

A generalization of Einstein's quadruple formula for radiated energy in de Sitter spacetime

Denis Dobkowski-Ryłko & Jerzy Lewandowski

arXiv:2205.09050

59. Winter School of Theoretical Physics and third COST Action CA18108
Training School *Gravity - Classical, Quantum and Phenomenology*

- Goal: study linearized Einstein's equations to investigate radiation coming from the isolated systems and calculate the energy carried by gravitational waves in the $\Lambda>0$ case.

- Goal: study linearized Einstein's equations to investigate radiation coming from the isolated systems and calculate the energy carried by gravitational waves in the $\Lambda>0$ case.
- For $\Lambda=0$ one usually considers small perturbations in Minkowski spacetime and the suitable framework to analyze gravitational radiation is the conformal boundary which is a null hypersurface.

- Goal: study linearized Einstein's equations to investigate radiation coming from the isolated systems and calculate the energy carried by gravitational waves in the $\Lambda>0$ case.
- For $\Lambda=0$ one usually considers small perturbations in Minkowski spacetime and the suitable framework to analyze gravitational radiation is the conformal boundary which is a null hypersurface.
- In case of de Sitter spacetime the conformal boundary becomes spacelike.

- Goal: study linearized Einstein's equations to investigate radiation coming from the isolated systems and calculate the energy carried by gravitational waves in the $\Lambda>0$ case.
- For $\Lambda=0$ one usually considers small perturbations in Minkowski spacetime and the suitable framework to analyze gravitational radiation is the conformal boundary which is a null hypersurface.
- In case of de Sitter spacetime the conformal boundary becomes spacelike.
- If one insists that the generalized \mathcal{I}^+ for de Sitter spacetime is a null surface, then a good candidate is the cosmological horizon.

Consider the perturbed metric tensor $g_{\alpha\beta}$ of the form: $g_{\alpha\beta}=\bar{g}_{\alpha\beta}+\epsilon\gamma_{\alpha\beta}$

Consider the perturbed metric tensor $g_{\alpha\beta}$ of the form: $g_{\alpha\beta}=\bar{g}_{\alpha\beta}+\epsilon\gamma_{\alpha\beta}$

background de Sitter metric

Consider the perturbed metric tensor $g_{\alpha\beta}$ of the form: $g_{\alpha\beta}=\bar{g}_{\alpha\beta}+\epsilon\gamma_{\alpha\beta}$ background de Sitter metric

perturbation

Consider the perturbed metric tensor $g_{\alpha\beta}$ of the form: $g_{\alpha\beta}=\bar{g}_{\alpha\beta}+\epsilon\gamma_{\alpha\beta}$

perturbation

Consider the perturbed metric tensor $g_{\alpha\beta}$ of the form: $g_{\alpha\beta}=\bar{g}_{\alpha\beta}+\epsilon\gamma_{\alpha\beta}$

$$\bar{g}_{\alpha\beta}dx^{\alpha}dx^{\beta} = \frac{1}{H^2\eta^2} g_{\alpha\beta}^{\alpha} dx^{\alpha} dx^{\beta} = \frac{1}{H^2\eta^2} (-d\eta^2 + dx^2 + dy^2 + dz^2)$$

Consider the perturbed metric tensor $g_{\alpha\beta}$ of the form: $g_{\alpha\beta}=\bar{g}_{\alpha\beta}+\epsilon\gamma_{\alpha\beta}$

$$\bar{g}_{\alpha\beta}dx^{\alpha}dx^{\beta} = \frac{1}{H^2\eta^2} \mathring{g}_{\alpha\beta}dx^{\alpha}dx^{\beta} = \frac{1}{H^2\eta^2} (-d\eta^2 + dx^2 + dy^2 + dz^2)$$

Linearized field equation in the presence of the first order linearized source $T_{\alpha\beta}$:

Consider the perturbed metric tensor $g_{\alpha\beta}$ of the form: $g_{\alpha\beta}=\bar{g}_{\alpha\beta}+\epsilon\gamma_{\alpha\beta}$

$$\bar{g}_{\alpha\beta}dx^{\alpha}dx^{\beta} = \frac{1}{H^{2}\eta^{2}}\hat{g}_{\alpha\beta}dx^{\alpha}dx^{\beta} = \frac{1}{H^{2}\eta^{2}}(-d\eta^{2} + dx^{2} + dy^{2} + dz^{2})$$

Linearized field equation in the presence of the first order linearized source $T_{\alpha\beta}$:

$$\bar{\Box}\bar{\gamma}_{\alpha\beta} - 2\bar{\nabla}_{(\alpha}\bar{\nabla}^{\mu}\bar{\gamma}_{\beta)\mu} + \bar{g}_{\alpha\beta}\bar{\nabla}^{\mu}\bar{\nabla}^{\nu}\bar{\gamma}_{\mu\nu} - \frac{2}{3}\Lambda(\bar{\gamma}_{\alpha\beta} - \bar{g}_{\alpha\beta}\bar{\gamma}) = -16\pi T_{\alpha\beta}$$

