
Author Name REST-for-Physics SchoolCristina Margalejo

25.01.2023 - Javier Galan - javier.galan@unizar.es

2.1 Introduction to REST-for-Physics

Author Name REST-for-Physics SchoolAuthor Name 2

Motivation

● Define common input/output data formats that allow us to preserve data in the long term.

● Use common algorithms for data processing.
○ Consolidate routines that lead to science results.
○ Receive feedback on existing routines: User feature request, use cases, bug report.
○ Encourage developers discussion on code evolution.

● Develop synergies in software development and maintenance. Encouraging collaborative design,
testing, code implementation, bug reporting, know-how transfer, documentation.

Author Name REST-for-Physics School

1. What is REST-for-Physics. Repositories, main site, and publications.

2. Prototype classes: TRestMetadata, TRestEvent and TRestEventProcess

3. Basic classes: TRestAnalysisTree.

4. RML Configuration features and physics units.

5. Utility classes: TRestPhysics, TRestTools and TRestStringHelper.

6. Output levels.

7. Merging datafiles: TRestAnalysisPlot, TRestMetadataPlot, TRestDataSet

3

Outline of the session

Author Name REST-for-Physics School 4

What is REST-for-Physics

● The REST-for-Physics (Rare Event Searches Toolkit) Framework is a collaborative
software effort that provides common tools for:

○ acquisition,
○ simulation,
○ data analysis

● It was originally designed to work with data of gaseous Time Projection Chambers
(TPCs).

● It is mainly written in C++ and it is fully integrated with ROOT I/O interface.

● The REST framework establishes a common procedure and output data format to
define input information, via configuration (.rml) files.

https://rest-for-physics.github.io/Centralizing site

http://rest-for-physics.github.io/
https://root.cern.ch/
https://rest-for-physics.github.io/

Author Name REST-for-Physics School

● Main project
○ Framework

● Libraries for montecarlo and detector
data processing

○ Rawlib / Geant4lib
○ Detectorlib / Tracklib
○ Axionlib
○ Connectorslib

● Packages that exploit REST libraries
○ restG4
○ restSQL
○ …

5

REST-for-Physics repositories ecosystem

The full REST-for-Physics project is splitted in different Github repositories

https://github.com/rest-for-physics

Author Name REST-for-Physics School 6

Where to find more info: Main site and publication

https://rest-for-physics.github.io/

REST-for-Physics publication:
https://doi.org/10.1016/j.cpc.2021.108281

https://doi.org/10.1016/j.cpc.2021.108281

Author Name REST-for-Physics School

Publications

● PandaX-III: Searching for neutrinoless double beta decay with high pressure 136Xe gas time
projection chambers. X. Chen et al., Science China Physics, Mechanics & Astronomy 60, 061011
(2017), arXiv:1610.08883.

● Background assessment for the TREX Dark Matter experiment. Castel, J., Cebrián, S., Coarasa, I. et
al. Eur. Phys. J. C 79, 782 (2019). arXiv:1812.04519.

● Topological background discrimination in the PandaX-III neutrinoless double beta decay
experiment. J Galan et al 2020 J. Phys. G: Nucl. Part. Phys. 47 045108, arxiv:1903.03979.

● AlphaCAMM, a Micromegas-based camera for high-sensitivity screening of alpha surface
contamination, Konrad Altenmüller et al 2022 JINST 17 P08035

Conference talks

● REST v2.0 : A data analysis and simulation framework for micro-patterned readout
detectors., Javier Galan, 2016-Dec, 8th Symposium on Large TPCs for low-energy rare event
detection, Paris.

● REST-for-Physics, Luis Obis, 2022-May, ROOT Users Workshop, FermiLab.

