February 2023

θ -angle physics of 2 color QCD

Fixed baryon charge and Near Conformal Dynamics Based on [JHEP 11 (2022) 080] and [2208.09227]

🐣 Alessandra D'Alise

General Overview

Near Conformal Window 00000

Solving QFT

Results 00000000000000 Backup slides

General Overview

Great progress in our understanding of the structure of the space of quantum field theories $$(\rm QFTs)$$

 \blacksquare θ -angle physics of 2 color QCD

Winter School of Theoretical Physics Pałac Wojanów

🐣 Alessandra D'Alise 🏛 Università degli studi di Napoli "Federico II"

Near Conformal Window 00000

Solving QFT

Results 00000000000000 Backup slides

General Overview

Great progress in our understanding of the structure of the space of quantum field theories $$(\rm QFTs)$$

Unravelling its geometry and topology \implies deep implications in mathematics, quantum gravity, string theory, cosmology and condensed matter physics.

= θ-angle physics of 2 color QCD

- Winter School of Theoretical Physics Pałac Wojanów
- 🐣 Alessandra D'Alise 🧰 Università degli studi di Napoli "Federico II"

Near Conformal Window 00000 Solving QFT

Results 00000000000000 Backup slides

General Overview

Great progress in our understanding of the structure of the space of quantum field theories $$(\rm QFTs)$$

Unravelling its geometry and topology \implies deep implications in mathematics, quantum gravity, string theory, cosmology and condensed matter physics.

Q How do we tackle the task?

≘ θ-angle physics of 2 color QCD ● Winter School of Theoretical Physics Pałac Wojanów ▲ Alessandra D'Alise 盦 Università degli studi di Napoli "Federico II" Solving QFT

Results 0000000000000 Backup slides

General Overview

Great progress in our understanding of the structure of the space of quantum field theories $$(\rm QFTs)$$

Unravelling its geometry and topology \implies deep implications in mathematics, quantum gravity, string theory, cosmology and condensed matter physics.

Q How do we tackle the task?

SOLVE QFT: investigate different regimes in a controlled manner and with precise results

θ-angle physics of 2 color QCD
 Φ Winter School of Theoretical Physics Pałac Wojanów

🍐 Alessandra D'Alise 🏛 Università degli studi di Napoli "Federico II"

Overview
0000

Near Conformal Window 00000 Solving QFT 000 0 Results 00000000000000 Backup slides

 $\square \theta$ -angle physics of 2 color QCD

Winter School of Theoretical Physics Pałac Wojanów

🛓 Alessandra D'Alise 🏛 Università degli studi di Napoli "Federico II"

Near Conformal Window 00000 Solving QFT 000 0 Results 000000000000000 Backup slides

Enhanced global symmetry: SU(2N_f) 2-color QCD

- Winter School of Theoretical Physics Pałac Wojanów
- 🍐 Alessandra D'Alise 🏛 Università degli studi di Napoli "Federico II"

Near Conformal Window 00000 Solving QFT 000 Results 00000000000000 Backup slides

Enhanced global symmetry: $SU(2N_f)$ 2-color QCD theory at finite baryon density can be studied on the lattice [arXiv:0205019]

- Winter School of Theoretical Physics Pałac Wojanów
- 🐣 Alessandra D'Alise 🧰 Università degli studi di Napoli "Federico II"

Near Conformal Window 00000 Solving QFT

Results 00000000000000 Backup slides

- Winter School of Theoretical Physics Pałac Wojanów
- 🍐 Alessandra D'Alise 🏛 Università degli studi di Napoli "Federico II"

Near Conformal Window •0000 Solving QFT 000 Results 00000000000000 Backup slides

(Near) Conformal Window [arXiv: 0107099, 0611341]

0 8 11 N_f

 $\square \theta$ -angle physics of 2 color QCD

Winter School of Theoretical Physics Pałac Wojanów

🐣 Alessandra D'Alise 🧰 Università degli studi di Napoli "Federico II"

Near Conformal Window 0000

Solving QFT

Results 00000000000000 Backup slides

(Near) Conformal Window $_{\scriptscriptstyle [arXiv: 0107099, 0611341]}$

 $\square \theta$ -angle physics of 2 color QCD

Winter School of Theoretical Physics Pałac Wojanów

🐣 Alessandra D'Alise 🧰 Università degli studi di Napoli "Federico II"

Near Conformal Window 00000

Solving QFT

Results 00000000000000 Backup slides

(Near) Conformal Window [arXiv: 0107099, 0611341]

 \blacksquare θ -angle physics of 2 color QCD

Winter School of Theoretical Physics Pałac Wojanów

🐣 Alessandra D'Alise 🏛 Università degli studi di Napoli "Federico II"

Near Conformal Window $000 \bullet 0$

Solving QFT

Results 00000000000000 Backup slides

(Near) Conformal Window $_{\scriptscriptstyle [arXiv: 0107099, 0611341]}$

 \blacksquare θ -angle physics of 2 color QCD

Winter School of Theoretical Physics Pałac Wojanów

🐣 Alessandra D'Alise 🏛 Università degli studi di Napoli "Federico II"

Near Conformal Window 00000

Solving QFT

Results 00000000000000 Backup slides

(Near) Conformal Window [arXiv: 0107099, 0611341]

 $\exists \theta$ -angle physics of 2 color QCD

- Winter School of Theoretical Physics Pałac Wojanów
- 🍐 Alessandra D'Alise 🏛 Università degli studi di Napoli "Federico II"

erview	Near Conformal Window	Solving QFT
0	00000	000
		0

Results 00000000000000 Backup slides

(Near) Conformal Window $_{\scriptscriptstyle [arXiv: 0107099, 0611341]}$

 $\fbox{0} \end{tabular} \text{ of 1 color} \\ \end{tabular} QCD \end{tabular} with $SU(2N_f)$ global symmetry $$ [JHEP 11 (2022) 080] $$ \end{tabular} $$ \end{tabular} $$ \end{tabular} \end$

 $= \theta - angle \ physics \ of \ 2 \ color \ QCD$

- Winter School of Theoretical Physics Pałac Wojanów
- 🍐 Alessandra D'Alise 🏛 Università degli studi di Napoli "Federico II"

Overview	Near Conformal Window	Solving QFT	Results	Backup slic
0000	0000	000	000000000000	00000000

(Near) Conformal Window $_{\scriptscriptstyle [arXiv: 0107099, 0611341]}$

 $\fbox{0.2} \hline \texttt{(o)} in depth analysis of the θ-angle physics at non-zero baryon chemical potential of 2 color $$QCD with $SU(2N_f)$ global symmetry $$_{[JHEP 11 (2022) 080]}$ }$

 $\checkmark~2$ color effective pion Lagrangian at non-zero baryon charge including the $\theta\text{-angle term}$

Overview	Near Conformal Window	Solving QFT	Results	Backup slides
0000	0000	000	000000000000	000000000000000000000000000000000000000

(Near) Conformal Window $_{\scriptscriptstyle [arXiv: 0107099, 0611341]}$

() in depth analysis of the θ -angle physics at non-zero baryon chemical potential of 2 color QCD with SU(2N_f) global symmetry [JHEP 11 (2022) 080]

- $\checkmark~2$ color effective pion Lagrangian at non-zero baryon charge including the $\theta\text{-angle term}$
- $\checkmark~$ determine the vacuum structure of the theory both in the normal and superfluid phase as a function of the different number of matter fields

Overview	Near Conformal Window	Solving QFT	Results	Backup slides
0000	00000	000	000000000000	0000000000

(Near) Conformal Window [arXiv: 0107099, 0611341]

() in depth analysis of the θ -angle physics at non-zero baryon chemical potential of 2 color QCD with SU(2N_f) global symmetry [JHEP 11 (2022) 080]

- $\checkmark~2$ color effective pion Lagrangian at non-zero baryon charge including the $\theta\text{-angle term}$
- $\checkmark~$ determine the vacuum structure of the theory both in the normal and superfluid phase as a function of the different number of matter fields
- $\checkmark~$ determine the spectrum of the theory

Near Conformal Window 00000

Solving QFT •00 o Results 00000000000000 Backup slides

Solving QFT

Theory simplifies when large/small parameter exists

- Winter School of Theoretical Physics Pałac Wojanów
- 🍐 Alessandra D'Alise 🧰 Università degli studi di Napoli "Federico II"

Near Conformal Window 00000

Solving QFT •00 o Results 00000000000000 Backup slides

Solving QFT

 \square θ -angle physics of 2 color QCD

Winter School of Theoretical Physics Pałac Wojanów

🛓 Alessandra D'Alise 🏛 Università degli studi di Napoli "Federico II"

Near Conformal Window 00000 Solving QFT •00 o Results 0000000000000 Backup slides

Solving QFT

 $\blacksquare \theta$ -angle physics of 2 color QCD

Winter School of Theoretical Physics Pałac Wojanów

🍐 Alessandra D'Alise 🧰 Università degli studi di Napoli "Federico II"