Consider the perturbed metric tensor $g_{\alpha\beta}$ of the form: $g_{\alpha\beta}=\bar{g}_{\alpha\beta}+\epsilon\gamma_{\alpha\beta}$

$$\bar{g}_{\alpha\beta}dx^{\alpha}dx^{\beta} = \frac{1}{H^{2}\eta^{2}}\hat{g}_{\alpha\beta}dx^{\alpha}dx^{\beta} = \frac{1}{H^{2}\eta^{2}}(-d\eta^{2} + dx^{2} + dy^{2} + dz^{2})$$

Linearized field equation in the presence of the first order linearized source $T_{\alpha\beta}$:

$$\bar{\Box}\bar{\gamma}_{\alpha\beta} - 2\bar{\nabla}_{(\alpha}\bar{\nabla}^{\mu}\bar{\gamma}_{\beta)\mu} + \bar{g}_{\alpha\beta}\bar{\nabla}^{\mu}\bar{\nabla}^{\nu}\bar{\gamma}_{\mu\nu} - \frac{2}{3}\Lambda(\bar{\gamma}_{\alpha\beta} - \bar{g}_{\alpha\beta}\bar{\gamma}) = -16\pi T_{\alpha\beta}$$

Trace-reversed metric perturbation:

$$\bar{\gamma}_{\alpha\beta} := \gamma_{\alpha\beta} - \frac{1}{2}\bar{g}_{\alpha\beta} \gamma$$

Consider the perturbed metric tensor $g_{\alpha\beta}$ of the form: $g_{\alpha\beta}=\bar{g}_{\alpha\beta}+\epsilon\gamma_{\alpha\beta}$

$$\bar{g}_{\alpha\beta}dx^{\alpha}dx^{\beta} = \frac{1}{H^{2}\eta^{2}}\mathring{g}_{\alpha\beta}dx^{\alpha}dx^{\beta} = \frac{1}{H^{2}\eta^{2}}(-d\eta^{2} + dx^{2} + dy^{2} + dz^{2})$$

Linearized field equation in the presence of the first order linearized source $T_{\alpha\beta}$:

$$\bar{\Box}\bar{\gamma}_{\alpha\beta} - 2\bar{\nabla}_{(\alpha}\bar{\nabla}^{\mu}\bar{\gamma}_{\beta)\mu} + \bar{g}_{\alpha\beta}\bar{\nabla}^{\mu}\bar{\nabla}^{\nu}\bar{\gamma}_{\mu\nu} - \frac{2}{3}\Lambda(\bar{\gamma}_{\alpha\beta} - \bar{g}_{\alpha\beta}\bar{\gamma}) = -16\pi T_{\alpha\beta}$$

Gauge condition: $\bar{\nabla}^{\alpha}\bar{\gamma}_{\alpha\beta}=2Hn^{\alpha}\bar{\gamma}_{\alpha\beta}$, where $n^{\alpha}\partial_{\alpha}=-H\eta\partial_{\eta}$

Assumptions:

1. No incoming radiation

Assumptions:

1. No incoming radiation

- 1. No incoming radiation
- 2. Stationary system at distant past and future

- 1. No incoming radiation
- 2. Stationary system at distant past and future
- 3. Physical size bounded by D_0 such that:

$$D_0 \ll 1/H = \sqrt{3/\Lambda}$$

- 1. No incoming radiation
- 2. Stationary system at distant past and future
- 3. Physical size bounded by D_0 such that:

$$D_0 \ll 1/H = \sqrt{3/\Lambda}$$

- 4. Cosmological constant $\Lambda \ll 1$
 - ⇒ cosmological horizon very distant from the matter source

- 1. No incoming radiation
- 2. Stationary system at distant past and future
- 3. Physical size bounded by D_0 such that:

$$D_0 \ll 1/H = \sqrt{3/\Lambda}$$

- 4. Cosmological constant $\Lambda \ll 1$
 - ⇒ cosmological horizon very distant from the matter source
- 5. Slow motion approximation; velocity of the source: $v \ll 1$

- 1. No incoming radiation
- 2. Stationary system at distant past and future
- 3. Physical size bounded by D_0 such that:

$$D_0 \ll 1/H = \sqrt{3/\Lambda}$$

- 4. Cosmological constant $\Lambda \ll 1$
 - ⇒ cosmological horizon very distant from the matter source
- 5. Slow motion approximation; velocity of the source: $v \ll 1$

Introduce the rescaled trace-reversed metric perturbation $\chi_{ab} := H^2 \eta^2 \bar{\gamma}_{ab}$ to solve linearized Einstein's equations.