7

Additional references

https://doi.org/10.1007/s11433-017-9028-0
https://doi.org/10.1007/s11433-017-9028-0
https://arxiv.org/abs/1610.08883
https://doi.org/10.1140/epjc/s10052-019-7282-6
https://doi.org/10.1140/epjc/s10052-019-7282-6
https://arxiv.org/abs/1812.04519
https://doi.org/10.1088/1361-6471/ab4dbe
https://arxiv.org/abs/1903.03979
https://doi.org/10.1088/1748-0221/17/08/P08035
https://indi.to/3hzcz
https://indi.to/3hzcz
https://indico.fnal.gov/event/23628/contributions/240755/

Author Name REST-for-Physics School

Any REST library will implement specific objects that inherit from these 3 basic
prototyping classes. Prototype classes define common data members and
methods.

8

REST prototype classes

TRestMetadata: Any class inheriting from TRestMetadata will allow us to initialize the class
data members from a configuration file, RML.

TRestEvent: It defines event data holders. Structures where we store event data that needs to
be processed. Any class inheriting from TRestEvent will define and event id, a timestamp, and
other common fields that define an event.

TRestEventProcess: It defines methods that allow for input/output event data processing. On
top of that, this class inherits from TRestMetadata, so that the required process parameters can
be retrieved from a configuration file.

Author Name REST-for-Physics School 9

REST prototype classes

Most of the classes present inside REST-for-Physics inherit from any of those 3
prototype classes.

Author Name REST-for-Physics School 10

REST prototype classes : TRestMetadata

A metadata class is any holder of data other than event data that is relevant to

understand the origin and history of transformations that a given set of event data has

gone through.

The TRestMetadata class identifies C++ data members with XML parameters.

C++ header
RML config file

Question: Why the RML section is not the same
as the C++ class?

Author Name REST-for-Physics School 11

REST prototype classes : TRestEvent

As we will in the course, each library defines its own event. Examples of event data types

are those that describe physical information on time or on a 3-dimensional space.

TRestDetectorHitsEvent

TRestRawSignalEventTRestDetectorSignalEvent

TRestGeant4Event

Author Name REST-for-Physics School

● A process is an operation that acts on an input event of a specific type and creates

an output event that can be the same type than the input event or a different one.

● Any TRestEventProcess inheriting class can be connected in a sequential event

processing chain.

● A process may transform the event data or extract valuable information in the

form of an observable that will be added to the analysis tree.

12

REST basic classes: TRestEventProcess

ReadBinaryDataProcess SmoothingProcess PulseShapeAnalysis

Example: An imaginary event data processing chain (implementing 3-processes):

AnalysisTree

Future
processing

Author Name REST-for-Physics School 13

REST basic classes: TRestAnalysisTree

Process name

Observable name

The analysis tree is one of the most

relevant products of an event data

processing chain in REST.

Accumulative, once an observable is

added it will always be present in future

event data processing.

Each process can generate new

observables inside this tree during the

event data chain.

Author Name REST-for-Physics School 14

RML as an upgraded XML (I)

The RML uses XML format, but it introduces some necessary upgrades.

● System and local variables than can
be invoked at any time using the
${variableName} format.

● Common parameters defines inside
the <globals> section that will be
propagated to any metadata class
defined in the same RML.

If the process does not define that parameter, then it will be just ignored.

Author Name REST-for-Physics School 15

RML as an upgraded XML (II)

The RML uses XML format, but it introduces some necessary upgrades.

● Mathematical formula interpretation

● Programming features, FOR loops and IF conditions.

Author Name REST-for-Physics School 16

RML as an upgraded XML (III)

The RML uses XML format, but it introduces some necessary upgrades.

● Implements physical units inside parameter definitions.

● Allows including sections that have been defined in separate files.

Author Name REST-for-Physics School 17

Additional concepts on RML definitions

● constant: It defines an internal local variable inside a RML section that can be invoked without
using ${}.

● parameter: As we have seen, it identifies with a std:: data member at the corresponding class.

● observable: We will see this tomorrow, it will allow the user to configure which observables
should be added to the analysis tree by a particular process.

Inside an RML we may also identify different common keywords

Author Name REST-for-Physics School 18

Physics units in REST-for-Physics

REST-for-Physics defines a system of the most common units.

All the values stored in REST (there might be exceptions) are stored in the default units

value.