Near Conformal Window 00000 Solving QFT

Results 0000000000000 Backup slides

Solving QFT

ü Analytic treatment of theories with global symmetries

 $\blacksquare \theta$ -angle physics of 2 color QCD

Winter School of Theoretical Physics Pałac Wojanów

🐣 Alessandra D'Alise 🏛 Università degli studi di Napoli "Federico II"

Near Conformal Window 00000 Solving QFT

Results 00000000000000 Backup slides

Operators having large internal charge can be associated, via state/operator correspondence, to a superfluid phase on a cylinder

 $\square \theta$ -angle physics of 2 color QCD

Winter School of Theoretical Physics Pałac Wojanów

🍐 Alessandra D'Alise 🧰 Università degli studi di Napoli "Federico II"

Near Conformal Window 00000 Solving QFT

Results 00000000000000 Backup slides

Operators having large internal charge can be associated, via state/operator correspondence, to a superfluid phase on a cylinder

- Winter School of Theoretical Physics Pałac Wojanów
- 🍐 Alessandra D'Alise 🏛 Università degli studi di Napoli "Federico II"

Near Conformal Window 00000 Solving QFT

Results 0000000000000 Backup slides

Operators having large internal charge can be associated, via state/operator correspondence, to a superfluid phase on a cylinder

 \checkmark near conformal invariance of the theory: dressing the lagrangian with the dilaton

- Winter School of Theoretical Physics Pałac Wojanów
- 🐣 Alessandra D'Alise 🧰 Università degli studi di Napoli "Federico II"

Near Conformal Window 00000 Solving QFT

Results 0000000000000 Backup slides

Operators having large internal charge can be associated, via state/operator correspondence, to a superfluid phase on a cylinder

 ${\ensuremath{\mathcal{V}}}$ near conformal invariance of the theory: dressing the lagrangian with the dilaton

② near conformal dynamics of the dressed theory being in a superfluid phase on a cylinder [arXiv: 2208.09227]

- Winter School of Theoretical Physics Pałac Wojanów
- 🍐 Alessandra D'Alise 🧰 Università degli studi di Napoli "Federico II"

Near Conformal Window 00000 Solving QFT

Results 0000000000000 Backup slides

Operators having large internal charge can be associated, via state/operator correspondence, to a superfluid phase on a cylinder

 ${\ensuremath{\mathcal{V}}}$ near conformal invariance of the theory: dressing the lagrangian with the dilaton

0 near conformal dynamics of the dressed theory being in a superfluid phase on a cylinder $_{[arXiv:\ 2208.09227]}$

 $\checkmark~$ $\theta\text{-dependence}$ of the ground state energy

θ-angle physics of 2 color QCD
 Winter School of Theoretical Physics Pałac Wojanów

🍐 Alessandra D'Alise 🏛 Università degli studi di Napoli "Federico II"

Near Conformal Window 00000 Solving QFT

Results 0000000000000 Backup slides

Operators having large internal charge can be associated, via state/operator correspondence, to a superfluid phase on a cylinder

 ${\ensuremath{\mathcal{V}}}$ near conformal invariance of the theory: dressing the lagrangian with the dilaton

0 near conformal dynamics of the dressed theory being in a superfluid phase on a cylinder $_{[arXiv:\ 2208.09227]}$

- $\checkmark~\theta\text{-dependence}$ of the ground state energy
- $\checkmark~\theta\text{-dependence}$ of the near-conformal scaling dimension of the baryon charged operators on \mathbb{R}^4

θ-angle physics of 2 color QCD
 Winter School of Theoretical Physics Pałac Wojanów

 $\stackrel{{}_{\scriptstyle \mathrm{de}}}{=}$ Alessandra D'Alise $\stackrel{{}_{\scriptstyle \mathrm{ml}}}{=}$ Università degli studi di Napoli "Federico II"

Near Conformal Window 00000 Solving QFT 000

Results 000000000000000 Backup slides

 $\theta\text{-angle physics}$ in the near conformal window

 $\begin{array}{c} 2 \ {\rm color} \ {\rm QCD+non-} \\ {\rm zero} \ {\rm baryon} \\ {\rm charge+} \ \theta{\rm -angle} \end{array}$

 \blacksquare θ -angle physics of 2 color QCD

Winter School of Theoretical Physics Pałac Wojanów

🐣 Alessandra D'Alise 🏛 Università degli studi di Napoli "Federico II"

 $\square \theta$ -angle physics of 2 color QCD

Winter School of Theoretical Physics Pałac Wojanów

🍐 Alessandra D'Alise 🏛 Università degli studi di Napoli "Federico II"

 \square θ -angle physics of 2 color QCD

Winter School of Theoretical Physics Pałac Wojanów

🔺 Alessandra D'Alise 🏛 Università degli studi di Napoli "Federico II"

- Winter School of Theoretical Physics Pałac Wojanów
- 🔺 Ålessandra D'Alise 🧰 Università degli studi di Napoli "Federico II"

Results

in collaboration with J. Bersini, F. Sannino & M. Torres

Near Conformal Window 00000

Solving QFT 000 Results 00000000000 Backup slides

The $\theta\text{-angle}$ physics of two-color QCD at fixed baryon charge

 \blacksquare θ -angle physics of 2 color QCD

Winter School of Theoretical Physics Pałac Wojanów

Near Conformal Window 00000

Solving QFT

Results 000000000000 Backup slides

The θ -angle physics of two-color QCD at fixed baryon charge Starting from 2-color QCD EFT with SU(2N_f) global symmetry [arXiv:0001171]

$$\mathcal{L}_{\theta} = \nu^{2} \mathrm{Tr} \{ \partial_{\mu} \Sigma \partial^{\mu} \Sigma^{\dagger} \} + 4\mu \nu^{2} \mathrm{Tr} \{ \mathrm{B} \Sigma^{\dagger} \partial_{0} \Sigma \} + \mathrm{m}_{\pi}^{2} \nu^{2} \mathrm{Tr} \{ \mathrm{M} \Sigma + \mathrm{M}^{\dagger} \Sigma^{\dagger} \} + 2\mu^{2} \nu^{2} \left[\mathrm{Tr} \{ \Sigma \mathrm{B}^{\mathrm{T}} \Sigma^{\dagger} \mathrm{B} \} + \mathrm{Tr} \{ \mathrm{B} \mathrm{B} \} \right] - \mathrm{a} \nu^{2} \left(\theta - \frac{\mathrm{i}}{4} \mathrm{Tr} \{ \log \Sigma - \log \Sigma^{\dagger} \} \right)^{2}$$
(1)

 $\exists \theta$ -angle physics of 2 color QCD

- Winter School of Theoretical Physics Pałac Wojanów
- 🐣 Alessandra D'Alise 🏛 Università degli studi di Napoli "Federico II"

Near Conformal Window 00000

Solving QFT

Results 000000000000 Backup slides

The θ -angle physics of two-color QCD at fixed baryon charge Starting from 2-color QCD EFT with SU(2N_f) global symmetry [arXiv:0001171]

$$\mathcal{L}_{\theta} = \nu^{2} \mathrm{Tr} \{ \partial_{\mu} \Sigma \partial^{\mu} \Sigma^{\dagger} \} + 4\mu \nu^{2} \mathrm{Tr} \{ \mathrm{B} \Sigma^{\dagger} \partial_{0} \Sigma \} + \mathrm{m}_{\pi}^{2} \nu^{2} \mathrm{Tr} \{ \mathrm{M} \Sigma + \mathrm{M}^{\dagger} \Sigma^{\dagger} \} + 2\mu^{2} \nu^{2} \left[\mathrm{Tr} \{ \Sigma \mathrm{B}^{\mathrm{T}} \Sigma^{\dagger} \mathrm{B} \} + \mathrm{Tr} \{ \mathrm{B} \mathrm{B} \} \right] - \mathrm{a} \nu^{2} \left(\theta - \frac{\mathrm{i}}{4} \mathrm{Tr} \{ \log \Sigma - \log \Sigma^{\dagger} \} \right)^{2}$$
(1)

using the ansatz $\Sigma_0 = U(\alpha_i)\Sigma_c$, $U(\alpha_i) \equiv diag\{e^{-i\alpha_1}, \dots, e^{-i\alpha_N_f}, e^{-i\alpha_1}, \dots, e^{-i\alpha_{N_f}}\}$

$$\Sigma_{\rm c} = \begin{pmatrix} 0 & 1_{\rm N_f} \\ -1_{\rm N_f} & 0 \end{pmatrix} \cos \varphi + i \begin{pmatrix} \mathcal{I} & 0 \\ 0 & \mathcal{I} \end{pmatrix} \sin \varphi \quad \text{where} \quad \mathcal{I} = \begin{pmatrix} 0 & -1_{\rm N_f/2} \\ 1_{\rm N_f/2} & 0 \end{pmatrix} , \qquad (2)$$