Introduce the rescaled trace-reversed metric perturbation $\chi_{ab} := H^2 \eta^2 \bar{\gamma}_{ab}$ to solve linearized Einstein's equations.

Coordinates $(\eta, \overrightarrow{x})$ are not compatible for taking a limit: $\Lambda \to 0$, therefore introduce t s. t. $\eta = -\frac{1}{H}e^{-Ht}$ and express the solution in terms of quadrupole moments:

Introduce the rescaled trace-reversed metric perturbation $\chi_{ab} := H^2 \eta^2 \bar{\gamma}_{ab}$ to solve linearized Einstein's equations.

Coordinates $(\eta, \overrightarrow{x})$ are not compatible for taking a limit: $\Lambda \to 0$, therefore introduce t s. t. $\eta = -\frac{1}{H}e^{-Ht}$ and express the solution in terms of quadrupole moments:

$$\chi_{ab} = \frac{2}{r}e^{-Ht}\left[\partial_t^2 Q_{ab}^{(\rho)} - 2H\partial_t Q_{ab}^{(\rho)} + H\partial_t Q_{ab}^{(\rho)}\right](t_{ret}) + 2H^2\left[\partial_t Q_{ab}^{(\rho)}\right](t_{ret}) + \mathcal{O}(H^3)$$

Introduce the rescaled trace-reversed metric perturbation $\chi_{ab} := H^2 \eta^2 \bar{\gamma}_{ab}$ to solve linearized Einstein's equations.

Coordinates $(\eta, \overrightarrow{x})$ are not compatible for taking a limit: $\Lambda \to 0$, therefore introduce t s. t. $\eta = -\frac{1}{H}e^{-Ht}$ and express the solution in terms of quadrupole moments:

$$\chi_{ab} = \frac{2}{r}e^{-Ht}\left[\partial_t^2 Q_{ab}^{(\rho)} - 2H\partial_t Q_{ab}^{(\rho)} + H\partial_t Q_{ab}^{(\rho)}\right](t_{ret}) + 2H^2\left[\partial_t Q_{ab}^{(\rho)}\right](t_{ret}) + \mathcal{O}(H^3)$$

where:

$$Q_{ab}^{(\rho)}(\eta) := \int_{\Sigma} d^3V \rho(\eta) \bar{x}_a \bar{x}_b \qquad Q_{ab}^{(p)}(\eta) := \int_{\Sigma} d^3V (p_1(\eta) + p_2(\eta) + p_3(\eta)) \bar{x}_a \bar{x}_b$$

General formula for the energy flux through a null surface

$$E_{\ell} = \frac{1}{8\pi} \int_{\mathcal{N}} d^3V \left(\sigma_{AB} \sigma^{AB} - \frac{1}{2} \theta^2 \right)$$

The energy flux formula derived by Chandasekaran et al. (2018) using Wald-Zoupas formalism (2000) is of the form:

$$E_{\ell} = \frac{1}{8\pi} \int_{\mathcal{N}} d^3V \left(\sigma_{AB} \sigma^{AB} - \frac{1}{2} \theta^2 \right)$$

time translation

The energy flux formula derived by Chandasekaran et al. (2018) using Wald-Zoupas formalism (2000) is of the form:

$$E_{\ell} = \frac{1}{8\pi} \int_{\mathcal{N}} d^3V \left(\sigma_{AB} \sigma^{AB} - \frac{1}{2} \theta^2 \right)$$

time translation

$$T = \partial_t - Hr\partial_r$$

$$E_T = \frac{1}{8\pi} \int_{\mathcal{H}} d^3V \left(\sigma_{AB} \sigma^{AB} - \frac{1}{2} \theta^2 \right)$$

The energy flux formula derived by Chandasekaran et al. (2018) using Wald-Zoupas formalism (2000) is of the form:

$$E_T = \frac{1}{8\pi} \int_{\mathcal{H}} d^3V \left(\sigma_{AB} \sigma^{AB} - \frac{1}{2} \theta^2 \right)$$

Notice that the perturbed horizon \mathscr{H} generically is not null and the above formula may not be applied. To sustain its null character with respect to the perturbed geometry a suitable gauge is applied:

$$T^{\mu}\tilde{g}_{\mu a}=0$$

The energy flux formula derived by Chandasekaran et al. (2018) using Wald-Zoupas formalism (2000) is of the form:

$$E_T = \frac{1}{8\pi} \int_{\mathcal{H}} d^3V \left(\sigma_{AB} \sigma^{AB} - \frac{1}{2} \theta^2 \right)$$

Notice that the perturbed horizon \mathscr{H} generically is not null and the above formula may not be applied. To sustain its null character with respect to the perturbed geometry a suitable gauge is applied:

$$T^{\mu}\tilde{g}_{\mu a}=0$$

where

$$\tilde{g}_{\mu\nu} := g_{\mu\nu} + \mathcal{L}_{\xi}g_{\mu\nu}$$

The energy flux formula derived by Chandasekaran et al. (2018) using Wald-Zoupas formalism (2000) is of the form:

$$E_T = \frac{1}{8\pi} \int_{\mathcal{H}} d^3V \left(\sigma_{AB} \sigma^{AB} - \frac{1}{2} \theta^2 \right)$$