The elementary units inside REST can be combined, such that we can write “kV/cm” or

“g/cm^3”.

When reading a new parameter with given units, its value

is transformed internally to match the units value of the

default unit, i.e. if pressure is given in MPa, it will be

converted internally to bars, which is the default pressure

unit in REST.

Default unit = 1

Author Name REST-for-Physics School 19

Utilities in REST-for-Physics

Apart from the main classes that define the framework behaviour, the main framework

defines also common components and utilities.

TRestPhysics: It defines common geometrical and mathematical operations required in

particle physics. It also defines physics constants. These methods are available inside the

namespace REST_Physics.

TRestTools: It defines common tools such as filename operations, or basic ASCII/binary

table access/reading/writing.Defined as static functions inside TRestTools class.

TRestStringHelper: It defines methods for common string operations, such as type and

format conversion, timestamp formatting, and more. Defines inside the namespace

REST_StringHelper.

https://sultan.unizar.es/rest/namespaceREST__Physics.html
https://sultan.unizar.es/rest/classTRestTools.html
https://sultan.unizar.es/rest/namespaceREST__StringHelper.html

Author Name REST-for-Physics School 20

Output levels

We may use predefined output formats, such as RESTMetadata, RESTInfo, RESTWarning,

RESTError, RESTDebug, producing different output highlights.

The different output formats help to identify critical information and to warn the user

about any unexpected behaviour.

But the output formats are not only

aesthetical, they also define a

message priority or output levels!

Author Name REST-for-Physics School 21

Output levels

Output levels (verbose level) exist such that messages are given certain priority.

Some examples of verbose level output

● If verboseLevel=0 (silent) no messages will be shown at all.
● If verboseLevel=1 (warning) only warning and error messages will be shown.
● If verboseLevel=2 (info) metadata and other info is shown on top of it.
● If verboseLevel=3 (debug) additional debugging output is printed out.

Any metadata class implements an independent verbose level that can be defined by
the user at the RML level.

When using restRoot interactively we
may define the desired output level.

Author Name REST-for-Physics School 22

Data processing. Multi-file analysis combination.

When generating or processing data we will usually produce a number of files that need

to be combined later on …

Run_XYZ_01.root

Run_XYZ_02.root

Run_XYZ_03.root

Run_XYZ_04.root

Run_XYZ_05.root

Run_XYZ_06.root

Run_XYZ_07.root

TRestAnalysisPlot

TRestMetadataPlot

TRestDataSet

Existing tools

Used for

Systematic plot generation

Metadata correlation between

different runs

Metadata time evolution

Dataset generation

Export datasets (txt/SQL/tree/…)

Author Name REST-for-Physics School 23

TRestAnalysisPlot metadata tool

TRestAnalysisPlot is a metadata class (receives input from a configuration file) that allows to
create plot definitions that can be invoked later on for different datasets.

It can be used for systematic plot generation, dataset comparison, and data quality control (or
quickLook analysis).

 TCanvas

 TPad

TH1

Follows the same
hierarchy as

ROOT drawing
scheme.

<TRestAnalysisPlot
• Size, division
•Global cut, variables

<plot
• X/Y Label, Title
• Log scale, statics, legend

<histo
• Name
• Line color, line width, fill color, fill style
• Target variables, range
• Event selection (cut), file selection

Author Name REST-for-Physics School 24

Systematic plot generation using TRestAnalysisPlot
 <plot name="Hitmap" title="Hitmap (from hitsAnalysis)" xlabel="X [mm]"
ylabel="Y [mm]"
 logscale="false" save="/tmp/file3.png" value="ON" >
 <variable name="hitsAna_yMean" range="(0,200)" nbins="1000" />
 <variable name="hitsAna_xMean" range="(0,200)" nbins="1000" />
 </plot>

 <plot name="Hitmap" title="Spectrum (single tracks)" xlabel="Threshold integral energy [ADC
units]" ylabel="Counts"
 logscale="true" save="/tmp/file4.pdf" value="ON" >
 <variable name="sgnlAna.ThresholdIntegral" range="(0,100000)" nbins="1000" />

 <cut variable="tckAna_nTracksX" condition="==1" value="ON" >
 <cut variable="tckAna_nTracksY" condition="==1" value="ON" >
 </plot>

We can do 1D, 2D or 3D plots

We can apply specific cuts to each
plot definition

We can also define
weights, i.e. using the
value of another variable
to weight each
histogram entry.