 $\exists \theta$ -angle physics of 2 color QCD

Winter School of Theoretical Physics Pałac Wojanów

Near Conformal Window 00000

Solving QFT

Results 000000000000 Backup slides

The θ -angle physics of two-color QCD at fixed baryon charge Starting from 2-color QCD EFT with SU(2N_f) global symmetry [arXiv:0001171]

$$\mathcal{L}_{\theta} = \nu^{2} \mathrm{Tr} \{ \partial_{\mu} \Sigma \partial^{\mu} \Sigma^{\dagger} \} + 4\mu \nu^{2} \mathrm{Tr} \{ \mathrm{B} \Sigma^{\dagger} \partial_{0} \Sigma \} + \mathrm{m}_{\pi}^{2} \nu^{2} \mathrm{Tr} \{ \mathrm{M} \Sigma + \mathrm{M}^{\dagger} \Sigma^{\dagger} \} + 2\mu^{2} \nu^{2} \left[\mathrm{Tr} \{ \Sigma \mathrm{B}^{\mathrm{T}} \Sigma^{\dagger} \mathrm{B} \} + \mathrm{Tr} \{ \mathrm{B} \mathrm{B} \} \right] - \mathrm{a} \nu^{2} \left(\theta - \frac{\mathrm{i}}{4} \mathrm{Tr} \{ \log \Sigma - \log \Sigma^{\dagger} \} \right)^{2}$$
(1)

using the ansatz $\Sigma_0 = U(\alpha_i)\Sigma_c$, $U(\alpha_i) \equiv diag\{e^{-i\alpha_1}, \dots, e^{-i\alpha_N_f}, e^{-i\alpha_1}, \dots, e^{-i\alpha_N_f}\}$

$$\Sigma_{\rm c} = \begin{pmatrix} 0 & 1_{\rm N_f} \\ -1_{\rm N_f} & 0 \end{pmatrix} \cos \varphi + i \begin{pmatrix} \mathcal{I} & 0 \\ 0 & \mathcal{I} \end{pmatrix} \sin \varphi \quad \text{where} \quad \mathcal{I} = \begin{pmatrix} 0 & -1_{\rm N_f/2} \\ 1_{\rm N_f/2} & 0 \end{pmatrix} , \qquad (2)$$

the energy of the system is

$$\begin{split} \mathbf{E} &= -\nu^2 \left[4\mathbf{m}_\pi^2 \mathbf{X} - \mathbf{a}\bar{\theta}^2 \right] \,, \qquad \text{normal phase } (\varphi = 0) \qquad (3) \\ \mathbf{E} &= -\nu^2 \left[2 \frac{\mathbf{N}_{\mathrm{f}}^2 \mu^4 + \mathbf{m}_\pi^4 \mathbf{X}^2}{\mathbf{N}_{\mathrm{f}} \mu^2} - \mathbf{a}\bar{\theta}^2 \right] \,, \qquad \text{superfluid phase } \left(\cos \varphi = \frac{\mathbf{m}_\pi^2}{\mathbf{N}_{\mathrm{f}} \mu^2} \mathbf{X} \right) \qquad (4) \end{split}$$

with $X = \sum_i^{N_{\rm f}} \cos \alpha_i$

- Winter School of Theoretical Physics Pałac Wojanów
- 🔺 🐣 Alessandra D'Alise 🧰 Università degli studi di Napoli "Federico II"

Near Conformal Window 00000

Solving QFT

Results 00000000000000 Backup slides

$\theta\text{-dependence of the energy}$ [jhep 11 (2022) 080]

 $\square \theta$ -angle physics of 2 color QCD

Winter School of Theoretical Physics Pałac Wojanów

Near Conformal Window 00000

Solving QFT

Results 0000000000000 Backup slides

$\theta\text{-dependence of the energy}_{[JHEP 11 (2022) 080]}$ even $N_{\rm f}$

 $\square \theta$ -angle physics of 2 color QCD

Winter School of Theoretical Physics Pałac Wojanów

Near Conformal Window 00000

Solving QFT

Results 00000000000000 Backup slides

$\theta\text{-dependence of the energy}_{[JHEP 11 (2022) 080]}$ even $N_{\rm f}$

normal phase:

$$0 \leq \frac{\theta}{N_{\rm f}} \leq \pi \leq \frac{\theta + 2\pi(N_{\rm f} - 1)}{N_{\rm f}} \leq 2\pi$$

superfluid phase: $0 \leq \cos^2 \frac{\theta}{N_{\rm f}} \leq \pi$ $\pi \leq \cos^2 \frac{\theta + 2\pi (N_{\rm f} - 1)}{N_{\rm f}} \leq 2\pi$

 $\blacksquare \theta$ -angle physics of 2 color QCD

- Winter School of Theoretical Physics Pałac Wojanów
- 🐣 Alessandra D'Alise 🧰 Università degli studi di Napoli "Federico II"

Near Conformal Window 00000

Solving QFT

Results 00000000000000 Backup slides

heta-dependence of the energy [JHEP 11 (2022) 080] even N_f

odd N_f

normal phase:

$$0 \le \cos \frac{\theta}{N_{\rm f}} \le \pi \le \cos \frac{\theta + 2\pi (N_{\rm f} - 1)}{N_{\rm f}} \le 2\pi$$

superfluid phase: $0 \leq \cos^2 \frac{\theta}{N_{\rm f}} \leq \pi$ $\pi \leq \cos^2 \frac{\theta + 2\pi (N_{\rm f} - 1)}{N_{\rm f}} \leq 2\pi$

 \blacksquare θ -angle physics of 2 color QCD

- Winter School of Theoretical Physics Pałac Wojanów
- 🍐 Alessandra D'Alise 🏛 Università degli studi di Napoli "Federico II"

Near Conformal Window 00000

Solving QFT

Results 00000000000000 Backup slides

heta-dependence of the energy [JHEP 11 (2022) 080] even N_f

odd N_f

Near Conformal Window 00000

Solving QFT 000 Results 00000000000000 Backup slides

Symmetry breaking pattern & Spectrum

 $\square \theta$ -angle physics of 2 color QCD

Winter School of Theoretical Physics Pałac Wojanów

Near Conformal Window 00000

Solving QFT 000 Results 00000000000000 Backup slides

Symmetry breaking pattern & Spectrum ${}_{SU(2N_f) \, \times \, U(1)_A} \stackrel{2N_{f}^2 - N_f}{\leadsto} {}_{Sp(2N_f)}$

 $\exists \theta$ -angle physics of 2 color QCD

- Winter School of Theoretical Physics Pałac Wojanów
- 🐣 Alessandra D'Alise 🏛 Università degli studi di Napoli "Federico II"

Near Conformal Window 00000 Solving QFT

Results 0000000000000 Backup slides

Symmetry breaking pattern & Spectrum $SU(2N_f) \times U(1)_A \xrightarrow{2N_f^2 - N_f} Sp(2N_f)$ $\omega_{*}^{2} = k^{2} + \mu^{2}$ $\Box = \frac{1}{2} N_{f}(N_{f} + 1)$ a, m $\frac{1}{2}N_f(N_f-1)-1$ $\omega_2^2 = \mathbf{k}^2 + \frac{\mathbf{m}_\pi^4 \mathbf{X}^2}{\mu^2 \mathbf{N}_c^2} \,,$ $SU(N_f)_V \times U(1)_B$ $\omega_3^2 = k^2 + \frac{2\left(\mu^4 N_f^2 + 3m_\pi^4 X^2\right)}{N^2 \mu^2} + A, \qquad \bullet + \bigsqcup \ \frac{1}{2} N_f (N_f - 1)$ superfluid phase $\begin{cases} \frac{N_{f}^{2} - N_{f}}{2} \\ \omega_{4}^{2} = k^{2} + \frac{2\left(\mu^{4}N_{f}^{2} + 3m_{\pi}^{4}X^{2}\right)}{N_{r}^{2}\mu^{2}} - A, \quad \bullet + \boxed{\frac{1}{2}N_{f}(N_{f} - 1)} \end{cases}$ $\omega_r^2 = k^2 + M_o^2$ $Sp(N_f)_V$ where $A = \frac{2}{N^2 \mu^2} \sqrt{\left(N_f^2 \mu^4 + 3m_\pi^4 X^2\right)^2 + 4N_f^2 \mu^2 m_\pi^4 k^2 X^2},$ (5) $M_{\rm S}^2 = \frac{a\mu^4 N_{\rm f}^3 + 2\mu^2 m_{\pi}^4 X^2}{2\mu^4 N_{\pi}^2 - 2m^4 X^2} \left(1 - \frac{m_{\pi}^4 X^2}{\mu^2 N_{\pi}^2}\right)$ (6)

 $\blacksquare \theta$ -angle physics of 2 color QCD

Winter School of Theoretical Physics Pałac Wojanów

Near Conformal Window 00000

Solving QFT 000 Results 00000000000000 Backup slides

Charging the conformal window at nonzero θ -angle [2208.09227]

