Determinism at a black hole singularity

Martina Adamo

PhD advisors: Flavio Mercati, Ángel Ballesteros Castañeda

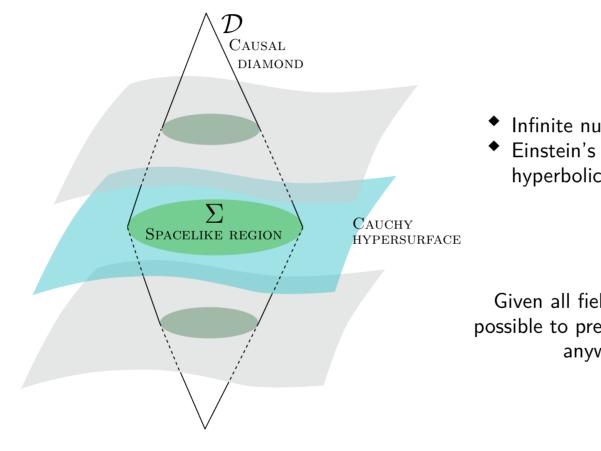
Quantum gravity phenomenology in the multi-messenger approach COST Action CA18108 – Third Training School

Wojanów, Feb 2022

Gravitational singularities and determinism

A singularity can be regarded as a place where there is a breakdown of the classical concept of spacetime as a manifold with a pseudo-Reimannian metric. Because all known laws of physics are formulated on a classical spacetime background, they will all break down at a singularity. This is a great crisis for physics because it means that **one cannot predict the future**. One does not know what will come out of a singularity.

S. W. Hawking, "Breakdown of Predictability in Gravitational Collapse", Phys. Rev. D14, 246 (1976)


Gravitational singularities and determinism

Gravitational singularities are regions of spacetime where geometry or other fundamental physical structures become meaningless, and this happens in a **coordinate-independent way**

- the volume goes to zero
- some eigenvalues of the energy-momentum tensor diverge
- some curvature invariants diverge
- the geodesic equations are singular

But does this imply that dynamics is not well-defined? Is this enough to give up on classical determinism?

Classical determinism in General Relativity

<u>GR:</u>

- Infinite number of DOFs
- Einstein's equations are a system of hyperbolic PDEs

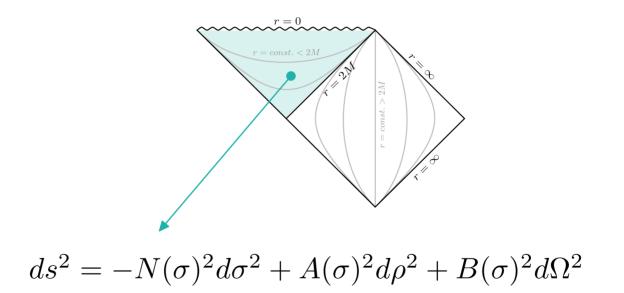
Determinism:

Given all field values within Σ , it is possible to predict uniquely their values anywhere within \mathcal{D}

Classical determinism in General Relativity

Homogeneous cosmologies:

- Infinite \rightarrow finite number of DOFs
- PDEs \rightarrow ODEs

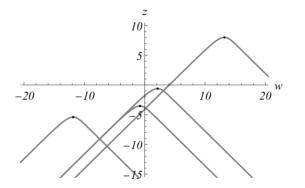

Determinism:

Picard–Lindelöf theorem of existence and uniqueness under a certain set of conditions for the ODEs, an initial-value problem has a unique solution