Notice that the perturbed horizon \mathscr{H} generically is not null and the above formula may not be applied. To sustain its null character with respect to the perturbed geometry a suitable gauge is applied:

$$T^{\mu}\tilde{g}_{\mu a}=0$$

where

$$\tilde{g}_{\mu\nu} := g_{\mu\nu} + \mathcal{L}_{\xi}g_{\mu\nu}$$

It may be interpreted as a deformation procedure for \mathcal{H} , that is performed in such a way that, given the original perturbation of spacetime, \mathcal{H} remains null.

0

Using the obtained retarded solution χ_{ab} expressed in terms of the quadruple moments we calculate the shear and expansion of the time translation T, to find:

0

Using the obtained retarded solution χ_{ab} expressed in terms of the quadruple moments we calculate the shear and expansion of the time translation T, to find:

$$E_T = \frac{1}{45} \int dt \sum_{i,j=1}^{3} \left[\left(\frac{d^3 q_{ij}^{(\rho)}}{dt^3} \right)^2 + 2H \left(\frac{d^3 q_{ij}^{(\rho)}}{dt^3} \left(\frac{d^2 q_{ij}^{(\rho)}}{dt^2} + 7 \frac{d^2 q_{ij}^{(\rho)}}{dt^2} \right) \right) \right] (t_{ret}) + \mathcal{O}(H^2)$$

where

$$q_{ab}^{(i)} := Q_{ab}^{(i)} - \frac{1}{3} \mathring{q}_{ij} Q^{(i)}$$

Using the obtained retarded solution χ_{ab} expressed in terms of the quadruple moments we calculate the shear and expansion of the time translation T, to find:

$$E_{T} = \frac{1}{45} \int dt \sum_{i,j=1}^{3} \left[\left(\frac{d^{3}q_{ij}^{(\rho)}}{dt^{3}} \right)^{2} + 2H \left(\frac{d^{3}q_{ij}^{(\rho)}}{dt^{3}} \left(\frac{d^{2}q_{ij}^{(\rho)}}{dt^{2}} + 7 \frac{d^{2}q_{ij}^{(\rho)}}{dt^{2}} \right) \right) \right] (t_{ret}) + \mathcal{O}(H^{2})$$

where

$$q_{ab}^{(i)} := Q_{ab}^{(i)} - \frac{1}{3} \mathring{q}_{ij} Q^{(i)}$$

The limit for $\Lambda \to 0$, or equivalently $H \to 0$, recovers the famous Einstein quadruple formula:

$$E_T = \frac{1}{45} \int dt \sum_{i, i=1}^{3} \left[\left(\frac{d^3 q_{ij}^{(\rho)}}{dt^3} \right)^2 \right] (t_{ret})$$
 Wald, 1984

The energy flux coming form a compact source in spacetime with positive cosmological constant has been also studied by:

The energy flux coming form a compact source in spacetime with positive cosmological constant has been also studied by:

1) S. J. Hoque, A. Virmani (2018) and their formula on the cosmological horizon is of the form:

$$E_T = \frac{1}{8\pi} \int_{S_2} d\Omega \int dt \ R_{ij}^{tt} \ R_{kl}^{tt} \ \delta^{ik} \delta^{jl}$$

where:

$$R_{ij} = \ddot{Q}_{ij}^{(\rho)} + 3H\ddot{Q}_{ij}^{(\rho)} + H\ddot{Q}_{ij}^{(p)} + \mathcal{O}(H^2)$$

The energy flux coming form a compact source in spacetime with positive cosmological constant has been also studied by:

1) S. J. Hoque, A. Virmani (2018) and their formula on the cosmological horizon is of the form:

$$E_T = \frac{1}{8\pi} \int_{S_2} d\Omega \int dt \ R_{ij}^{tt} \ R_{kl}^{tt} \ \delta^{ik} \delta^{jl}$$

where:

$$R_{ij} = \ddot{Q}_{ij}^{(\rho)} + 3H\ddot{Q}_{ij}^{(\rho)} + H\ddot{Q}_{ij}^{(p)} + \mathcal{O}(H^2)$$

Integrating over the angles and expressing the result in terms of the traceless $q_{ij}^{(
ho,p)}$ yields:

The energy flux coming form a compact source in spacetime with positive cosmological constant has been also studied by:

1) S. J. Hoque, A. Virmani (2018) and their formula on the cosmological horizon is of the form:

$$E_T = \frac{1}{8\pi} \int_{S_2} d\Omega \int dt \ R_{ij}^{tt} \ R_{kl}^{tt} \ \delta^{ik} \delta^{jl}$$

where:

$$R_{ij} = \ddot{Q}_{ij}^{(\rho)} + 3H\ddot{Q}_{ij}^{(\rho)} + H\ddot{Q}_{ij}^{(\rho)} + \mathcal{O}(H^2)$$

Integrating over the angles and expressing the result in terms of the traceless $q_{ij}^{(
ho,p)}$ yields:

$$E_{T} = \frac{1}{45} \int dt \sum_{i,j=1}^{3} \left[\left(\frac{d^{3}q_{ij}^{(\rho)}}{dt^{3}} \right)^{2} + 2H \left(\frac{d^{3}q_{ij}^{(\rho)}}{dt^{3}} \left(\frac{d^{2}q_{ij}^{(\rho)}}{dt^{2}} - 3\frac{d^{2}q_{ij}^{(\rho)}}{dt^{2}} \right) \right) \right] (t_{ret}) + \mathcal{O}(H^{2})$$

The energy flux coming form a compact source in spacetime with positive cosmological constant has been also studied by:

1) S. J. Hoque, A. Virmani (2018) and their formula on the cosmological horizon is of the form:

$$E_T = \frac{1}{8\pi} \int_{S_2} d\Omega \int dt \ R_{ij}^{tt} \ R_{kl}^{tt} \ \delta^{ik} \delta^{jl}$$

where:

$$R_{ij} = \ddot{Q}_{ij}^{(\rho)} + 3H\ddot{Q}_{ij}^{(\rho)} + H\ddot{Q}_{ij}^{(p)} + \mathcal{O}(H^2)$$

Integrating over the angles and expressing the result in terms of the traceless $q_{ij}^{(
ho,p)}$ yields:

$$E_{T} = \frac{1}{45} \int dt \sum_{i,j=1}^{3} \left[\left(\frac{d^{3}q_{ij}^{(\rho)}}{dt^{3}} \right)^{2} + 2H \left(\frac{d^{3}q_{ij}^{(\rho)}}{dt^{3}} \left(\frac{d^{2}q_{ij}^{(\rho)}}{dt^{2}} - 3\frac{d^{2}q_{ij}^{(\rho)}}{dt^{2}} \right) \right) \right] (t_{ret}) + \mathcal{O}(H^{2})$$

The energy flux coming form a compact source in spacetime with positive cosmological constant has been also studied by:

1) S. J. Hoque, A. Virmani (2018) and their formula on the cosmological horizon is of the form:

$$E_T = \frac{1}{8\pi} \int_{S_2} d\Omega \int dt \ R_{ij}^{tt} \ R_{kl}^{tt} \ \delta^{ik} \delta^{jl}$$

where:

$$R_{ij} = \ddot{Q}_{ij}^{(\rho)} + 3H\ddot{Q}_{ij}^{(\rho)} + H\ddot{Q}_{ij}^{(p)} + \mathcal{O}(H^2)$$

Integrating over the angles and expressing the result in terms of the traceless $q_{ij}^{(
ho,p)}$ yields:

$$E_{T} = \frac{1}{45} \int dt \sum_{i,j=1}^{3} \left[\left(\frac{d^{3}q_{ij}^{(\rho)}}{dt^{3}} \right)^{2} + 2H \left(\frac{d^{3}q_{ij}^{(\rho)}}{dt^{3}} \left(\frac{d^{2}q_{ij}^{(\rho)}}{dt^{2}} - 3\frac{d^{2}q_{ij}^{(\rho)}}{dt^{2}} \right) \right) \right] (t_{ret}) + \mathcal{O}(H^{2})$$

2) A. Ashtekar et al. (2015) found the quadrupole formula on \mathcal{I}^+ :

The energy flux coming form a compact source in spacetime with positive cosmological constant has been also studied by:

1) S. J. Hoque, A. Virmani (2018) and their formula on the cosmological horizon is of the form:

$$E_T = \frac{1}{8\pi} \int_{S_2} d\Omega \int dt \ R_{ij}^{tt} \ R_{kl}^{tt} \ \delta^{ik} \delta^{jl}$$

where:

$$R_{ij} = \ddot{Q}_{ij}^{(\rho)} + 3H\ddot{Q}_{ij}^{(\rho)} + H\ddot{Q}_{ij}^{(p)} + \mathcal{O}(H^2)$$

Integrating over the angles and expressing the result in terms of the traceless $q_{ij}^{(
ho,p)}$ yields:

$$E_{T} = \frac{1}{45} \int dt \sum_{i,j=1}^{3} \left[\left(\frac{d^{3}q_{ij}^{(\rho)}}{dt^{3}} \right)^{2} + 2H \left(\frac{d^{3}q_{ij}^{(\rho)}}{dt^{3}} \left(\frac{d^{2}q_{ij}^{(\rho)}}{dt^{2}} - 3\frac{d^{2}q_{ij}^{(\rho)}}{dt^{2}} \right) \right) \right] (t_{ret}) + \mathcal{O}(H^{2})$$

