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What are PBHs?

• Primordial Black Holes (PBHs) form in the early universe, before
star formation, out of the collapse of enhanced energy density
perturbations upon horizon reentry of the typical size of the
collapsing overdensity region. This happens when δ > δc ≈ 0.1

• PBHs can be used to probe different cosmic epochs in the
cosmic history as well as to probe different physical phenomena
depending on their mass.
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PBHs and cosmic eras

1

1Credit: T. Papanikolaou
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Poisson gas of PBHs

In our work, we considered ultra light PBHs such that:
• they are monochromatic aka all have the same mass mPBH

• 10g < mPBH < 109g
• they formed after inflation
• they have evaporated before BBN
• they the led to a transit matter dominated era
• they can be described in our scales of interest (k < kUV = a/r̄2 )

as a gas of randomly distributed black holes → they follow
Poissonian statistics

2 r̄ is the mean seperation distance of each BH
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Main idea

• The gravitational potential of this gas of randomly distributed
PBHs can induce a stochastic GW background through second -
order gravitational effects.

• By requiring that these scalar-induced GWs (SIGWs) are not
overproduced (ΩGW,tot(ηevap) < 1) we can:

→ Find an upper bound on the abundance of PBHs at formation
time (ΩPBH,f ) as a function of their mass

→ Conversely, by inputting indicative values for the parameters of
PBHs we can constrain the parameters of the assumed
gravitational theory.
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SIGWs in GR

• PBHs are a Poisson gas:

Pδ(k) =
k3

2π2 Pδ(k) =
2

3π

(
k

kUV

)3

Θ(kUV − k) [Riotto et al 2019]

• Since ρPBH is inhomogeneous but ρtot is homogeneous → δPBH is
an isocurvature perturbation

• δPBH will convert during the PBHD era to a curvature perturbation
ζPBH associated to Φ for which we find:

PΦ(k) =
2

3π

(
k

kUV

)3(
5 +

4
9

k2

k2
d

)−2
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SIGWs in GR

For the 2nd order tensor perturbations hij induced by the gravitational
potential Φ in the Newtonian gauge we have:

ds2 = a2(η)
{
−(1 + 2Φ)dη2 +

[
(1 − 2Φ)δij +

hij
2

]
dx idx j

}
,

hs,′′
k + 2Hhs,′

k + k2hs
k = 4Ss

k ,

Ss
k =

∫ d3q
(2π)3/2 es

ij (k)qiqj

[
2ΦqΦk−q + 4

3(1+w) (H
−1Φ′

q +Φq)

(H−1Φ′
k−q +Φk−q)

]
,

Φ′′
k + 6(1+w)

1+3w
1
ηΦ

′
k + wk2Φk = 0 .
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Results

Finally, the energy density of GWs is given by:

ρGW (η, x) =
M2

p

32a2 (∂ηhαβ∂ηhαβ + ∂ihαβ∂ ihαβ) [Maggiore - 2000],

The GW spectral abundance is just the GW energy density per
logarithmic comoving scale, i.e.

ΩGW ≡ 1
ρ̄tot

dρGW(η, k)
d ln k

≃ 1
ρ̄tot

dρGW,grad(η, k)
d ln k

=
1
24

(
k

H(η)

)2

Ph(η, k)

Thus ΩGW,tot ≤ 1 ⇒ ΩPBH,f ≤ 10−4
(

109g
mPBH

)1/4
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So why modified gravity?

• GR is notoriously inconsistent with QM at very high energies
( E ≈ 1019GeV ) → can’t be the final theory of gravity

• Gravity theories with higher order curvature terms have improved
renormalizability [Stelle - 1976]

• Proposed physics of inflation doesn’t fit easily with our current
fundamental physical laws

• Dark energy and dark matter persistently evade any experimental
probing → it is possible they are manifestations of gravity itself
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Poisson gas of PBHs in f (R) gravity

The characteristic action of f (R) is the following:

S =
1

16πG

∫
d4x

√
−g f (R) +

∫
d4x

√
−gLm,

which yields the field equations:

FRµν − 1
2

gµν f + (gµν□−∇µ∇ν)F = 8πGT (m)
µν with F ≡ df (R)/dR

We can reformulate f (R) as GR + eff .fluid . Then, at the scales we
are interested in we will only include its effects via :

Geff ≡ G
F

(
1 + 4 k2

a2
F,R
F

1 + 3 k2

a2
F,R
F

)
.
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Power spectrum of Φ in f (R)

Treating again the PBH energy density fluctuations as isocurvature
perturbations converting to curvature perturbations during the PBH
dominated era we calculate

PΦ(k) ≡
k3

2π2 PΦ(k) =
2

3π

(
k

kUV

)3
[

5 +
2
3

(
k
H

)2 F
ξ(a)

(
1 + 3 k2

a2
F,R
F

1 + 2 k2

a2
F,R
F

)]−2

,

where
ξ(a) ≡ δPBH(a)