Author Name REST-for-Physics School 25

Systematic plot generation using TRestAnalysisPlot

TRestAnalysisPlot::PlotCombinedCanvas()

It will create a canvas with all the plots we
defined inside our RML.

<canvas size="(1000,800)" divide="(2,2)" />

We may use the save option to write to disk
the histograms generated in different formats
(pdf/png images, ROOT file, or C-macro).

<plot name=”Baseline” …>

<plot name=”Spectrum” …>

<plot name=”Hitmap” …>

<plot name=”Spectrum2” …>

With cuts

Author Name REST-for-Physics School 26

Systematic plot generation using TRestMetadataPlot

<TRestMetadataPlot>
 <plot name="rate" title="Raw acquisition rate versus time" xVariable=”timestamp” ... >

 <graph name="meanRateBck" title="Background rate" … option="PL">
 <parameter name="yVariable" value="TRestSummaryProcess->fMeanRate" />
 <parameter name="metadataRule" value="TRestRun->fRunTag==Background_BIPO" />
 </graph>

…
</TRestMetadataPlot>

Full example at framework/examples/metadataPlot.rml

Create a graph with any TRestMetadata member
found at the ROOT file.

 TRestXXX::fDataMember

Create a condition (metadataRule) to filter the files
that should be considered.

TRestRun->fRunTag==Background_BIPO

Author Name REST-for-Physics School 27

Systematic plot generation. Panel.

We can also generate a panel with information found

inside the metadata objects written to disk together

with the data.

In this example we extract information from TRestRun

and TRestDetector.

Members between << >>
are special members
defined inside
TRestAnalysisPlot and
TRestMetadataPlot.

Author Name REST-for-Physics School 28

Generating datasets

<TRestDataSet name="DummySet">
 <parameter name="startTime" value = "2022/04/28 00:00" />
 <parameter name="endTime" value = "2022/04/28 23:59" />
 <parameter name="filePattern" value="test*.root"/>
 <filter metadata="TRestRun::fRunTag" contains="Baby" />
 // Will add to the final tree only the specific observables
 <observables list="g4Ana_totalEdep:hitsAna_energy" />
 // Will add all the observables from the process `rawAna`
 <processObservables list="rate:rawAna" />

 <quantity name="Nsim" metadata="[TRestProcessRunner::fEventsToProcess]"

 strategy="accumulate" description="The total number of simulated events."/>

</TRestDataSet>

A TRestDataSet definition allows to use metadata

conditions to make a selection of files and select the

relevant observables we are interested in.

When we export the
dataset, apart from

the analysis tree
observables we may
add other relevant
quantities that will
be included inside
the dataset export

(e.g. at the TXT
header).

File range to be selected using glob
pattern, date range, and any number

of metadata filters

Inside our dataset we then really select the few observables that we want to
export to our dataset. See more details at the class documentation.

https://sultan.unizar.es/rest/classTRestDataSet.html
https://sultan.unizar.es/rest/classTRestDataSet.html
https://sultan.unizar.es/rest/classTRestDataSet.html

Author Name REST-for-Physics SchoolCristina Margalejo

25.01.2023 - Javier Galan - javier.galan@unizar.es

29

Time for exercises!

Author Name REST-for-Physics School 30

Different ways of invoking/using REST-for-Physics

Author Name REST-for-Physics School 31

Some examples of using REST commands

(1) You can also call REST packages
without Python bindings (using !)

(2) Let’s run a simulation with restG4!

(3) You can see config file contents via
console or

(4) To see ROOT file contents:
(5) To access simulation event information:

