Energy and entropy in the Geometrical Trinity of gravity In collaboration with J. B. Jiménez, T. S. Koivisto (Phys. Rev. D 107, 024044, 2023)

Débora Aguiar Gomes

UNIVERSITY OF TARTU - ESTONIA

59. Winter School of Theoretical Physics and third COST Action CA18108 Training School February 2023

Motivation

Noether Theorem

Symmetry \rightarrow Conserved Charges

What are the conserved charges for gravity?

Figure: J. B. Jimenez, L. Heisenberg, T. S. Koivisto, Universe 2019, 5(7), 173.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Notation and conventions

A general connection can be decomposed as

$$\Gamma^{\alpha}{}_{\mu\nu} = \mathring{\Gamma}^{\alpha}{}_{\mu\nu} + K^{\alpha}{}_{\mu\nu} + L^{\alpha}{}_{\mu\nu} , \qquad (1)$$

where the contortion and disformation are defined as

$$K^{\alpha}{}_{\mu\nu} = \frac{1}{2}T^{\alpha}{}_{\mu\nu} - T_{(\mu\nu)}{}^{\alpha},$$
(2a)

$$L^{\alpha}_{\ \mu\nu} = \frac{1}{2} Q^{\alpha}_{\ \mu\nu} - Q_{(\mu\nu)}^{\ \alpha}.$$
 (2b)

The general connection is associated to a general covariant derivative ∇_{α} , which defines the non-metricity $Q_{\alpha\mu\nu} = \nabla_{\alpha}g_{\mu\nu}$. From the general connection, the curvature tensor and torsion can be defined

$$R^{\alpha}_{\ \beta\mu\nu} = 2\partial_{[\mu}\Gamma^{\alpha}_{\ \nu]\beta} + 2\Gamma^{\alpha}_{\ [\mu|\lambda|}\Gamma^{\lambda}_{\ \nu]\beta}, \qquad (3a)$$
$$T^{\alpha}_{\ \mu\nu} = 2\Gamma^{\alpha}_{\ [\mu\nu]}. \qquad (3b)$$

From the torsion, we can define the torsion scalar

$$T = \frac{1}{4} T_{\alpha\mu\nu} T^{\alpha\mu\nu} + \frac{1}{2} T_{\mu\alpha\nu} T^{\alpha\mu\nu} - T_{\alpha} T^{\alpha}, \qquad (4)$$

where $T_{\alpha} = T^{\beta}{}_{\alpha\beta}$ is the trace of the torsion. The Levi-Civita connection and the torsion scalar are related by

$$\dot{R} = -T - 2\dot{\nabla}_{\alpha}T^{\alpha}.$$
(5)

4 E 6 4 E 6

From the non-metricity, we can define the non-metricity scalar

$$Q = \frac{1}{4} Q^{\alpha\beta\gamma} Q_{\alpha\beta\gamma} - \frac{1}{2} Q^{\alpha\beta\gamma} Q_{\beta\alpha\gamma} + \frac{1}{2} Q_{\alpha} \tilde{Q}^{\alpha} - \frac{1}{4} Q_{\alpha} Q^{\alpha}, \qquad (6)$$

where $Q_{\alpha} = Q_{\alpha\mu}{}^{\mu}$ and $\tilde{Q}^{\mu} = Q_{\alpha}{}^{\mu\alpha}$ are the non-metricity traces. The Levi-Civita connection and the non-metricity scalar are related by como

$$\dot{\mathcal{R}} = -Q - \dot{\nabla}_{\alpha}(Q^{\alpha} - \tilde{Q}^{\alpha}).$$
 (7)

Equations of Motion

We consider a Langrangian $L_G = L_G(g^{\mu\nu}, Q_\lambda^{\mu\nu}, T^\alpha{}_{\mu\nu}, R^\alpha{}_{\mu\lambda\nu})$. The variation of the action

$$I = \int \mathrm{d}^n x \sqrt{-\mathfrak{g}} L \,. \tag{8}$$

gives

$$E_{\mu\nu} = -\frac{1}{2}T_{\mu\nu} + \hat{\nabla}_{\alpha}q^{\alpha}{}_{\mu\nu} + \frac{\partial L_{G}}{\partial g^{\mu\nu}} - \frac{1}{2}L_{G}g_{\mu\nu}, \qquad (9a)$$

$$\frac{1}{2}E_{\alpha}{}^{\mu\nu} = -\frac{1}{2}Z_{\alpha}{}^{\mu\nu} + \hat{\nabla}_{\beta}r_{\alpha}{}^{\nu\mu\beta} + \frac{1}{2}T^{\mu}{}_{\beta\gamma}r_{\alpha}{}^{\nu\beta\gamma} + t_{\alpha}{}^{\mu\nu} - q^{\mu\nu}{}_{\alpha}, \qquad (9b)$$

where $\hat{
abla}_{\mu} =
abla_{\mu} + T_{\mu} + rac{1}{2} Q_{lpha}$ and

$$q^{\alpha}{}_{\mu\nu} = \frac{\partial L_G}{\partial Q_{\alpha}{}^{\mu\nu}}, \quad t_{\alpha}{}^{\mu\nu} = \frac{\partial L_G}{\partial T^{\alpha}{}_{\mu\nu}}, \quad r_{\alpha}{}^{\beta\mu\nu} = \frac{\partial}{\partial R^{\alpha}{}_{\beta\mu\nu}}.$$

Débora Aguiar Gomes Energy and entropy in the Geometrical Trinity of gravity

Noether Current

.

For a diffeomorphism, the Noether current is given by:

$$J^{\mu} = -2q^{\mu}{}_{\alpha\beta}\mathring{\nabla}^{\alpha}v^{\beta} + 2E^{\mu}{}_{\nu}v^{\nu} - 2r_{\alpha}{}^{\nu\mu\beta} \Big[\nabla_{\beta}\nabla_{\nu}v^{\alpha} + \nabla_{\beta}T^{\alpha}{}_{\gamma\nu}v^{\gamma} + R^{\alpha}{}_{\nu\gamma\beta}v^{\gamma} \Big] - E_{\alpha}{}^{\mu\nu}\nabla_{\nu}v^{\alpha} + \hat{\nabla}_{\nu}E_{\alpha}{}^{\nu\mu}v^{\alpha} + T^{\alpha}{}_{\nu\beta}E_{\alpha}{}^{\mu\nu}v^{\beta} + Lv^{\mu} + \frac{\partial L_{M}}{\partial\nabla_{\mu}\psi}\delta_{\nu}\psi.$$
(10)

There exists an antisymmetric 2nd rank tensor $J^{\mu\nu} = J^{[\mu\nu]}$ such that $J^{\mu} = \mathring{\nabla}_{\nu} J^{\mu\nu}$. The Noether potential for Palatini-Einstein Lagrangian leads to the Komar superpotential:

$$J_G^{\mu\nu} = m_P^2 \mathring{\nabla}^{[\mu} v^{\nu]} \,. \tag{11}$$

It has been proposed that the Komar superpotential should be modified as:

$$J_{G}^{\mu\nu} = m_{P}^{2} \mathring{\nabla}^{[\mu} v^{\nu]} + m_{P}^{2} A^{[\mu} v^{\nu]}.$$
(12)

When we consider the symmetric teleparallel equivalent to GR, we arrive at

$$J^{\mu\nu} = m_P^2 \mathring{\nabla}^{[\mu} v^{\nu]} - Q^{[\mu} v^{\nu]} + \widetilde{Q}^{[\mu} v^{\nu]}, \qquad (13)$$

with $A^{\mu} = -Q^{\mu} + \tilde{Q}^{\mu}$.

space of connections	Noether potential $J^{\mu u}$	
all	$ abla^{[\mu} {m v}^{ u]} - {m h}^{\mu u}{}_lpha {m v}^lpha$	
flat	$-h^{\mu u}{}_{lpha}{f v}^{lpha}$	
symmetric	inequivalent to GR	
flat & symmetric	$-2q^{\left[\mu u ight] }{}_{lpha } u^{lpha }$	

In electromagnetism, we have the charge

$$q = \frac{1}{2} \oint_{\partial \mathcal{V}} d^2 \sigma_{\mu\nu} \sqrt{-\mathfrak{g}} A^{\mu\nu} , \qquad (14)$$

where $\nabla_{\mu}(\sqrt{g}F^{\mu\nu}) = \sqrt{g}J^{\mu}$. The energy-momentum will be defined as:

$$C_{\alpha} = \frac{1}{2} \oint_{\partial \mathcal{V}} \mathsf{d}^2 \sigma_{\mu\nu} \mathfrak{h}^{\mu\nu}{}_{\alpha} \,, \tag{15}$$

where the superpotential obeys

$$\nabla_{\alpha}\mathfrak{h}^{\alpha\mu}{}_{\nu}=\mathfrak{T}^{\mu}{}_{\nu}+\mathfrak{G}^{\mu}{}_{\nu}\,.\tag{16}$$

