interacting with the TF1-object: setting parameter values (start parameters),
setting parameter constraints, naming the parameters, …

● Execute the fit

● Draw the histogram and the fitted function on a canvas.

TSpectrum *s = new TSpectrum();

int sigma = 10; // a parameter of the peak finder that defines the sensitivity

Int_t nfound = s->Search(???);

printf("Found %d candidate peaks to fit\n", nfound);

auto peak = s->???(); // get x position of peak

TF1 *func = new TF1(???);

auto fitresult = h.Fit(func, "fit option", "", range, range);

Author Name REST-for-Physics SchoolKonrad Altenmüller 51

Exercise: calibrating the detector data

● Access the best fit parameters and calculate the calibration factor.

● Define a new column in the dataframe with the calibrated energy. Use a C++ lambda function in
the definition.

● Create a new plot with the calibrated energy. Try out some options to adjust style and colors to
your liking.

● (BONUS) Create a 2-D histogram with the detector hit map.

 ??? mean = fitresult->Parameter(???);

 ??? calfactor = line energy / mean;

df_filtered = df_filtered.Define("calibratedEnergy", [capture](double c){function;},{"columName"});

Author Name REST-for-Physics SchoolKonrad Altenmüller 52

ROOT Resources

How to learn more:
● https://root.cern/get_started/

○ Beginner’s guide
○ Extensive manual

● Tutorials with many helpful examples: https://root.cern/tutorials/

● ROOT forum: https://root-forum.cern.ch/

https://root.cern/get_started/
https://root.cern/tutorials/
https://root-forum.cern.ch/

Author Name REST-for-Physics SchoolKonrad Altenmüller 53

What you should know about fitting

How does fitting work?
● Minimization problem.

The proper fitting method (i.e. the value you want to minimize) depends heavily on
the nature of your data!
○ Least squares: minimize sum of squared residuals (data point - model)

■ Not suitable for histogram data, because it doesn’t take into account the
statistical error of the data points

■ Very sensitive to outliers

○ Chi squared: minimizes

■ Accounts for statistical errors, assuming a normal distribution

○ Maximum likelihood estimation: can take the Poissonian error of the data
■ When the bin counts are very low

