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Introduction

Goal: study linearized Einstein’s equations to investigate radiation coming from the isolated

systems and calculate the energy carried by gravitational waves in the A > O case.

For A = 0 one usually considers small perturbations in Minkowski spacetime and the

suitable framework to analyze gravitational radiation is the conformal boundary which is a
null hypersurface.

In case of de Sitter spacetime the conformal boundary becomes spacelike.

If one insists that the generalized . ¥ for de Sitter spacetime is a null surface, then a good
candidate iIs the cosmological horizon.
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4. Cosmological constant A < 1
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Solution to the linearized Einstein’s equations with A

Introduce the rescaled trace-reversed metric perturbation y , := H ‘n? Y, to solve linearized Einstein’s equations.

Coordinates (7, X ) are not compatible for taking a limit: A — 0, therefore introduce 7 s. t. = _ Lt

H
and express the solution in terms of quadrupole moments:

o = —e Hf[azQ@ 2HO Q<ﬂ> + Ho Q<P>]( t..) + 2H[0, Q(p)]( t...) + O(H?)
where:
Q') := J d*Vp(n)X %, Q") = J V(p1(0) + po(n) + p3(n)) %, %,
> >
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General formula for the energy flux
through a null surface

The energy flux formula derived by Chandasekaran et al. (2018) using Wald-Zoupas formalism (2000) is of the form:
_ 1 3 AB_ 1 2
Er=+ L«/d V(GABG 0 )

Notice that the perturbed horizon # generically is not null and the above formula may not be applied.
To sustain its null character with respect to the perturbed geometry a suitable gauge is applied:

Tﬂg’ﬂa =0
where
8uv = 8wt L 8

It may be interpreted as a deformation procedure for #, that is performed in such a way that,

given the original perturbation of spacetime, /Z remains null.
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A generalization of the Einstein’s quadrupole formula for
positive cosmological constant

Using the obtained retarded solution y , expressed in terms of the quadruple moments we calculate the shear

and expansion of the time translation 7, to find:

2
=3 (S oL (L g 2 ) |
45 dr3 dr3 dr? dr?

iji=1

ter) + O(H?)

Where ¢ = 001400

The limit for A — 0, or equivalently H — 0, recovers the famous Einstein quadruple formula:

qlgp) 2
br= 5 dez [( ) ] frer) Wald, 1984

1,j=1
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b ij=1
| 41 3 d3q.(P) 2 d3q(p) dzq-(-p) 7 g dzqu) dzq-(.p) ,
lj 1] ] i] ij
45 ,[ at dr? T2 dr?  dr? T 2 dt< a3 di? ) (tret) + O(H")
h  i,j=1

f Ba®\ 2 B3P 2P
. L dij dij dij o
45 L dtz [( dr3 ) +2H 3 di? ] rer) + O(HT)

where for a source of compact support: 7, =—00 and {; = o©

whereas for a periodic source: ly, and 1, =1,+ 2nk
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TT-gauge vs tt-projection

Any spatial rank-2 symmetric tensor Alj may be decomposed into the irreducible components:

N N ! 2 T T TT

where AUT I corresponds to the transverse-traceless part of the field A;; » meaning it satisfies:
6iAl.JTT = 5‘7AZ.JTT =0
whereas BZ.T is transverse:
0B =0
In such decomposition, only the transverse-traceless part, AUT T, IS gauge invariant, and therefore
Is regarded as physical component of the field Aij . Generally, it is highly non-trivial to extract the

transverse-traceless part of the field Al-j (see Bonga & Hazboun for explicit example).
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There also exists a distinct notion of transverse-traceless tensors often used in the context of gravitational
waves. It is easier for calculations, however generically inequivalent to the other notion. To extract the
transverse-traceless part of a rank-2 tensor one simply uses an algebraic projection operator:

P/ =5/ — %% A =< (PFP!+ PP} - P,PH)

where ¥ = x'/r. In this notion the transverse traceless part of the field is often written with a tt in a superscript,
namely:
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The two notions coincide at null infinity ¥ for asymptotically flat spacetimes. However, the global structure of
de Sitter spacetime is very different from Minkowski spacetime. The tt-projection is considered not to be a valid

operation to extract transverse-traceless part of rank-2 tensors on the full future infinity .¥ . One should use
the TT notion of transverse traceless tensors (Ashtekar & Bonga, 2017).
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There also exists a distinct notion of transverse-traceless tensors often used in the context of gravitational
waves. It is easier for calculations, however generically inequivalent to the other notion. To extract the
transverse-traceless part of a rank-2 tensor one simply uses an algebraic projection operator:

P/ =5/ — %% A =< (PFP!+ PP} - P,PH)

where ¥ = x'/r. In this notion the transverse traceless part of the field is often written with a tt in a superscript,
namely:
. kl
Aij T Alj Akl
The two notions coincide at null infinity ¥ for asymptotically flat spacetimes. However, the global structure of
de Sitter spacetime is very different from Minkowski spacetime. The tt-projection is considered not to be a valid

operation to extract transverse-traceless part of rank-2 tensors on the full future infinity .¥ . One should use
the TT notion of transverse traceless tensors (Ashtekar & Bonga, 2017).

However, iIf we restrict ourselves to large radial distances away from the source it often happens that TT
coincides with tt (Example: power radiated by a spatially compact circular binary system, Bonga & Hazboun
2017 and Hoque & Aggarwal 2017).



Thank you for your attention