• • = • • = •

Excitation Tensors

Examples of excitation tensors that have been proposed:

The von Freud superpotential ¹

$$\underline{\mathfrak{h}}_{\nu F}^{\mu \nu}{}_{\alpha} = -\frac{1}{2}\sqrt{-\mathfrak{g}}\delta_{\lambda\sigma\alpha}^{\mu\nu\gamma}g^{\beta\lambda}\left(\mathring{\Gamma}^{\lambda}{}_{\beta\gamma} - \underline{\mathring{\Gamma}}^{\lambda}{}_{\beta\gamma}\right); \tag{17}$$

Landau and Lifshitz superpotential²

$$\underline{\mathfrak{h}}_{LL}^{\mu\nu\alpha} = \frac{1}{2} (-\underline{\mathfrak{g}})^{-\frac{1}{2}} \delta_{\gamma\rho}^{\mu\nu} \dot{\underline{\nabla}}_{\beta} \left(-\mathfrak{g} g^{\rho\alpha} g^{\gamma\beta} \right)$$
(18)

Bergmann and Thomson superpotential ³

$$\underline{\mathfrak{h}}_{BT}^{\mu\nu\alpha} = \sqrt{\underline{g}/g} \ \underline{\mathfrak{h}}_{LL}^{\mu\nu\alpha} \tag{19}$$

Papapetrou superpotential ⁴

$$\underbrace{\mathfrak{h}_{P}^{\mu\nu\alpha}}_{P} = \delta_{\gamma\lambda}^{\mu\nu}\delta_{\beta\sigma}^{\alpha\rho}\underline{g}^{\lambda\beta}\sqrt{-\mathfrak{g}}\left(\frac{1}{4}g^{\gamma\sigma}g^{\tau\delta} - \frac{1}{2}g^{\gamma\tau}g^{\sigma\delta}\right)\dot{\underline{\nabla}}_{\rho}g_{\tau\sigma} \tag{20}$$

Weinberg superpotential ⁵

$$\underline{\mathfrak{h}}_{W}^{\mu\nu\alpha} = \delta_{\gamma\lambda}^{\mu\nu}\delta_{\beta\sigma}^{\alpha\rho}\underline{g}^{\lambda\beta}\sqrt{-\underline{\mathfrak{g}}}\left(\frac{1}{4}\underline{g}^{\gamma\sigma}\underline{g}^{\tau\delta} - \frac{1}{2}\underline{g}^{\gamma\tau}\underline{g}^{\sigma\delta}\right)\dot{\underline{\nabla}}_{\rho}g_{\tau\sigma}.$$
(21)

¹P. Freud, Annals of Mathematics 40 (1939) 417–419.

²L. D. Landau and E. M. Lifschits, The Classical Theory of Fields, vol. Volume 2 of Course of Theoretical Physics. Pergamon Press, Oxford, 1975.

³P. G. Bergmann, R. Thomson, Phys. Rev. 89 (1953) 400-407

⁴A. Papapetrou, Proc. Roy. Irish Acad. A 52 (1948) 11-23.

⁵S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. John Wiley and Sons, New York, 1972.

Débora Aguiar Gomes Energy and entropy in the Geometrical Trinity of gravity

After taking $\underline{g}_{\mu\nu} \rightarrow g_{\mu\nu}$ and $\underline{\mathring{\nabla}}_{\alpha} \rightarrow \nabla_{\mu}$, we can show that the previous expressions are equivalent

$$h_{\nu F \alpha}^{\mu \nu} = h_{LL \alpha}^{\mu \nu} = h_{BT \alpha}^{\mu \nu} = h_{P \alpha}^{\mu \nu} = h_{W \alpha}^{\mu \nu} = h_{W \alpha}^{\mu \nu} .$$
(22)

The inertial frame is characterised by the vanishing of the energymomentum associated with the metric field, i.e. $t^{\mu}{}_{\nu} = 0$. In this case, $\nabla_{\alpha} \mathfrak{h}^{\alpha\mu}{}_{\nu} = \mathfrak{T}^{\mu}{}_{\nu}$.