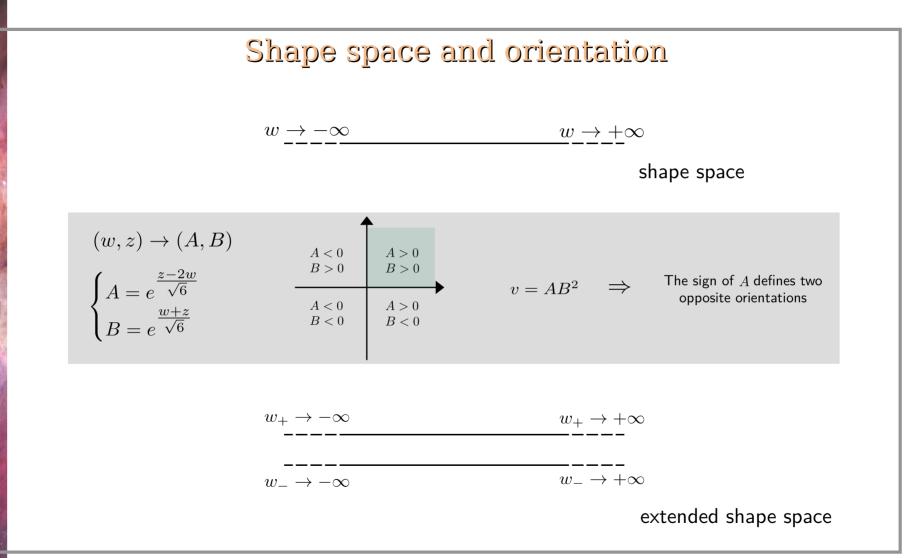
GR is a gauge Hamiltonian system: **not all degrees of freedom are physical**, and determinism fails only if there is no way to evolve uniquely all physical DOFs Interior Schwarzschild black hole

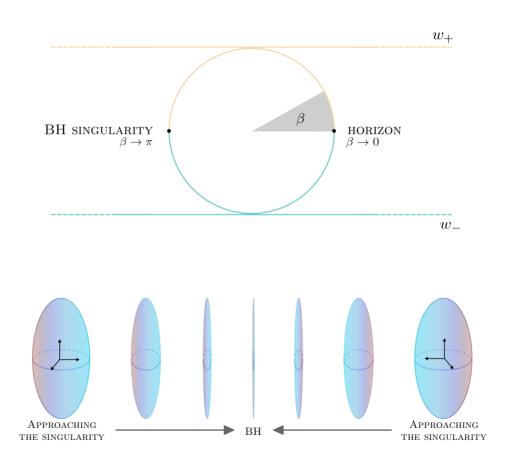
$$ds^{2} = -\left(1 - \frac{2M}{r}\right)dt^{2} + \left(1 - \frac{2M}{r}\right)^{-1}dr^{2} + r^{2}d\Omega^{2}$$