 \blacksquare θ -angle physics of 2 color QCD

Winter School of Theoretical Physics Pałac Wojanów

Solving QFT

Results 0000000000000 Backup slides

Charging the conformal window at nonzero θ -angle [2208.09227]

 \checkmark smoothly approach the conformal phase of the theory \implies dressing our Lagrangian via a dilaton field $\sigma(\mathbf{x})$

 $\exists \theta$ -angle physics of 2 color QCD

Winter School of Theoretical Physics Pałac Wojanów

Solving QFT

Results 00000000000000 Backup slides

Charging the conformal window at nonzero θ -angle [2208.09227]

 \checkmark smoothly approach the conformal phase of the theory \implies dressing our Lagrangian via a dilaton field $\sigma(\mathbf{x})$

$$x\mapsto e^{\alpha}x\implies \sigma\mapsto \sigma-\tfrac{\alpha}{f}\implies \mathcal{O}_k\mapsto e^{(k-4)\sigma f}\;\mathcal{O}_k$$

 $\exists \theta$ -angle physics of 2 color QCD

Winter School of Theoretical Physics Pałac Wojanów

Solving QFT

Results 00000000000000 Backup slides

Charging the conformal window at nonzero θ -angle [2208.09227]

 \checkmark smoothly approach the conformal phase of the theory \implies dressing our Lagrangian via a dilaton field $\sigma(\mathbf{x})$

$$x\mapsto e^{\alpha}x\implies \sigma\mapsto \sigma-\tfrac{\alpha}{f}\implies \mathcal{O}_k\mapsto e^{(k-4)\sigma f}\;\mathcal{O}_k$$

$$\mathcal{L}_{\theta,\sigma} = \nu^{2} \mathrm{Tr} \{ \partial_{\mu} \Sigma \partial^{\mu} \Sigma^{\dagger} \} e^{-2\sigma f} + 4\mu \nu^{2} \mathrm{Tr} \{ \mathrm{B} \Sigma^{\dagger} \partial_{0} \Sigma \} e^{-2\sigma f} + \mathrm{m}_{\pi}^{2} \nu^{2} \mathrm{Tr} \{ \mathrm{M} \Sigma + \mathrm{M}^{\dagger} \Sigma^{\dagger} \} e^{-(3-\gamma)\sigma f} + 2\mu^{2} \nu^{2} \left[\mathrm{Tr} \{ \Sigma \mathrm{B}^{\mathrm{T}} \Sigma^{\dagger} \mathrm{B} \} e^{-2\sigma f} + \mathrm{Tr} \{ \mathrm{B} \mathrm{B} \} \right] - \mathrm{a} \nu^{2} \left(\theta - \frac{\mathrm{i}}{4} \mathrm{Tr} \{ \log \Sigma - \log \Sigma^{\dagger} \} \right)^{2} e^{-4\sigma f} + \frac{1}{2} \left(\partial_{\mu} \sigma \partial^{\mu} \sigma - \frac{\mathcal{R}}{6\mathrm{f}^{2}} \right) e^{-2\sigma f} - \frac{\mathrm{m}_{\sigma}^{2}}{1\mathrm{6}\mathrm{f}^{2}} \left(e^{-4\sigma f} + 4\sigma f - 1 \right) - \Lambda_{0}^{4} e^{-4\sigma f}$$

$$(7)$$

 $\blacksquare \theta$ -angle physics of 2 color QCD

Winter School of Theoretical Physics Pałac Wojanów

Overview	Near Conformal Window	Solving QFT	Results	Backup slides
0000	00000	000	00000000000	000000000000000000000000000000000000000

Replacing this vacuum ansatz, the Lagrangian (7) becomes

$$\mathcal{L}_{\theta,\sigma} \left[\Sigma_0, \sigma_0 \right] = -e^{-4f\sigma_0} \left(\Lambda^4 - \frac{m_\sigma^2}{16f^2} \right) - \frac{m_\sigma^2 \left(4f\sigma_0 + e^{-4f\sigma_0} - 1 \right)}{16f^2} - \frac{R}{12f^2} + \frac{1}{4m_\pi^2 \nu^2 X \cos\varphi} e^{-f\sigma_0 y} + 2\mu^2 N_f \nu^2 e^{-2f\sigma_0} \sin^2\varphi - a\nu^2 e^{-4f\sigma_0} \bar{\theta}^2 ,$$
(8)

where

$$\bar{\theta} \equiv \theta - \sum_{i}^{N_{f}} \alpha_{i} , \qquad X \equiv \sum_{i}^{N_{f}} \cos \alpha_{i} , \qquad \Lambda^{4} \equiv \Lambda_{0}^{4} + \frac{m_{\sigma}^{2}}{16f^{2}} .$$
(9)

 $\square \theta$ -angle physics of 2 color QCD

Winter School of Theoretical Physics Pałac Wojanów

Overview	Near Conformal Window	Solving QFT	Results	Backup slides
0000	00000	000	00000000000	000000000000000000000000000000000000000

Replacing this vacuum ansatz, the Lagrangian (7) becomes

$$\mathcal{L}_{\theta,\sigma} \left[\Sigma_0, \sigma_0 \right] = -e^{-4f\sigma_0} \left(\Lambda^4 - \frac{m_\sigma^2}{16f^2} \right) - \frac{m_\sigma^2 \left(4f\sigma_0 + e^{-4f\sigma_0} - 1 \right)}{16f^2} - \frac{R}{12f^2} + \frac{1}{4m_\pi^2 \nu^2 X \cos\varphi} e^{-f\sigma_0 y} + 2\mu^2 N_f \nu^2 e^{-2f\sigma_0} \sin^2\varphi - a\nu^2 e^{-4f\sigma_0} \bar{\theta}^2 ,$$
(8)

where

$$\bar{\theta} \equiv \theta - \sum_{i}^{N_{f}} \alpha_{i}, \qquad X \equiv \sum_{i}^{N_{f}} \cos \alpha_{i}, \qquad \Lambda^{4} \equiv \Lambda_{0}^{4} + \frac{m_{\sigma}^{2}}{16f^{2}}.$$
(9)

The respective equations of motion are

$$N_{\rm f}\mu^2 e^{-2f\sigma} \cos\varphi - m_\pi^2 X e^{-f\sigma y} = 0$$
(10)

$$ae^{-4f\sigma}\bar{\theta} - 2m_{\pi}^{2}\sin\alpha_{i}\cos\varphi e^{-f\sigma y} = 0, \qquad i = 1, .., N_{f} \qquad (11)$$

$$\frac{\operatorname{Re}^{-2f\sigma}}{6f} + 4af\nu^{2}e^{-4f\sigma}Y^{2} + 4f\Lambda_{0}^{4}e^{-4f\sigma} - \frac{m_{\sigma}^{2}\left(1 - e^{-4f\sigma}\right)}{4f} + -4f\mu^{2}N_{f}\nu^{2}e^{-2f\sigma}\sin^{2}\varphi - 4fm_{\pi}^{2}\nu^{2}yX\cos\varphi e^{-f\sigma y} = 0$$
(12)

$$4\mu N_{\rm f} \nu^2 e^{-2f\sigma} \sin^2 \varphi = \frac{Q}{V} \ . \tag{13}$$

 \blacksquare θ -angle physics of 2 color QCD

Winter School of Theoretical Physics Pałac Wojanów

Near Conformal Window 00000 Solving QFT

Results 0000000000000 Backup slides

 $\checkmark~$ large-charge quasi-conformal Ground State Energy as function of the dilaton, fermion mass and background geometry to include the impact of the θ angle physics

 $\exists \theta$ -angle physics of 2 color QCD

Winter School of Theoretical Physics Pałac Wojanów

 $\checkmark\,$ large-charge quasi-conformal Ground State Energy as function of the dilaton, fermion mass and background geometry to include the impact of the θ angle physics

