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What are PBHs?

e Primordial Black Holes (PBHs) form in the early universe, before
star formation, out of the collapse of enhanced energy density
perturbations upon horizon reentry of the typical size of the
collapsing overdensity region. This happens when 6 > 6, =~ 0.1

e PBHs can be used to probe different cosmic epochs in the

cosmic history as well as to probe different physical phenomena
depending on their mass.
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PBHs and cosmic eras

BBN &—m— 1=1s mppy = 10°M, ————— SMBHSs, LSS?

QCD Phase Transition *—— t=107% mpgy = Mg — LIGONIRGO Progenitors

—  , PBHsasDM?

t =10 Mpgy = 10'%¢ ————> PBHs svaporate today
1=10"%s mppy = 10’ ———p PBHs evaporate at BBN
End of Inflation =t = 10~ L] mpgy = 10°g

'Credit: T. Papanikolaou
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Poisson gas of PBHs

In our work, we considered ultra light PBHs such that:

they are monochromatic aka all have the same mass mpgy
10g < mpgy < 10%g

they formed after inflation

they have evaporated before BBN

they the led to a transit matter dominated era

they can be described in our scales of interest (k < kyy = a/7?)
as a gas of randomly distributed black holes — they follow
Poissonian statistics

2T is the mean seperation distance of each BH

Haris Tzerefos | Probing gravitational theories via primordial black holes



Main idea

e The gravitational potential of this gas of randomly distributed
PBHs can induce a stochastic GW background through second -
order gravitational effects.

e By requiring that these scalar-induced GWs (SIGWSs) are not
overproduced (Qcw tot (Mevap) < 1) We can:

— Find an upper bound on the abundance of PBHs at formation
time (Qpgn ) @s a function of their mass

— Conversely, by inputting indicative values for the parameters of
PBHs we can constrain the parameters of the assumed
gravitational theory.
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SIGWs in GR

e PBHs are a Poisson gas:

K3 2 / k\°
K) =~ Ps(k) = — (2~ ) ©(kyy — k) [Ri | 201
Ps(k) 52 5(K) A (kuv) O(kyy — k) [Riotto et al 2019]

e Since ppgy is inhomogeneous but py; is homogeneous — dpgy is
an isocurvature perturbation

e ¢ppy Will convert during the PBHD era to a curvature perturbation
(ppH associated to ¢ for which we find:

2 [ k\° 4 K2\ 2
kK= — [ — o
Po(k) =3, (kUV> (5+9k§)
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SIGWs in GR

For the 2" order tensor perturbations h; induced by the gravitational
potential ¢ in the Newtonian gauge we have:

ds? = (1) {7(1 +20)di? + [(1 —20)5; + %} dx’dx/} ,
hy" + 2HhY' + k2h§ = 455,
=/ 2,r BV ej(k)qiq; {ZCD Py—q+ 3(1+w)(H71¢5 + ®q)

(H 1)+ Cbk,q)},

oy + S Lo+ wh2dy = 0.
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Results

Finally, the energy density of GWs is given by:

M2
paw(n, X) = 54 2 (0yhapdyhof + ;h,0'h>B) [Maggiore - 2000],

The GW spectral abundance is just the GW energy density per
logarithmic comoving scale, i.e.

1 dpGVV(U’ k) 1 dPGW grad(n, k) 1 k 2
Qaw = - , _ 1 Kk ,
G ptot dink /alot dink 24 H(n) Ph(n? )

1/4

10%
Thus |Qaw ot < 1= Qppus < 1074 <Oé>
' mMpBH
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So why modified gravity?

e GR is notoriously inconsistent with QM at very high energies
( E ~10'°GeV) — can't be the final theory of gravity

e Gravity theories with higher order curvature terms have improved
renormalizability [Stelle - 1976]

e Proposed physics of inflation doesn'’t fit easily with our current
fundamental physical laws

e Dark energy and dark matter persistently evade any experimental
probing — it is possible they are manifestations of gravity itself
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Poisson gas of PBHs in f(R) gravity

The characteristic action of f(R) is the following:
=~ T6r G/dﬁt)(v gf(R /d”” 9Lm;
which yields the field equations:
1 .
H%V—égwﬂ+@WD—NQVJF:8meTvmthdﬂRVdR

We can reformulate f(R) as GR + eff.fluid. Then, at the scales we
are interested in we will only include its effects via :

G(1+40n
Geﬂ‘E = 72/__ .
3k R
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Power spectrum of ¢ in f(R)

Treating again the PBH energy density fluctuations as isocurvature
perturbations converting to curvature perturbations during the PBH
dominated era we calculate