formulation	constraints	superpotential	canonical frame
symm. $\mathrm{tele}_{\parallel}$	$R^{\alpha}{}_{\beta\mu\nu} = T^{\alpha}{}_{\mu\nu} = 0$	$m_{P}^{-2}h^{\mu\nu}{}_{\alpha} = \delta^{[\mu}_{\alpha}\tilde{Q}^{\nu]} - \delta^{[\mu}_{\alpha}Q^{\nu]} - Q^{[\mu\nu]}{}_{\alpha}$	$t^{\mu}{}_{\nu}=q^{\mu}{}_{\alpha\beta}Q_{\nu}{}^{\alpha\beta}-\tfrac{1}{2}\delta^{\mu}_{\nu}q^{\alpha}{}_{\beta\gamma}Q_{\alpha}{}^{\beta\gamma}=0$
metric tele_{\parallel}	$R^{\alpha}{}_{\beta\mu\nu} = Q_{\alpha}{}^{\mu\nu} = 0$	$m_P^{-2} t_{\alpha}{}^{\mu\nu} = \frac{1}{2} T^{\mu}{}_{\alpha}{}^{\nu} + T^{[\mu\nu]}{}_{\alpha} + 2\delta^{[\mu}_{\alpha} T^{\nu]}$	$t^{\mu}{}_{\nu} = 2t_{\alpha}{}^{\beta\mu}T^{\alpha}{}_{\nu\beta} - \frac{1}{2}\delta^{\mu}_{\nu}t_{\alpha}{}^{\beta\gamma}T^{\alpha}{}_{\beta\gamma} = 0$
Palatini	_	$m_P^{-2} h_K^{\mu u}{}_lpha = \mathring{ abla}^{[\mu} \delta^{ u]}_{\hatlpha}$	$t_{K\nu}^{\mu} \stackrel{?}{=} \frac{m_{P}^{2}}{2} \left[\left(\mathring{R} - \mathring{\Box} \right) \delta_{\hat{\nu}}^{\mu} + \left(2 \mathring{\nabla}^{\mu} \mathring{\nabla}_{\alpha} - \mathring{\nabla}_{\alpha} \mathring{\nabla}^{\mu} \right) \delta_{\hat{\nu}}^{\alpha} \right]$

Charged black hole

We have $C_{\mu} = 4\pi m_P^2 V r \ell_{\mu}$, where where V is a scalar function of r and ℓ_{μ} is a null geodesic vector. If we will consider the Schwarzschild-Reissner- Nordström-de Sitter, then

$$V(r) = \frac{m_S}{4\pi m_P^2 r} - \frac{q^2}{8\pi m_P^2 r^2} + \frac{\Lambda}{3} r^2.$$
 (23)

We have

$$C_0 = m_S - \frac{q^2}{2r} + \frac{4}{3}\pi r^3 \rho_\Lambda \,, \tag{24}$$

which can be interpreted as the gravitational energy. In the inertial frame, $C_0^{vF} = C_0^{LL} = C_0^{BT} = C_0^P = C_0^W = C_0$.

1

• Wald formula (diffeomorphism charge) ⁶

$$S = \frac{2\pi}{\kappa} \oint_{\mathcal{H}} d^{n-2} \sigma_{\mu\nu} \mathfrak{h}^{\mu\nu}{}_{\alpha} \mathbf{v}^{\alpha} \,. \tag{25}$$

• Center of mass momentum charge (Lorentz charge)⁷

$$S = -2\pi \int_{\mathcal{C}} \mathrm{d}^2 x \mathfrak{r}_{\alpha}{}^{\beta\mu\nu} n^{\alpha}{}_{\beta} n_{\mu\nu} \,, \qquad (26)$$

Both expressions lead to the correct area law.

⁶R. M. Wald, Phys. Rev. D 48 (1993) 3427-3431,

⁷ J. B, Jimenez, T. S. Koivisto, Phys. Rev. D 105 (2022) L021502

- In STGR, the Noether charge for diffeomorphisms yields the modified Komar expression;
- In the inertial frame, the ambiguity of the energy-momentum is eliminated;
- We obtain the desired results for the entropy.

Thank you!

Débora Aguiar Gomes Energy and entropy in the Geometrical Trinity of gravity

э

Image: A = Image: A

Э