
Author Name REST-for-Physics SchoolAuthor Name

Edit Theme and change 
Date - Author name - e-mail

4.1 Contributing to REST-for-Physics



Author Name REST-for-Physics School

● Main project
○ Framework

● Libraries for detector/simulated 
data

○ rawlib / geant4lib
○ detectorlib
○ tracklib

● Library to transform between 
event types

○ connectorslib

2

REST-for-Physics - https://github.com/rest-for-physics



Author Name REST-for-Physics School 3

Where to find more info: API, user guide, publications

https://rest-for-physics.github.io/

REST-for-Physics publication:
https://doi.org/10.1016/j.cpc.2021.108281

https://doi.org/10.1016/j.cpc.2021.108281


Author Name REST-for-Physics School

● Main framework
○ It defines the basic functions and describes the behavior of 

the main elements of REST
○ It centralizes all the REST-for-Physics components, such as 

packages or libraries, that are integrated as git submodules.
● The git submodules strategy

○ This scheme allows to independently monitor the 
development activity in each of the submodules, to isolate 
technical issues, and to focus on their functionality.

○ Each submodule evolves independently with its own version 
or tracking system.

○ A particular state of the code at each of those submodules is 
fixed in the main framework through a git commit hash, or a 
unique number. When that happens, the corresponding git 
commit becomes the official submodule version of REST

4

REST-for-Physics - https://github.com/rest-for-physics

● The framework repository fully centralizes the versioning system of REST, understood as the state of 
the code at a given time, including the state of the official git submodules attached to it.

● Any REST metadata object written to disk using the ROOT I/O scheme will be stamped with metadata 
values (e.g., the REST release number, latest commit hash, release date, etc) that ensure that the data 
written to disk has been processed with a given version, or state of the code



Author Name REST-for-Physics SchoolAuthor Name 5

Introduction to Git

Git is an open source distributed version control 
system originally authored by Linus Torvalds. 
Git allow tracking changes in any set of files, 
usually used for coordinating work among 
programmers collaboratively developing source 
code during software development. Its goals 
include speed, data integrity, and support for 
distributed, non-linear workflows (thousands of 
parallel branches running on different systems).
Developers make changes in their local 
workspace and after commit, these changes 
become a part of the repository. Git takes it one 
step further by providing them a private copy of 
the whole repository. Users can perform many 
operations with this repository such as add file, 
remove file, rename file, move file, commit 
changes, and many more. 



Author Name REST-for-Physics SchoolAuthor Name 6

Introduction to Git

Basic git commands:

● git status check status of the project 
(unstaged files).

● git diff check unstaged changed in 
the project.

● git branch check remote branches 
staged in your local workspace.

● git checkout change to a remote 
repository.



Author Name REST-for-Physics SchoolAuthor Name 7

Introduction to Git

Basic git commands:

● git fetch locally fetch all the info from 
remote repository.

● git pull pull changes from remote 
repository in local workspace.

● git add filename stage changes on 
filename to local repository.

● git reset unstage changes in local 
repository

● git commit save changes to the local 
repository.



Author Name REST-for-Physics SchoolAuthor Name 8

Introduction to Git

Basic git commands:

● git log locally fetch all the info from 
● git push save changes to the remote 

repository.

Many other git commands are available, for more info check:

https://git-scm.com/docs

https://dzone.com/articles/top-20-git-commands-with-examples

https://git-scm.com/docs
https://dzone.com/articles/top-20-git-commands-with-examples


Author Name REST-for-Physics SchoolAuthor Name 9

Introduction to Git

REST-for-Physics workflow:

● git fetch
● git pull
● git checkout -b branchName 

create a new branch locally
● git add -p file/folder 
● git commit -m “Feature 

description”
● git push --set-upstream 

origin branchName



Author Name REST-for-Physics SchoolAuthor Name 10

Introduction to GitHub

GitHub, is an Internet hosting service for software development and version 
control using Git. It provides the distributed version control of Git plus access 
control, bug tracking, software feature requests, task management, continuous 
integration, and wikis for every project.

REST-for-Physics is integrated under GitHub https://github.com/rest-for-physics/

https://github.com/rest-for-physics/framework


Author Name REST-for-Physics SchoolAuthor Name 11

Introduction to GitHub

Navigating through REST-for-Physics in GitHub



Author Name REST-for-Physics SchoolAuthor Name 12

GitHub Pull request

There are some internal rules to deploy REST-for-Physics developments/features:

● Default branch is master
● Master branch is protected, which means that nobody is allowed to push 

commits directly to master. However, you can push your local changes to a 
development/feature branch.