$$\begin{split} \mathrm{E}^{\gamma \ll 1} &= \ \frac{\mathrm{c}_{4/3} \mathrm{Q}^{4/3}}{\tilde{\mathrm{V}}^{1/3}} + \mathrm{Q}^{2/3} \tilde{\mathrm{V}}^{1/3} \left\{ \mathrm{c}_{2/3} \tilde{\mathrm{R}} - \frac{\mathrm{X}_{00}^2}{4\pi^2 \mathrm{N}_{\mathrm{f}}^3 \mathrm{c}_{4/3}^4} \left(\frac{9\mathrm{m}_\pi^2}{32\nu} \right)^2 \left[1 - \gamma \left(\frac{2}{3} \log \mathrm{Q} - \frac{\mathrm{X}_{10}}{\mathrm{X}_{00}} - \right) \right] \right] \right\} \\ &- \left[\log \left(\frac{32 \mathrm{N}_{\mathrm{f}} \nu^2 \pi^2 \mathrm{c}_{4/3} \tilde{\mathrm{V}}^{2/3}}{3} \right) \right] \right] \right\} - \tilde{\mathrm{V}} \log \mathrm{Q} \left\{ \frac{16 \pi^2}{9} \mathrm{N}_{\mathrm{f}} \mathrm{c}_{2/3} \mathrm{c}_{4/3} \nu^2 \mathrm{m}_{\sigma}^2 - \frac{\gamma}{3\pi^2 \mathrm{N}_{\mathrm{f}}^4 \mathrm{c}_{4/3}^5} \left(\frac{9\mathrm{m}_\pi^2}{32\nu} \right)^2 \mathrm{C} \right] \\ &- \left[\frac{5}{8\pi^2 \mathrm{c}_{4/3}^4 \mathrm{N}_{\mathrm{f}}^2} \left(\frac{9\mathrm{m}_\pi^2}{32\nu} \right)^2 \mathrm{X}_{00}^4 - \mathrm{c}_{2/3} \tilde{\mathrm{R}} \mathrm{N}_{\mathrm{f}} \mathrm{X}_{00}^2 + \frac{9\mathrm{X}_{00}\mathrm{X}_{01}}{32\mathrm{c}_{4/3}} \right] \right\} + \left(\mathrm{Q}^0 \right) \\ &\mathrm{E}^{1-\gamma \ll 1} = \frac{\mathrm{c}_{4/3} \mathrm{Q}^{4/3}}{\tilde{\mathrm{V}}^{1/3}} + \mathrm{c}_{2/3} \mathrm{Q}^{2/3} \tilde{\mathrm{R}} \tilde{\mathrm{V}}^{1/3} - \frac{9(1-\gamma) \mathrm{X}_{00}^2 \mathrm{m}_\pi^4 \tilde{\mathrm{V}} \log \mathrm{Q}}{64\mathrm{c}_{4/3}^3 \mathrm{N}_{\mathrm{f}}^2} - \frac{16}{9} \pi^2 \mathrm{m}_{\sigma}^2 \mathrm{N}_{\mathrm{f}} \mathrm{c}_{2/3} \mathrm{c}_{4/3} \nu^2 \mathrm{V} \log \mathrm{Q} + \left(\mathrm{Q}^0 \right) \\ \end{split}$$

 $\blacksquare \theta$ -angle physics of 2 color QCD

Winter School of Theoretical Physics Pałac Wojanów

 $\checkmark\,$ large-charge quasi-conformal Ground State Energy as function of the dilaton, fermion mass and background geometry to include the impact of the θ angle physics

$$\begin{split} \mathrm{E}^{\gamma \ll 1} &= \ \frac{\mathrm{c}_{4/3} \mathrm{Q}^{4/3}}{\tilde{\mathrm{V}}^{1/3}} + \mathrm{Q}^{2/3} \tilde{\mathrm{V}}^{1/3} \left\{ \mathrm{c}_{2/3} \tilde{\mathrm{R}} - \frac{\mathbf{X}_{00}^{-2}}{4\pi^2 \mathrm{N}_{\mathrm{f}}^3 \mathrm{c}_{4/3}^4} \left(\frac{9\mathrm{m}_{\pi}^2}{32\nu} \right)^2 \left[1 - \gamma \left(\frac{2}{3} \log \mathrm{Q} - \frac{\mathbf{X}_{10}}{\mathbf{X}_{00}} - \frac{1}{\mathrm{N}_{\mathrm{O}}} \right) \right] \right] \\ &- \left[\log \left(\frac{32 \mathrm{N}_{\mathrm{f}} \nu^2 \pi^2 \mathrm{c}_{4/3} \tilde{\mathrm{V}}^{2/3}}{3} \right) \right] \right] \right\} - \tilde{\mathrm{V}} \log \mathrm{Q} \left\{ \frac{16 \pi^2}{9} \mathrm{N}_{\mathrm{f}} \mathrm{c}_{2/3} \mathrm{c}_{4/3} \nu^2 \mathrm{m}_{\sigma}^2 - \frac{\gamma}{3\pi^2 \mathrm{N}_{\mathrm{f}}^4} \mathrm{c}_{4/3}^5 \left(\frac{9\mathrm{m}_{\pi}^2}{32\nu} \right)^2 \mathrm{C} \right. \\ &\left[\frac{5}{8\pi^2 \mathrm{c}_{4/3}^4 \mathrm{N}_{\mathrm{f}}^2} \left(\frac{9\mathrm{m}_{\pi}^2}{32\nu} \right)^2 \mathbf{X}_{00}^{-4} - \mathrm{c}_{2/3} \tilde{\mathrm{R}} \mathrm{N}_{\mathrm{f}} \mathbf{X}_{00}^2 + \frac{9 \mathrm{X}_{00} \mathrm{X}_{01}}{32 \mathrm{c}_{4/3}} \right] \right\} + \left(\mathrm{Q}^0 \right) \\ & \mathrm{E}^{1 - \gamma \ll 1} = \frac{\mathrm{c}_{4/3} \mathrm{Q}^{4/3}}{\tilde{\mathrm{V}}^{1/3}} + \mathrm{c}_{2/3} \mathrm{Q}^{2/3} \tilde{\mathrm{R}} \tilde{\mathrm{V}}^{1/3} - \frac{9(1 - \gamma) \mathrm{X}_{00}^2 \mathrm{m}_{\pi}^4 \tilde{\mathrm{V}} \log \mathrm{Q}}{64 \mathrm{c}_{4/3}^3 \mathrm{N}_{\mathrm{f}}^2} - \frac{16}{9} \pi^2 \mathrm{m}_{\sigma}^2 \mathrm{N}_{\mathrm{f}} \mathrm{c}_{2/3} \mathrm{c}_{4/3} \nu^2 \tilde{\mathrm{V}} \log \mathrm{Q} + \left(\mathrm{Q}^0 \right) \\ \end{split}$$

where we introduced

$$c_{4/3} = \frac{3}{8} \left(\frac{\Lambda^2}{\pi N_f \nu^2}\right)^{2/3}, \quad c_{2/3} = \frac{1}{4f^2} \left(\frac{\pi^2}{N_f \nu^2 \Lambda^4}\right)^{1/3}, \quad \tilde{R} = \frac{R}{6} \quad \text{and} \quad \tilde{V} = \frac{V}{2\pi^2}, \tag{14}$$

 $\blacksquare \theta$ -angle physics of 2 color QCD

Winter School of Theoretical Physics Pałac Wojanów

Overview	
0000	

Solving QFT

Results 00000000000000 Backup slides

 $\checkmark\,$ large-charge quasi-anomalous dimension Δ as function of the dilaton, fermion mass and background geometry to include the impact of the θ angle physics

 $\square \theta$ -angle physics of 2 color QCD

- Winter School of Theoretical Physics Pałac Wojanów
- 🍰 Alessandra D'Alise 🧰 Università degli studi di Napoli "Federico II"

Overview Near Conformal Window Solving QFT

Results 00000000000000 Backup slides

 $\checkmark~$ large-charge quasi-anomalous dimension Δ as function of the dilaton, fermion mass and background geometry to include the impact of the θ angle physics

• $\gamma \ll 1$

$$\begin{split} \frac{\Delta}{\Delta^*} &= 1 - \left(\frac{9m_\pi^2}{32\pi\nu}\right)^2 \frac{1 - \gamma \log\left(\frac{3\rho^{2/3}}{16(2\pi^2)^{1/3}c_{4/3}\nu^2N_f}\right)}{4c_{4/3}^5N_f} \cos^2\left(\frac{\theta + 2\pi k}{N_f}\right) \left(\frac{1}{2\pi^2\rho}\right)^{2/3} \\ &+ \frac{\gamma}{c_{4/3}^6N_f} \cos^2\left(\frac{\theta + 2\pi k}{N_f}\right) \left(\frac{27m_\pi^4 \sin^2\left(\frac{\theta + 2\pi k}{N_f}\right)}{256\ 2^{2/3}\pi^{4/3}a\ c_{4/3}^3N_f^2} + \frac{5\left(\frac{9m_\pi^2}{64\pi\nu}\right)^2 \cos^2\left(\frac{\theta + 2\pi k}{N_f}\right)}{6c_{4/3}^4N_f} - \frac{c_{2/3}}{2}\left(\frac{\rho}{2\pi^2Q}\right)^{2/3}\right) \\ &\times \left(\frac{9m_\pi^2}{32\pi\nu}\right)^2 \left(\frac{1}{2\pi^2\rho}\right)^{4/3} \log Q - \frac{16}{9}\pi^2 c_{2/3}\nu^2 N_f m_\sigma^2\left(\frac{1}{2\pi^2\rho}\right)^{4/3} \log Q \end{split}$$

 $\square \theta$ -angle physics of 2 color QCD

- Winter School of Theoretical Physics Pałac Wojanów
- 🔺 Alessandra D'Alise 🏛 Università degli studi di Napoli "Federico II"

Overview Near Conformal Window Solving QFT

Results 00000000000000 Backup slides

 $\checkmark~$ large-charge quasi-anomalous dimension Δ as function of the dilaton, fermion mass and background geometry to include the impact of the θ angle physics