Schwarzschild metric



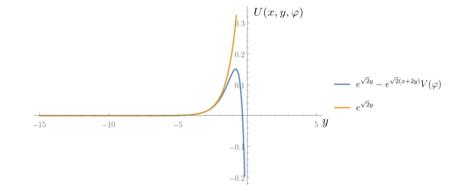
Kantowski–Sachs metric

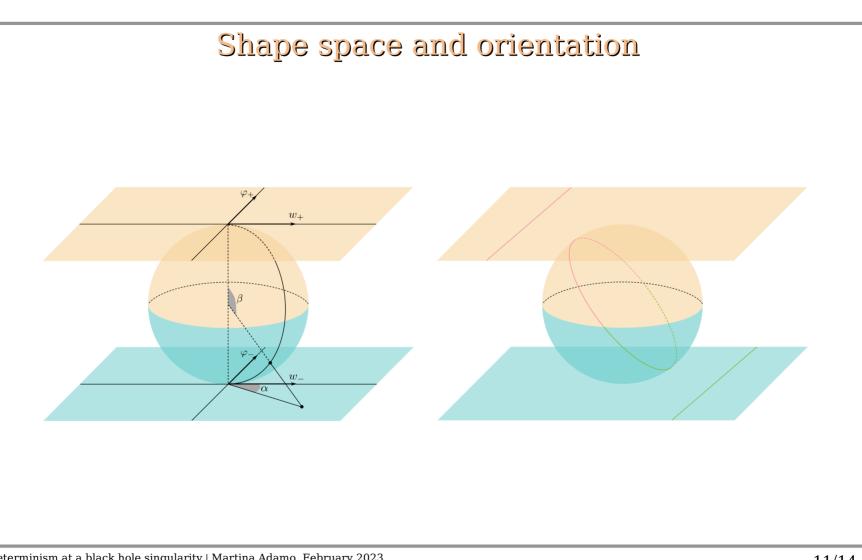

*


$$\mathcal{H} = \frac{1}{2} \left(p_w^2 - p_z^2 \right) - e^{\sqrt{\frac{2}{3}}(2z-w)}$$

Determinism at a black hole singularity | Martina Adamo, February 2023

Shape space and orientation



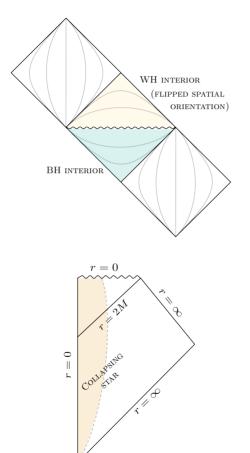

Schwarzschild-scalar model

Adding an homogeneous spherically-symmetric scalar field whose potential does not grow too fast

$$\mathcal{H} = \frac{1}{2} \left(p_w^2 + p_\varphi^2 - p_z^2 \right) - e^{\sqrt{\frac{2}{3}}(2z-w)} + e^{\sqrt{6}z} V(\varphi)$$

*

Continuation through the singularity


The equations of motion satisfy the Picard–Lindelöf Theorem

$$\frac{dy_i}{d\beta} = f_i(y)$$

 $f_i(y)$ are differentiable functions (a stronger property than the Lipschitz-continuity required by the theorem)

Each solution reaching the singularity from one hemisphere is associated with one and only one solution reaching the same point on the equator from the other hemisphere

Conclusions and future perspectives

Penrose diagrams make sense as an effective description of the causal relations between test particles propagating in a background spacetime

<u>Ongoing work</u>: non-spherically symmetric homogeneous scalar field (small perturbations)

Schwarzschild spacetime represents an eternal black hole, while realistic black holes are created through the collapse of matter

<u>Future work</u>: matter collapse model (*e.g.*, thin shell model)

*

Thank you for the attention (and some references...)

MA, F. Mercati, "Through the Schwarzschild-scalar Black Hole with non-spherically symmetric scalar fields", to appear (2023)

MA, F. Mercati, "Continuation through a Big Bang Singularity of the Einstein–Maxwell/Yang–Mills theory", to appear (2023)

F. Mercati, D. Sloan, "Traversing through a Black Hole Singularity", arXiv:2109.10753 [gr-qc] (2022)

F. Mercati, "Through the Big Bang in inflationary cosmology", JCAP 10 025, arXiv:1906.08835 [gr-qc] (2019)

D. Sloan, "Scalar fields and the FLRW singularity", Class. Quant. Grav. 36, 23, 235004, arXiv:1907.08287 (2019)

F. Mercati, "Shape Dynamics: Relativity and Relationalism", Oxford University Press, arXiv:1409.0105 [gr-qc] (2019)

- T. Koslowski, F. Mercati, D. Sloan, "Through the Big Bang: continuing Einstein's equations beyond a cosmological singularity", *Phys. Lett. B778, 339, arXiv:1607.02460 [gr-qc] (2018)*
- F. Mercati, H. Gomes, T. Koslowski, and A. Napoletano, "Gravitational collapse of thin shells of dust in asymptotically flat shape dynamics", *Phys. Rev. D 95 (2017) 044013*
- D. Christodoulou, "Bounded Variation Solutions of the Spherically Symmetric Einstein-Scalar Field" Equations. Comm. Pure Appl. Math. 46 (1993), 1131–1220

D. Christodoulou, "The problem of a self-gravitating scalar field," Comm. Math. Phys. 105 no. 3, (1986) 337-361