● The master branch can only be updated via pull request.
● Only developers can create a pull request to master.
● Before merging a pull request to master you need the approval of a reviewer.
● Some code validation must pass before merging a pull request.
● Branches have to be up-to-date with master before merging the pull request.



Author Name REST-for-Physics SchoolAuthor Name 13

GitHub Pull request

After you have finished your development/feature you may want to update master 
branch with your changes. To do that just create a pull request after you committed 
all your changes to your development/feature branch:



Author Name REST-for-Physics SchoolAuthor Name 14

GitHub Pull request



Author Name REST-for-Physics SchoolAuthor Name

GitHub Pull request

Changes and commits are displayed at the end of the page:



Author Name REST-for-Physics SchoolAuthor Name

GitHub Pull request

Once the pull request is created it will trigger the validation pipeline:



Author Name REST-for-Physics SchoolAuthor Name

GitHub Pull request

You might receive comments or suggestions from the reviewers, you can keep 
pushing commits to your development/feature branch and it will be updated 
accordingly. However, note that it will triggers the pipeline validation again.

Once you have the approval from the reviewers and the pipeline succeed you can 
go ahead and merge your pull request. It will trigger the pipeline validation in 
master.



Author Name REST-for-Physics SchoolAuthor Name

GitHub Pull request

Typically developers works on a small part of the code aka submodule (framework, 
libraries or packages). However, some considerations have to be taken in case a 
development/feature is distributed across multiple submodules:

● Use the same branch name in the different submodules (e.g. framework and 
rawlib)

● Create different pull request per submodule
● Make sure that all the different submodule pull request are ready to merge
● Merge all the submodule pull requests at time



Author Name REST-for-Physics SchoolAuthor Name

Validation pipeline

Continuous integration (CI) is a software practice that requires frequently 
committing code to a shared repository. Committing code more often detects 
errors sooner and reduces the amount of code a developer needs to debug when 
finding the source of an error. Frequent code updates also make it easier to merge 
changes from different members of a software development team.

When you commit code to your repository, you can continuously build and test the 
code to make sure that the commit doesn't introduce errors. Your tests can include 
code linters (which check style formatting), security checks, code coverage, 
functional tests, and other custom checks.

Building and testing your code requires a server. You can build and test updates 
locally before pushing code to a repository, or you can use a CI server that checks 
for new code commits in a repository.

CI (aka validation pipeline) is performed in REST-for-Physics using GitHub actions

https://docs.github.com/en/actions


Author Name REST-for-Physics SchoolAuthor Name

Validation pipeline

REST-for-Physics framework validation pipelines:



Author Name REST-for-Physics SchoolAuthor Name

Validation pipeline

REST-for-Physics validation pipelines includes:

● Build and install the repository
● Google test
● Backward compatibility
● Several examples and reference data processing.

When to create a validation pipeline:

● New library or package added
● New development added
● An issue that has not been spotted in current validation pipeline



Author Name REST-for-Physics SchoolAuthor Name

Validation pipeline

GitHub actions are written in yaml and requires:

● Workflow control (when the pipeline is triggered)
● An operative system to run the pipeline (we use ubuntu-latest)
● A shell to run the different commands (e.g bash, sh, python, cmd,... )
● A docker image (here we have a custom image with necessary software e.g. 

ROOT, Garfield and Geant4)
● Different jobs with dependencies between them

○ Build and cache installation
■ Backward compatibility
■ Macros
■ PyROOT
■ Examples
■ …

○ Build and google test



Author Name REST-for-Physics SchoolAuthor Name

Validation pipeline

Validation pipelines are under .github/workflows/validation.yml



Author Name REST-for-Physics SchoolAuthor Name

Validation pipeline

Example, validation pipeline to print some environmental variables

Tip: You can use 
GitHub editor to 
edit the pipeline



Author Name REST-for-Physics SchoolAuthor Name

Validation pipeline

In case of failure you should check the logs under Actions tab.