• $\gamma \ll 1$

$$\begin{split} \frac{\Delta}{\Delta^*} &= 1 - \left(\frac{9m_\pi^2}{32\pi\nu}\right)^2 \frac{1 - \gamma \log\left(\frac{3\rho^{2/3}}{16(2\pi^2)^{1/3}c_{4/3}\nu^2N_f}\right)}{4c_{4/3}^5 N_f} \cos^2\left(\frac{\theta + 2\pi k}{N_f}\right) \left(\frac{1}{2\pi^2\rho}\right)^{2/3} \\ &+ \frac{\gamma}{c_{4/3}^6 N_f} \cos^2\left(\frac{\theta + 2\pi k}{N_f}\right) \left(\frac{27m_\pi^4 \sin^2\left(\frac{\theta + 2\pi k}{N_f}\right)}{256 \ 2^{2/3}\pi^{4/3} a \ c_{4/3}^3 N_f^2} + \frac{5\left(\frac{9m_\pi^2}{64\pi\nu}\right)^2 \cos^2\left(\frac{\theta + 2\pi k}{N_f}\right)}{6c_{4/3}^4 N_f} - \frac{c_{2/3}}{2} \left(\frac{\rho}{2\pi^2 Q}\right)^{2/3} \right) \\ &\times \left(\frac{9m_\pi^2}{32\pi\nu}\right)^2 \left(\frac{1}{2\pi^2\rho}\right)^{4/3} \log Q - \frac{16}{9} \pi^2 c_{2/3} \nu^2 N_f m_\sigma^2 \left(\frac{1}{2\pi^2\rho}\right)^{4/3} \log Q \end{split}$$

•
$$(1 - \gamma) \ll 1$$

$$\frac{\Delta}{\Delta^*} = 1 - \left(\frac{9m_{\pi}^4}{64c_{4/3}^4}(1 - \gamma)\cos^2\left(\frac{\theta + 2\pi k}{N_f}\right) + \frac{16}{9}\pi^2 c_{2/3}\nu^2 N_f m_{\sigma}^2\right) \left(\frac{1}{2\pi^2\rho}\right)^{4/3} \log Q$$

 \blacksquare θ -angle physics of 2 color QCD

Winter School of Theoretical Physics Pałac Wojanów

Overview	
0000	

Solving QFT 000 0 Results 000000000000000 Backup slides

Spectrum

$$SU(2N_f) \times U(1)_A \xrightarrow{2N_f^2 - N_f} Sp(2N_f) \longrightarrow SU(N_f)_V \times U(1)_B \xrightarrow{\frac{N_f^2 - N_f}{2}} Sp(N_f)_V$$
(15)

 $\square \theta$ -angle physics of 2 color QCD

- Winter School of Theoretical Physics Pałac Wojanów
- 🍐 Alessandra D'Alise 🏛 Università degli studi di Napoli "Federico II"

Overview	Near Conformal Window	Solving QFT	Results	Backup slides
0000	00000	000	0000000000000	000000000000

$$\mathrm{SU}(2\mathrm{N}_{\mathrm{f}}) \times \mathrm{U}(1)_{\mathrm{A}} \xrightarrow{2\mathrm{N}_{\mathrm{f}}^2 - \mathrm{N}_{\mathrm{f}}} \mathrm{Sp}(2\mathrm{N}_{\mathrm{f}}) \longrightarrow \mathrm{SU}(\mathrm{N}_{\mathrm{f}})_{\mathrm{V}} \times \mathrm{U}(1)_{\mathrm{B}} \xrightarrow{\frac{\mathrm{N}_{\mathrm{f}}^2 - \mathrm{N}_{\mathrm{f}}}{\sim}} \mathrm{Sp}(\mathrm{N}_{\mathrm{f}})_{\mathrm{V}}$$
(15)

Having in mind the hierarchy of scales m $\ll \sqrt{a} \leq \mu \ll 4\pi\nu,$ we focus on the spectrum of light modes

 \blacksquare θ -angle physics of 2 color QCD

- Winter School of Theoretical Physics Pałac Wojanów
- 🍐 Alessandra D'Alise 🏛 Università degli studi di Napoli "Federico II"

Overview	Near Conformal Window	Solving QFT	Results	Backup slides
0000	00000	000	0000000000000	000000000000000000000000000000000000000

 $\operatorname{SU}(2N_{\mathrm{f}}) \times \operatorname{U}(1)_{\mathrm{A}} \xrightarrow{2N_{\mathrm{f}}^{2}-N_{\mathrm{f}}} \operatorname{Sp}(2N_{\mathrm{f}}) \longrightarrow \operatorname{SU}(N_{\mathrm{f}})_{\mathrm{V}} \times \operatorname{U}(1)_{\mathrm{B}} \xrightarrow{\frac{N_{\mathrm{f}}^{2}-N_{\mathrm{f}}}{\sim}} \operatorname{Sp}(N_{\mathrm{f}})_{\mathrm{V}}$ (15)

Having in mind the hierarchy of scales m $\ll \sqrt{a} \le \mu \ll 4\pi\nu$, we focus on the spectrum of light modes

- $\frac{1}{2}N_f(N_f 1)$ massless Goldstones: -+ of $Sp(N_f)$
- 1 pseudo-Goldstone of $Sp(N_f)$ with mass $\propto \sqrt{a}$

Overview	Near Conformal Window	Solving QFT	Results	Backup slides
0000	00000	000	0000000000000	000000000000000000000000000000000000000

 $SU(2N_f) \times U(1)_A \xrightarrow{2N_f^2 - N_f} Sp(2N_f) \longrightarrow SU(N_f)_V \times U(1)_B \xrightarrow{\frac{N_f^2 - N_f}{2}} Sp(N_f)_V$ (15)

Having in mind the hierarchy of scales $m \ll \sqrt{a} \le \mu \ll 4\pi\nu$, we focus on the spectrum of

light modes

- $\frac{1}{2}N_f(N_f 1)$ massless Goldstones: $\Box + \bullet$ of $Sp(N_f)$
- 1 pseudo-Goldstone of $Sp(N_f)$ with mass $\propto \sqrt{a}$

the spectrum changes when (near)conformal dynamics is realized through the dilaton dressing

 $\blacksquare \theta$ -angle physics of 2 color QCD

- Winter School of Theoretical Physics Pałac Wojanów
- 着 Alessandra D'Alise 🏛 Università degli studi di Napoli "Federico II"

Overview	Near Conformal Window	Solving QFT	Results	Backup slides
0000	00000	000	0000000000000	000000000000

 $\operatorname{SU}(2N_{\mathrm{f}}) \times \operatorname{U}(1)_{\mathrm{A}} \xrightarrow{2N_{\mathrm{f}}^{2} - N_{\mathrm{f}}} \operatorname{Sp}(2N_{\mathrm{f}}) \longrightarrow \operatorname{SU}(N_{\mathrm{f}})_{\mathrm{V}} \times \operatorname{U}(1)_{\mathrm{B}} \xrightarrow{\frac{N_{\mathrm{f}}^{2} - N_{\mathrm{f}}}{2}} \operatorname{Sp}(N_{\mathrm{f}})_{\mathrm{V}}$ (15)

Having in mind the hierarchy of scales $m \ll \sqrt{a} \le \mu \ll 4\pi\nu$, we focus on the spectrum of

light modes

- $\frac{1}{2}N_f(N_f 1)$ massless Goldstones: $\Box + \bullet$ of $Sp(N_f)$
- 1 pseudo-Goldstone of $Sp(N_f)$ with mass $\propto \sqrt{a}$

the spectrum changes when (near)conformal dynamics is realized through the dilaton dressing

we expand around the vacuum solution as follows

$$\Sigma = e^{i\Omega} \Sigma_0 e^{i\Omega^t} \quad \text{where} \quad \Omega = \begin{pmatrix} \pi & 0 \\ 0 & -\pi^t \end{pmatrix} + \tilde{\beta} S \begin{pmatrix} 1_{N_f} & 0 \\ 0 & 1_{N_f} \end{pmatrix}, \quad \tilde{\beta} \equiv \frac{1}{\sqrt{2N_f}}, \ \pi = \sum_{a=0}^{\dim \frac{U(N_f)}{S_P(N_f)}} \pi^a T_a$$

Near Conformal Window 00000 Solving QFT 000 0 Results 000000000000000 Backup slides

$$\frac{\mathcal{L}}{4\nu^2 \sin^2 \varphi \, \mathrm{e}^{-2\sigma_0 \mathrm{f}}} = \begin{pmatrix} \pi^0 & \hat{\sigma} & \mathrm{S} \end{pmatrix} \mathrm{D}^{-1} \begin{pmatrix} \pi^0 \\ \hat{\sigma} \\ \mathrm{S} \end{pmatrix} + \sum_{\mathrm{a}=1}^{\mathrm{dim}(\underbrace{\vdash})} \partial^{\mu} \pi^{\mathrm{a}} \partial_{\mu} \pi^{\mathrm{a}}$$
(16)