2) A. Ashtekar et al. (2015) found the quadrupole formula on \mathcal{F}^+ :

$$E_T = \frac{1}{8\pi} \int_{\mathcal{I}^+} d\Omega dT \ R_{ij}^{TT} \ R_{kl}^{TT} \ q^{ik} q^{jl}$$

$$E_{T} = \frac{1}{45} \int_{t_{0}}^{t_{1}} dt \sum_{i,j=1}^{3} \left[\left(\frac{d^{3}q_{ij}^{(\rho)}}{dt^{3}} \right)^{2} + 2H \left(\frac{d^{3}q_{ij}^{(\rho)}}{dt^{3}} \left(\frac{d^{2}q_{ij}^{(\rho)}}{dt^{2}} + 7 \frac{d^{2}q_{ij}^{(\rho)}}{dt^{2}} \right) \right) \right] (t_{ret}) + \mathcal{O}(H^{2})$$

$$E_{T} = \frac{1}{45} \int_{t_{0}}^{t_{1}} dt \sum_{i,j=1}^{3} \left[\left(\frac{d^{3}q_{ij}^{(\rho)}}{dt^{3}} \right)^{2} + 2H \left(\frac{d^{3}q_{ij}^{(\rho)}}{dt^{3}} \left(\frac{d^{2}q_{ij}^{(\rho)}}{dt^{2}} + 7 \frac{d^{2}q_{ij}^{(\rho)}}{dt^{2}} \right) \right) \right] (t_{ret}) + \mathcal{O}(H^{2})$$

$$= \frac{1}{45} \int_{t_{0}}^{t_{1}} dt \sum_{i,j=1}^{3} \left[\left(\frac{d^{3}q_{ij}^{(\rho)}}{dt^{3}} \right)^{2} + 2H \left(\frac{d^{3}q_{ij}^{(\rho)}}{dt^{3}} \frac{d^{2}q_{ij}^{(\rho)}}{dt^{2}} + \frac{7}{2} \frac{d}{dt} \left(\frac{d^{2}q_{ij}^{(\rho)}}{dt^{3}} \frac{d^{2}q_{ij}^{(\rho)}}{dt^{2}} \right) \right) \right] (t_{ret}) + \mathcal{O}(H^{2})$$

$$\begin{split} E_T &= \frac{1}{45} \int_{t_0}^{t_1} dt \sum_{i,j=1}^3 \left[\left(\frac{d^3 q_{ij}^{(\rho)}}{dt^3} \right)^2 + 2H \left(\frac{d^3 q_{ij}^{(\rho)}}{dt^3} \left(\frac{d^2 q_{ij}^{(\rho)}}{dt^2} + 7 \frac{d^2 q_{ij}^{(\rho)}}{dt^2} \right) \right) \right] (t_{ret}) + \mathcal{O}(H^2) \\ &= \frac{1}{45} \int_{t_0}^{t_1} dt \sum_{i,j=1}^3 \left[\left(\frac{d^3 q_{ij}^{(\rho)}}{dt^3} \right)^2 + 2H \left(\frac{d^3 q_{ij}^{(\rho)}}{dt^3} \frac{d^2 q_{ij}^{(\rho)}}{dt^2} + \frac{7}{2} \frac{d}{dt} \left(\frac{d^2 q_{ij}^{(\rho)}}{dt^3} \frac{d^2 q_{ij}^{(\rho)}}{dt^2} \right) \right) \right] (t_{ret}) + \mathcal{O}(H^2) \\ &= \frac{1}{45} \int_{t_0}^{t_1} dt \sum_{i,j=1}^3 \left[\left(\frac{d^3 q_{ij}^{(\rho)}}{dt^3} \right)^2 + 2H \frac{d^3 q_{ij}^{(\rho)}}{dt^3} \frac{d^2 q_{ij}^{(\rho)}}{dt^2} \right] (t_{ret}) + \mathcal{O}(H^2) \end{split}$$

Our quadrupole formula simplifies for the sources of compact support or periodic nature:

$$\begin{split} E_T &= \frac{1}{45} \int_{t_0}^{t_1} dt \sum_{i,j=1}^{3} \left[\left(\frac{d^3 q_{ij}^{(\rho)}}{dt^3} \right)^2 + 2H \left(\frac{d^3 q_{ij}^{(\rho)}}{dt^3} \left(\frac{d^2 q_{ij}^{(\rho)}}{dt^2} + 7 \frac{d^2 q_{ij}^{(\rho)}}{dt^2} \right) \right) \right] (t_{ret}) + \mathcal{O}(H^2) \\ &= \frac{1}{45} \int_{t_0}^{t_1} dt \sum_{i,j=1}^{3} \left[\left(\frac{d^3 q_{ij}^{(\rho)}}{dt^3} \right)^2 + 2H \left(\frac{d^3 q_{ij}^{(\rho)}}{dt^3} \frac{d^2 q_{ij}^{(\rho)}}{dt^2} + \frac{7}{2} \frac{d}{dt} \left(\frac{d^2 q_{ij}^{(\rho)}}{dt^3} \frac{d^2 q_{ij}^{(\rho)}}{dt^2} \right) \right) \right] (t_{ret}) + \mathcal{O}(H^2) \\ &= \frac{1}{45} \int_{t_0}^{t_1} dt \sum_{i,j=1}^{3} \left[\left(\frac{d^3 q_{ij}^{(\rho)}}{dt^3} \right)^2 + 2H \frac{d^3 q_{ij}^{(\rho)}}{dt^3} \frac{d^2 q_{ij}^{(\rho)}}{dt^2} \right] (t_{ret}) + \mathcal{O}(H^2) \end{split}$$

where for a source of compact support: $t_0 = -\infty$ and $t_1 = \infty$

Our quadrupole formula simplifies for the sources of compact support or periodic nature:

$$\begin{split} E_T &= \frac{1}{45} \int_{t_0}^{t_1} dt \sum_{i,j=1}^{3} \left[\left(\frac{d^3 q_{ij}^{(\rho)}}{dt^3} \right)^2 + 2H \left(\frac{d^3 q_{ij}^{(\rho)}}{dt^3} \left(\frac{d^2 q_{ij}^{(\rho)}}{dt^2} + 7 \frac{d^2 q_{ij}^{(\rho)}}{dt^2} \right) \right) \right] (t_{ret}) + \mathcal{O}(H^2) \\ &= \frac{1}{45} \int_{t_0}^{t_1} dt \sum_{i,j=1}^{3} \left[\left(\frac{d^3 q_{ij}^{(\rho)}}{dt^3} \right)^2 + 2H \left(\frac{d^3 q_{ij}^{(\rho)}}{dt^3} \frac{d^2 q_{ij}^{(\rho)}}{dt^2} + \frac{7}{2} \frac{d}{dt} \left(\frac{d^2 q_{ij}^{(\rho)}}{dt^3} \frac{d^2 q_{ij}^{(\rho)}}{dt^2} \right) \right) \right] (t_{ret}) + \mathcal{O}(H^2) \\ &= \frac{1}{45} \int_{t_0}^{t_1} dt \sum_{i,j=1}^{3} \left[\left(\frac{d^3 q_{ij}^{(\rho)}}{dt^3} \right)^2 + 2H \frac{d^3 q_{ij}^{(\rho)}}{dt^3} \frac{d^2 q_{ij}^{(\rho)}}{dt^2} \right] (t_{ret}) + \mathcal{O}(H^2) \end{split}$$

where for a source of compact support: $t_0 = -\infty$ and $t_1 = \infty$ whereas for a periodic source: t_0 and $t_1 = t_0 + 2\pi k$

Any spatial rank-2 symmetric tensor A_{ij} may be decomposed into the irreducible components:

Any spatial rank-2 symmetric tensor A_{ij} may be decomposed into the irreducible components:

$$A_{ij} = \frac{1}{3} \delta_{ij} \delta^{kl} A_{kl} + \left(\partial_i \partial_j - \frac{1}{3} \delta_{ij} \nabla^2 \right) B + \partial_i B_j^T + \partial_j B_i^T + A_{ij}^{TT}$$

Any spatial rank-2 symmetric tensor A_{ij} may be decomposed into the irreducible components:

$$A_{ij} = \frac{1}{3} \delta_{ij} \delta^{kl} A_{kl} + \left(\partial_i \partial_j - \frac{1}{3} \delta_{ij} \nabla^2 \right) B + \partial_i B_j^T + \partial_j B_i^T + A_{ij}^{TT}$$

where $A_{ij}^{\it TT}$ corresponds to the transverse-traceless part of the field A_{ij} , meaning it satisfies:

Any spatial rank-2 symmetric tensor A_{ij} may be decomposed into the irreducible components:

$$A_{ij} = \frac{1}{3} \delta_{ij} \delta^{kl} A_{kl} + \left(\partial_i \partial_j - \frac{1}{3} \delta_{ij} \nabla^2 \right) B + \partial_i B_j^T + \partial_j B_i^T + A_{ij}^{TT}$$

where $A_{ij}^{\it TT}$ corresponds to the transverse-traceless part of the field A_{ij} , meaning it satisfies:

$$\partial^i A_{ij}^{TT} = \delta^{ij} A_{ij}^{TT} = 0$$

Any spatial rank-2 symmetric tensor A_{ij} may be decomposed into the irreducible components:

$$A_{ij} = \frac{1}{3} \delta_{ij} \delta^{kl} A_{kl} + \left(\partial_i \partial_j - \frac{1}{3} \delta_{ij} \nabla^2 \right) B + \partial_i B_j^T + \partial_j B_i^T + A_{ij}^{TT}$$

where $A_{ij}^{\it TT}$ corresponds to the transverse-traceless part of the field A_{ij} , meaning it satisfies:

$$\partial^i A_{ij}^{TT} = \delta^{ij} A_{ij}^{TT} = 0$$

whereas B_i^T is transverse:

$$\partial^i B_i^T = 0$$

Any spatial rank-2 symmetric tensor A_{ij} may be decomposed into the irreducible components:

$$A_{ij} = \frac{1}{3} \delta_{ij} \delta^{kl} A_{kl} + \left(\partial_i \partial_j - \frac{1}{3} \delta_{ij} \nabla^2 \right) B + \partial_i B_j^T + \partial_j B_i^T + A_{ij}^{TT}$$

where $A_{ij}^{\it TT}$ corresponds to the transverse-traceless part of the field A_{ij} , meaning it satisfies:

$$\partial^i A_{ij}^{TT} = \delta^{ij} A_{ij}^{TT} = 0$$

whereas B_i^T is transverse:

$$\partial^i B_i^T = 0$$

In such decomposition, only the transverse-traceless part, A_{ij}^{TT} , is gauge invariant, and therefore is regarded as physical component of the field A_{ij} . Generally, it is highly non-trivial to extract the transverse-traceless part of the field A_{ij} (see Bonga & Hazboun for explicit example).

There also exists a distinct notion of transverse-traceless tensors often used in the context of gravitational waves. It is easier for calculations, however generically inequivalent to the other notion. To extract the transverse-traceless part of a rank-2 tensor one simply uses an algebraic projection operator:

$$P_i^{j} = \delta_i^{j} - \tilde{x}_i \tilde{x}^j \qquad \qquad \Lambda_{ij}^{kl} = \frac{1}{2} \left(P_i^{k} P_j^{l} + P_i^{l} P_j^{k} - P_{ij} P^{kl} \right)$$

where $\tilde{x}^i = x^i/r$. In this notion the transverse traceless part of the field is often written with a tt in a superscript, namely:

$$A_{ij}^{tt} := \Lambda_{ij}^{kl} A_{kl}$$

There also exists a distinct notion of transverse-traceless tensors often used in the context of gravitational waves. It is easier for calculations, however generically inequivalent to the other notion. To extract the transverse-traceless part of a rank-2 tensor one simply uses an algebraic projection operator:

$$P_i^{j} = \delta_i^{j} - \tilde{x}_i \tilde{x}^j \qquad \qquad \Lambda_{ij}^{kl} = \frac{1}{2} \left(P_i^{k} P_j^{l} + P_i^{l} P_j^{k} - P_{ij} P^{kl} \right)$$

where $\tilde{x}^i = x^i/r$. In this notion the transverse traceless part of the field is often written with a tt in a superscript, namely:

$$A_{ij}^{tt} := \Lambda_{ij}^{kl} A_{kl}$$

The two notions coincide at null infinity \mathcal{I}^+ for asymptotically flat spacetimes. However, the global structure of de Sitter spacetime is very different from Minkowski spacetime. The tt-projection is considered not to be a valid operation to extract transverse-traceless part of rank-2 tensors on the full future infinity \mathcal{I}^+ . One should use the TT notion of transverse traceless tensors (Ashtekar & Bonga, 2017).

There also exists a distinct notion of transverse-traceless tensors often used in the context of gravitational waves. It is easier for calculations, however generically inequivalent to the other notion. To extract the transverse-traceless part of a rank-2 tensor one simply uses an algebraic projection operator:

$$P_i^{j} = \delta_i^{j} - \tilde{x}_i \tilde{x}^j \qquad \qquad \Lambda_{ij}^{kl} = \frac{1}{2} \left(P_i^{k} P_j^{l} + P_i^{l} P_j^{k} - P_{ij} P^{kl} \right)$$

where $\tilde{x}^i = x^i/r$. In this notion the transverse traceless part of the field is often written with a tt in a superscript, namely:

$$A_{ij}^{tt} := \Lambda_{ij}^{kl} A_{kl}$$

The two notions coincide at null infinity \mathscr{I}^+ for asymptotically flat spacetimes. However, the global structure of de Sitter spacetime is very different from Minkowski spacetime. The tt-projection is considered not to be a valid operation to extract transverse-traceless part of rank-2 tensors on the full future infinity \mathscr{I}^+ . One should use the TT notion of transverse traceless tensors (Ashtekar & Bonga, 2017).

However, if we restrict ourselves to large radial distances away from the source it often happens that TT coincides with tt (Example: power radiated by a spatially compact circular binary system, Bonga & Hazboun 2017 and Hoque & Aggarwal 2017).

Thank you for your attention