Author Name REST-for-Physics SchoolAuthor Name

REST-for-Physics documentation

REST-for-Physics documentation can be found in https://sultan.unizar.es/rest/

Documentation is created using Doxygen which relies on commenting out the 
code with the proper syntax

https://sultan.unizar.es/rest/
https://www.doxygen.nl/


Author Name REST-for-Physics SchoolAuthor Name

REST-for-Physics documentation

Example TRestCombinedMask TRestCombinedMask.cxx



Author Name REST-for-Physics SchoolAuthor Name

REST-for-Physics documentation

Example TRestCombinedMask TRestCombinedMask.cxx



Author Name REST-for-Physics SchoolAuthor Name

REST-for-Physics documentation

Example TRestCombinedMask TRestCombinedMask.cxx



Author Name REST-for-Physics SchoolAuthor Name

REST-for-Physics documentation

Example TRestEvent TRestEvent.h



Author Name REST-for-Physics SchoolAuthor Name

REST-for-Physics documentation

General rules for the documentation in REST-for-Physics:

● Add a detailed description of the class or function

● Give several examples of how to use the class

● For a metadata class explain properly all the metadata members in the description

● Add a brief description of all the members of a class

● Repository is not fully documented, any help is welcome for documenting the code.



Author Name REST-for-Physics SchoolAuthor Name

REST-for-Physics documentation

Template for documentation:

Copyright/License 
at the beginning of 
the header or 
source file



Author Name REST-for-Physics SchoolAuthor Name

REST-for-Physics documentation

Template for documentation (source file):

Description of the 
class and the 
different 
parameters.

Give examples 
using rml 
description.

Add as many 
information as 
possible.



Author Name REST-for-Physics SchoolAuthor Name

REST-for-Physics documentation

Template for documentation (source file):

Keep track of the 
changes on the class.

Add author and date.

Start the description of a 
function with \brief

Add as many information 
as possible



Author Name REST-for-Physics SchoolAuthor Name

REST-for-Physics documentation

Template for documentation (header file):

Brief description of the 
class.

Describe your data 
members if any.

Document your inline 
functions.



Author Name REST-for-Physics SchoolAuthor Name

Creating issues in GitHub

When to create an issue:

● Bug: something is not working as expected.
● Feature request: I have an idea that I would like to implement.
● Keep track: Track things that are not done due to lack of time.

How to create an issue



Author Name REST-for-Physics SchoolAuthor Name

Creating issues in GitHub

How to create an issue



Author Name REST-for-Physics SchoolAuthor Name

Creating issues in GitHub

Example of an issue



Author Name REST-for-Physics SchoolAuthor Name

Creating issues in GitHub

Issues are particularly important:

● Keep track of bugs or new features
● Issues might require several iterations until a quorum is reached
● An issue can be split between the different developers
● Any developer can report any issue although the reporter is not necessarily the 

responsible of fixing it
● Some issues are suitable for getting started in REST-for-Physics development, 

and are tagged as 

How to close an issue:

● Issue should be closed with a dedicated Pull Request in which the issue is 
properly tagged e.g. Fixes #353

● Issue can be reopened e.g. in case a bug is not properly resolved



Author Name REST-for-Physics SchoolAuthor Name

REST-for-Physics naming convention

General C++ rules:

● The first character in the class name must be in upper case
● Use upper case letters as word separators, and lower case for the rest of the 

word in the class name.
● Digits may be used in a variable name but only after the alphabet.
● No special symbols can be used in variable names except for the 

underscore(‘_’).

Naming convention:

● REST-for-Physics inherit naming convention from ROOT which follows Taligent 
rules.
○ Classes begin with TRest
○ Data members begin with f
○ Getters and setters begin with Get…, Set… or Is…
○ Macros starts with REST_

https://root.cern/TaligentDocs/TaligentOnline/DocumentRoot/1.0/Docs/books/WM/WM_63.html
https://root.cern/TaligentDocs/TaligentOnline/DocumentRoot/1.0/Docs/books/WM/WM_63.html


Author Name REST-for-Physics SchoolAuthor Name

Good practises for contributing

Clang-format:

● For code readability it is highly recommended to format the code in the same 
way.

● clang-format is a tool to automatically format C/C++/Objective-C code.
● REST-for-Physics repository provides a script under 

/scripts/reformat-clang.sh to apply the appropriate format to the different files.
● Work is on-going to automatically apply clang-format after commit.

https://clang.llvm.org/docs/ClangFormat.html


Author Name REST-for-Physics SchoolAuthor Name

Good practises for contributing

Coding style:

● REST-for-Physics try to follow Google C++ style.
○ Code should target C++17, use STL iterators and structure bindings when 

possible
○ All header files should have #define guards to prevent multiple inclusion
○ Avoid using forward declarations where possible.
○ Define inline functions only when they are small <10 lines
○ Use nullptr for pointers, and '\0' for chars

https://google.github.io/styleguide/cppguide.html


Author Name REST-for-Physics SchoolAuthor Name

Good practises for contributing

Standard output:

●