 $\square \theta$ -angle physics of 2 color QCD

Winter School of Theoretical Physics Pałac Wojanów

 Backup slides

$$\frac{\mathcal{L}}{4\nu^2 \sin^2 \varphi \, \mathrm{e}^{-2\sigma_0 \mathrm{f}}} = \begin{pmatrix} \pi^0 & \hat{\sigma} & \mathrm{S} \end{pmatrix} \mathrm{D}^{-1} \begin{pmatrix} \pi^0 \\ \hat{\sigma} \\ \mathrm{S} \end{pmatrix} + \sum_{\mathrm{a}=1}^{\mathrm{dim}(\square)} \partial^{\mu} \pi^{\mathrm{a}} \partial_{\mu} \pi^{\mathrm{a}}$$
(16)

with the inverse propagator D^{-1} defined as

$$D^{-1} = \begin{pmatrix} \omega^{2} - k^{2} & i\omega\mu f\sqrt{2N_{f}} & 0\\ -i\omega\mu f\sqrt{2N_{f}} & \frac{\omega^{2} - k^{2}}{8\nu^{2}\sin^{2}\varphi} - M_{\sigma}^{2} & \frac{1}{2}I_{\hat{\sigma}s} \\ 0 & \frac{1}{2}I_{\hat{\sigma}s} & \frac{(\omega^{2} - k^{2})}{\sin^{2}\varphi} - M_{s}^{2} \end{pmatrix}, \qquad I_{\hat{\sigma}S} = \frac{\sqrt{2}f\mu^{2}m_{\pi}^{4}\sqrt{N_{f}}XyZ}{m_{\pi}^{4}X^{2} - \mu^{4}N_{f}^{2}e^{2f\sigma_{0}(y-2)}}$$
(17)

 $\square \theta$ -angle physics of 2 color QCD

Winter School of Theoretical Physics Pałac Wojanów

$$\frac{\mathcal{L}}{4\nu^2 \sin^2 \varphi \, \mathrm{e}^{-2\sigma_0 \mathrm{f}}} = \begin{pmatrix} \pi^0 & \hat{\sigma} & \mathrm{S} \end{pmatrix} \mathrm{D}^{-1} \begin{pmatrix} \pi^0 \\ \hat{\sigma} \\ \mathrm{S} \end{pmatrix} + \sum_{\mathrm{a}=1}^{\mathrm{dim}(\underbrace{\vdash})} \partial^{\mu} \pi^{\mathrm{a}} \partial_{\mu} \pi^{\mathrm{a}}$$
(16)

with the inverse propagator D^{-1} defined as

$$D^{-1} = \begin{pmatrix} \omega^{2} - k^{2} & i\omega\mu f\sqrt{2N_{f}} & 0\\ -i\omega\mu f\sqrt{2N_{f}} & \frac{\omega^{2} - k^{2}}{8\nu^{2}\sin^{2}\varphi} - M_{\sigma}^{2} & \frac{1}{2}I_{\hat{\sigma}s} \\ 0 & \frac{1}{2}I_{\hat{\sigma}s} & \frac{(\omega^{2} - k^{2})}{\sin^{2}\varphi} - M_{s}^{2} \end{pmatrix}, \qquad I_{\hat{\sigma}S} = \frac{\sqrt{2}f\mu^{2}m_{\pi}^{4}\sqrt{N_{f}}XyZ}{m_{\pi}^{4}X^{2} - \mu^{4}N_{f}^{2}e^{2f\sigma_{0}(y-2)}}$$
(17)

where $Z \equiv \sum_{i=1}^{N_f} \sin \alpha_i$ and the Lagrangian masses for the dilaton-field and the S mode are given by

COSE

$$M_{\sigma}^{2} = -\frac{f^{2}\mu^{2}N_{f}e^{-6f\sigma_{0}}\left(\nu^{2}m_{\pi}^{4}X^{2}\left(y^{2}-2\right)e^{6f\sigma_{0}}+2\mu^{4}\nu^{2}N_{f}^{2}e^{2f\sigma_{0}(y+1)}-4\Lambda^{4}\mu^{2}N_{f}e^{2f\sigma_{0}y}\right)}{2\nu^{2}\left(\mu^{4}N_{f}^{2}e^{2f\sigma_{0}(y-2)}-m_{\pi}^{4}X^{2}\right)}$$
(18)

$$M_{\rm S}^2 = \frac{a\mu^4 N_{\rm f}^3 e^{2f\sigma_0(y-1)} + 2\mu^2 m_\pi^4 X^2 e^{4f\sigma_0}}{2\mu^4 N_{\rm f}^2 e^{2f\sigma_0 y} - 2m_\pi^4 X^2 e^{4f\sigma_0}} .$$
(19)

 \blacksquare θ -angle physics of 2 color QCD

Winter School of Theoretical Physics Pałac Wojanów

Near Conformal Window 00000 Solving QFT

Results 0000000000000000 Backup slides

 $\square \theta$ -angle physics of 2 color QCD

Winter School of Theoretical Physics Pałac Wojanów

Near Conformal Window 00000 Solving QFT 000 Results 0000000000000000 Backup slides

 $\begin{array}{l} \text{conformal invariance} \\ \text{dictates the existence of a massless} \\ \text{mode with speed} \\ \text{v}_{\text{G}} = \frac{1}{\sqrt{d-1}} = \frac{1}{\sqrt{3}} \\ \\ \text{[Orlando:2019skh]} \end{array}$

mixing between the singlet mode π_0 with the dilaton

 $\square \theta$ -angle physics of 2 color QCD

Winter School of Theoretical Physics Pałac Wojanów

Near Conformal Window 00000 Solving QFT

Results 0000000000000000 Backup slides

 $\exists \theta$ -angle physics of 2 color QCD

Winter School of Theoretical Physics Pałac Wojanów

In the large-charge limit, the above reduces to

$$\gamma \ll 1: \quad \omega_2 = k \left[\frac{1}{\sqrt{3}} + \frac{\sqrt{3} X_{00}^2}{(2\pi^2)^{2/3} c_{4/3}^5 N_f^3} \left(\frac{9m_\pi^2}{128\pi\nu} \right)^2 \left(\frac{V}{Q} \right)^{2/3} + \dots \right] + \mathcal{O}(k^2)$$

$$(1 - \gamma) \ll 1: \quad \omega_2 = k \left[\frac{1}{\sqrt{3}} + 1 \left(\frac{2^{5/3} c_{2/3} \nu^2 m_\sigma^2}{3\sqrt{3}\pi^{2/3}} + \frac{9\sqrt{3}m_\pi^4 X_{00}^2}{128\sqrt[3]{2}\pi^{8/3} c_{4/3}^4 N_f^2} \right) \left(\frac{V}{Q} \right)^{4/3} + \dots \right] + \mathcal{O}(k^2)$$

 \blacksquare θ -angle physics of 2 color QCD

O Winter School of Theoretical Physics Pałac Wojanów

🐣 Alessandra D'Alise 🏛 Università degli studi di Napoli "Federico II"

Near Conformal Window 00000 Solving QFT

Results 0000000000000 Backup slides

Thank you 🖸

 $\square \theta$ -angle physics of 2 color QCD

Winter School of Theoretical Physics Pałac Wojanów

🐣 Alessandra D'Alise 🧰 Università degli studi di Napoli "Federico II"

Backup slides

Near Conformal Window 00000

Solving QFT

Results 00000000000000

Large charge setup

we will consider our system on a manifold \mathcal{M} with volume V and curvature R such that the underlying new scale of the theory is

$$\Lambda_{\mathbf{Q}} = (\mathbf{Q}/\mathbf{V})^{1/3} \tag{20}$$

where Q is the fixed baryon charge. Concretely, we will take our manifold to be

$$\mathcal{M} = \mathbb{R} \times \mathrm{S}^{\mathrm{d}-1} \tag{21}$$

such that we can consider an approximate state-operator correspondence that implies

$$\Delta_{\mathbf{Q}} = \tilde{\mathbf{V}}^{1/3} \mathbf{E}_{\mathbf{Q}} \,, \qquad \mathbf{E}_{\mathbf{Q}} = \mu \mathbf{Q} - \mathcal{L} \tag{22}$$

where $\Delta_{\rm Q}$ is the scaling dimension of the lowest-lying operator with baryon charge Q, $E_{\rm Q}$ is the ground state energy on $\mathbb{R} \times {\rm S}^{d-1}$ at fixed charge, $\tilde{\rm V}^{1/3}$ is the radius of ${\rm S}^{d-1}$.