K 2 (kN[ 2/Kk\® F (1+3552\]7
e l5+3(H) s<)<1+2)] |

_ Jreu(a)
(&)= dpu(ar)’

I
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29 order tensor perturbations

The main difference with respect to GR is the existence of an extra
massive degree of freedom, the so-called scalaron :

OF(R) = ; 2f(R) - F(R)R+8rGT™] = ‘C’,g with
2
mZ, = G *é(%_ﬂ)
This modifies the propagation equation of the tensor perturbations:
he" + 2Hhy' + (K* — Am2.)hi = 4S3

where A = 0 when s = (+),(x) and A = 1 when s = (sc).
. 1 1 0 O - 1 010
=+ X
e '(kk)=—=10 -1 0], (k)=—=(1 0 O
072 0 0) 26 0 o
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Case study: R? gravity

%(m:7§8 8?.

As a particular case study we shall take the gravity R? model:

H2

f(R)= R+ gia:

with a non-fixed mass scale parameter M with H; < M < 10~°M,,
since these PBHs formed after the end of inflation.
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Results

- idPGVV,grad(n:k) o l k z (x) (sc)
QGW(nak) — ﬁtot dlnk - 926 7'[(77) 2Ph (77* k)+7)h (77k)

—10% _10-3
Mpaa=10°g, Qpgy =102, M = H; Mpy=10°g, Qg =10
10
10-F4
10-11 ]
——= GRIimit
T 07— o
P =
£ g
SRR «
> — g
< === GRlimit
10724
ho-+]
10-a1 ]
10-%]
10-% 4
107°4
107 10 102 10 10 10° 106 107 100 10! 10? 108 10 109 108 107
ke [(@evap Hevap) k/(@evapHevap)
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Constraints of the PBHs abundances and M

1 09g
MpBH

1/4
QGVV,tot <1= QPBH,f <55 x 10_5 ( > (450/0 ’[Igh’[er than GRI)

1077

10°¢

1071

101
100 102 ? 10 > 100 107 10%  10°
mppH in grams

Haris Tzerefos | Probing gravitational theories via primordial black holes



Conclusions

e By investigating SIGWs produced by this Poisson gas of PBH
that transiently dominated and merely demanding that they are
not overproduced on can constrain the PBHs abundances or,
reversely, the gravitational theory

¢ We demonstrated this methodology in the context of f(R) via the
R? model

e It is applicable in other gravitational theories like f(T) as is
shown in [T. Papanikolaou, C. Tzerefos, S. Basilakos, E.N.
Saridakis, EPJC 80 (2023)]

e Currently we are working on applying it to f(Q)
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Appendix: Observability of SIGWs in R? gravi
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Appendix: Reformulation as an effective fluid

Gl = 8rG (T + TN 1) = TNk with (M

TEMr = (1 - F)RY + 25{}(f R) - (00— VIV, )F (2
As we explained earlier, via the bianchi identities this tensor is

conserved VHT (eMr _ 0 . Thanks to this construction, for the FLRW
metric we can get the Friedmann equations with:

1 1
o = T = o (32 — St + 3FH' — 3HF) 3)
e 1 , 1, .
D = _ — . I o o r 11 /
Pet = =5 87rGa2< 2H —H +2af FH' —2FH* + F +7—[F)
(4)
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Perturbations in f(R)

After performing the same (scalar) perturbations as in the previous
section, the set of perturbed field equations is the same as in GR

with:
_ (ef)o 1 2
bpen = =04 = — {(1 — F)[ = 61 + KW — 3H(®' + V') — 30"]
— BH/OF + &6f/2 — K*W + 2K*® + 6(H' + H?)W + 30" + 3H(V' + 39)
+ K25F + 3HSF' — 3F' (o' + 2’)—[\1!)}, (5)
57—,‘(6ff)i 1 2 " / /
0o = —— = m{u —F)[ — K2® — " — 3H(50 + V')

—(2H' + 4H*)W — K*(® — W) /3] — (H' + 2HP)oF + &5f/2+
+ 30" + K220 — W) + 3H(V' +30) + 6(H + H)V+
+ 0F" 4+ 2k*6F /3 + HOF' — F' (20" + 2HW + V') — 3WF”
(6)
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Perturbations in f(R)

_ 1
(Pett + Perr )05 = —6TEMO = 8776[ (1= F)(®" + 1Y)+

+F+ F'W; — HoF,| and

- 1 .,
N5"Den = 6T = g |(1 = F)O W)+ 0Fy). i £) (7)
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