δPBH(af)
,
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2nd order tensor perturbations

The main difference with respect to GR is the existence of an extra
massive degree of freedom, the so-called scalaron :

□F (R) = 1
3 [2f (R)− F (R)R + 8πG T m] ≡ dV

dF , with

m2
sc ≡ d2V

dF 2 = 1
3

(
F

F,R
− R

)
This modifies the propagation equation of the tensor perturbations:

hs,′′
k + 2Hhs,′

k + (k2 − λm2
sc)h

s
k = 4Ss

k ,

where λ = 0 when s = (+), (×) and λ = 1 when s = (sc).

e(+)
ij (k) =

1√
2

1 0 0
0 −1 0
0 0 0

 ,e(×)
ij (k) =

1√
2

0 1 0
1 0 0
0 0 0


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Case study: R2 gravity

e(sc)
ij (k) =

1√
2

0 0 0
0 0 0
0 0 1

 .

As a particular case study we shall take the gravity R2 model:

f (R) = R +
R2

6M2 ,

with a non-fixed mass scale parameter M with Hf ≤ M ≤ 10−5Mpl
since these PBHs formed after the end of inflation.
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Results

ΩGW(η, k) ≃ 1
ρ̄tot

dρGW,grad(η, k)
d ln k

=
1

96

(
k

H(η)

)2 [
2P(×)

h (η, k) + P(sc)
h (η, k)

]
.
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Constraints of the PBHs abundances and M

ΩGW,tot ≤ 1 ⇒ ΩPBH,f ≤ 5.5 × 10−5
(

109g
mPBH

)1/4

(45% tighter than GR!)
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Conclusions

• By investigating SIGWs produced by this Poisson gas of PBH
that transiently dominated and merely demanding that they are
not overproduced on can constrain the PBHs abundances or,
reversely, the gravitational theory

• We demonstrated this methodology in the context of f (R) via the
R2 model

• It is applicable in other gravitational theories like f (T ) as is
shown in [T. Papanikolaou, C. Tzerefos, S. Basilakos, E.N.
Saridakis, EPJC 80 (2023)]

• Currently we are working on applying it to f (Q)
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Appendix: Observability of SIGWs in R2 gravity
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Appendix: Reformulation as an effective fluid

Gµ
ν = 8πG

(
T (m)µ
ν + T (eff )µ

ν

)
≡ T (tot)µ

ν with (1)

T (eff )µ
ν ≡ (1 − F )Rµ

ν +
1
2
δµν (f − R)− (δµν□−∇µ∇ν)F (2)

As we explained earlier, via the bianchi identities this tensor is
conserved ∇µT (eff )µ

ν = 0 . Thanks to this construction, for the FLRW
metric we can get the Friedmann equations with:

ρ̄eff ≡ −T (eff ) 0
0 =

1
8πGa2

(
3H2 − 1

2
α2f + 3FH′ − 3HF ′

)
(3)

p̄eff ≡
T (eff ) i

i
3

=
1

8πGa2

(
−2H′ −H2 +

1
2

a2f − FH′ − 2FH2 + F ′′ +HF ′
)

(4)
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Perturbations in f (R)

After performing the same (scalar) perturbations as in the previous
section, the set of perturbed field equations is the same as in GR
with:

δρeff ≡ −δT (eff ) 0
0 = − 1

8πGa2

{
(1 − F )

[
− 6H′Ψ+ k2Ψ− 3H(Φ′ +Ψ′)− 3Φ′′]

− 3H′δF + a2δf/2 − k2Ψ+ 2k2Φ+ 6(H′ +H2)Ψ + 3Φ′′ + 3H(Ψ′ + 3Φ′)

+ k2δF + 3HδF ′ − 3F ′(Φ′ + 2HΨ)
}
, (5)

δpeff ≡
δT (eff ) i

i

3
=

1
8πGa2

{
(1 − F )

[
− k2Φ− Φ′′ − 3H(5Φ′ +Ψ′)

−(2H′ + 4H2)Ψ− k2(Φ−Ψ)/3
]
− (H′ + 2H2)δF + a2δf/2+

+ 3Φ′′ + k2(2Φ−Ψ) + 3H(Ψ′ + 3Φ′) + 6(H′ +H)Ψ+

+ δF ′′ + 2k2δF/3 +HδF ′ − F ′(2Φ′ + 2HΨ+Ψ′)− 3ΨF ′′
}

(6)
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Perturbations in f (R)

(ρ̄eff + p̄eff )υ
eff
,i ≡ −δT (eff ) 0

i =
1

8πG

[
2(1 − F )(Φ′ +HΨ),i+

+ δF ′
,i + F ′Ψ,i −HδF,i

]
and

Πeff
ij p̄eff ≡ δT (eff ) i

j =
1

8πGa2

[
(1 − F )(Φ−Ψ),ij + δF,ij

]
, i ̸= j (7)
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