 $\blacksquare \theta$ -angle physics of 2 color QCD

Winter School of Theoretical Physics Pałac Wojanów

🔺 Alessandra D'Alise 🏛 Università degli studi di Napoli "Federico II"

Near Conformal Window 00000

Solving QF

Results 0000000000000 Backup slides

Large charge expansion of the θ -angle physics

we double-expanded X first in γ and then also in $1/{\rm Q}$ as follows

$$\begin{split} X &= X_0 + X_1 \gamma + \left(\gamma^2\right) \,, & X_k = X_{k0} + \frac{X_{k1}}{Q^{2/3}} + \left(Q^{-4/3}\right) \,, & \text{for } \gamma \ll 1 \\ X &= X_0 + X_1 (1-\gamma) + \left((1-\gamma)^2\right) \,, & X_k = X_{k0} + \frac{X_{k1}}{Q^{4/3}} + \left(Q^{-2}\right) \,, & \text{for } 1-\gamma \ll 1 \,. \end{split}$$

where

$$\begin{aligned} X_{00} &= N_{\rm f} \cos\left(\frac{\theta + 2k\pi}{N_{\rm f}}\right) & \theta_{00} &= 0 \\ X_{01} &= \frac{9m_{\pi}^4 \sin^2\left(\frac{\theta + 2k\pi}{N_{\rm f}}\right) \cos\left(\frac{\theta + 2k\pi}{N_{\rm f}}\right)}{8\ 2^{2/3}\pi^{4/3} {\rm a}\ c_{4/3}^2} & \bar{\theta}_{01} &= \frac{m_{\pi}^2 X_{00} \sin\left(\frac{\theta + 2\pi k}{N_{\rm f}}\right)}{{\rm aN}_{\rm f}} \\ \bar{\theta}_{10} &= 0 \\ X_{10} &= 0 \\ X_{11} &= 0 & \bar{\theta}_{11} &= \frac{3m_{\pi}^2 \sin\left(\frac{2(\theta + 2\pi k)}{N_{\rm f}}\right) \log\left(\frac{8192\pi^2 c_{4/3}^3 N_{\rm f}^3 v^6}{27Q^2}\right)}{32\ 2^{2/3}\pi^{4/3} {\rm a}\ c_{4/3}^2} \end{aligned}$$

 $\blacksquare~\theta\text{-angle physics of 2 color QCD}$

Winter School of Theoretical Physics Pałac Wojanów

🔮 Alessandra D'Alise 🏛 Università degli studi di Napoli "Federico II"

Near Conformal Window 00000 Solving QF'

Results

Backup slides

EOMs for the Witten variables

The equations of motion read

$$\sin\varphi \left(N_{\rm f} \cos\varphi - \frac{m_\pi^2}{\mu^2} X \right) = 0 \tag{23}$$

$$2m_{\pi}^2 \sin \alpha_i \cos \varphi = a\bar{\theta}, \quad i = 1, .., N_f$$
 (24)

and the energy of the system is

$$\begin{split} \mathbf{E} &= -\nu^2 \left[4\mathbf{m}_\pi^2 \mathbf{X} - \mathbf{a}\bar{\theta}^2 \right] \,, \qquad \text{normal phase } (\varphi = 0) \end{split} \tag{25} \\ \mathbf{E} &= -\nu^2 \left[2 \frac{\mathbf{N}_{\mathrm{f}}^2 \mu^4 + \mathbf{m}_\pi^4 \mathbf{X}^2}{\mathbf{N}_{\mathrm{f}} \mu^2} - \mathbf{a}\bar{\theta}^2 \right] \,, \qquad \text{superfluid phase } \left(\cos \varphi = \frac{\mathbf{m}_\pi^2}{\mathbf{N}_{\mathrm{f}} \mu^2} \mathbf{X} \right) \,. \end{aligned} \tag{26}$$

In the normal phase, the Witten variables are related to θ by the well-known equation

$$2m_{\pi}^{2}\sin\alpha_{i} = a\bar{\theta} = a\left(\theta - \sum_{i}^{N_{f}}\alpha_{i}\right) .$$
⁽²⁷⁾

For the general solution we must have for any $\bar{\theta}$ fixed $\sin \alpha_i = \sin \alpha_j$. To solve for the α_i we consider the expansion in the parameter $\frac{m_{\pi}^2}{a} \ll 1$.

CCCC

Winter School of Theoretical Physics Pałac Wojanów

🍐 Alessandra D'Alise 🧰 Università degli studi di Napoli "Federico II"

)ve	rvi	ew	
000	С		

Federico I

Near Conformal Window

Backup slides 000000000000

EOMs for the Witten variables

at the leading order one needs to solve for $\bar{\theta} = 0$ and the angles α_i satisfy

$$\alpha_{i} = \begin{cases} \pi - \alpha, & i = 1, \dots, n \\ \alpha, & i = n + 1, \dots, N_{f} \end{cases}$$
(28)

where α is the solution of the following modular equation

$$n(\pi - \alpha) + (N_f - n)\alpha = \theta \text{ Mod } 2\pi .$$
(29)

The modulo comes from the fact that if a solution $\{\alpha_i\}$ of eq.(27) is found, then it is possible to build another solution as follows

> $\alpha_1(\theta + 2\pi) = \alpha_1(\theta) + 2\pi$, $\alpha_i(\theta + 2\pi) = \alpha_i(\theta)$, $i = 2, \dots, N_f$. (30)

However, since the physics depends only on $e^{-i\alpha_i}$, the dynamics is invariant under $\theta \to \theta + 2\pi$. The solution of eq.(29) can be written as

$$\alpha = \frac{\theta + (2k - n)\pi}{(N_f - 2n)}, \quad k = 0, \dots, N_f - 2n - 1, \quad n = 0, \dots, \left[\frac{N_f - 1}{2}\right].$$
(31)

The range for k above emerges because for $k \ge N_f - 2n$ we repeat the solution for a given n.

 $\exists \theta$ -angle physics of 2 color QCD

Winter School of Theoretical Physics Pałac Wojanów

å Alessandra D'Alise 🏛 Università degli studi di Napoli "Federico II"

Overview	Near Conformal Window	Solving QFT	Results	Backup slides
0000	00000	000	000000000000	00000000000

one can ask when two different solutions of the equation of motion can have the same energy. This corresponds to requiring

$$\cos\left(\frac{\theta + 2\pi k_1}{N_f}\right) = \cos\left(\frac{\theta + 2\pi k_2}{N_f}\right) , \qquad \text{normal phase} \qquad (32)$$
$$\cos^2\left(\frac{\theta + 2\pi k_1}{N_f}\right) = \cos^2\left(\frac{\theta + 2\pi k_2}{N_f}\right) , \qquad \text{superfluid phase} . \qquad (33)$$

• Both conditions are satisfied when
$$k_1 = -\frac{\theta}{\pi} - k_2 + N_f$$
.

- k₁ and k₂ are integers
- It is sufficient to consider the case $k_1 = 0$ that for $[0, \pi]$ interval corresponds to the ground state energy, furthermore at $\theta = \pi$ it forces the second solution to be $k_2 = N_f 1$

 $\exists \theta$ -angle physics of 2 color QCD

Winter School of Theoretical Physics Pałac Wojanów

🔺 Alessandra D'Alise 🧰 Università degli studi di Napoli "Federico II"

Near Conformal Window 00000

Solving QFT

Results 00000000000000 Backup slides

Superfluid $N_{\rm f}$ odd

we have the solution
$$k_1 = -k_2 + \frac{N_f}{2} - \frac{\theta}{\pi}$$
 which can be realized for

□ θ-angle physics of 2 color QCD

Winter School of Theoretical Physics Pałac Wojanów

🍐 Alessandra D'Alise 🏛 Università degli studi di Napoli "Federico II"

Near Conformal Window 00000

Solving QFT

Results 00000000000000 Backup slides

CP breaking

- Note that when $n \neq 0$, the vacuum spontaneously breaks $Sp(2N_f)$ because of the different phases for each quark flavour.
- CP is preserved when $\bar{\theta} = 0$. For equal mass quarks as considered here, this happens when $m_{\pi} = 0$ or $\theta = 0$.
- For $\theta = \pi$ the Lagrangian possess CP symmetry but in the normal phase the latter is spontaneously broken by the vacuum [Dashen:1970et,DiVecchia:2013swa,Gaiotto:2017tne,DiVecchia:2017xpu], leading to a strong θ -dependence near $\theta = \pi$.

 $\exists \theta$ -angle physics of 2 color QCD

- Winter School of Theoretical Physics Pałac Wojanów
- 着 Alessandra D'Alise 🧰 Università degli studi di Napoli "Federico II"

Near Conformal Window 00000 Solving QFT

Results 00000000000000 Backup slides

CP breaking

assuming that the ground state does not break ${\rm Sp}(2N_{\rm f})$ spontaneously (i.e. n = 0), the vacua lie at [Gaiotto:2017tne]

$$U(\alpha_i) = e^{i\frac{\theta + 2\pi k}{N_f}} \mathbb{1}_{2N_f} .$$
(34)

For $\theta = \pi$ one has $X = \cos\left(\frac{(2k+1)\pi}{N_f}\right)$, which is maximized when k = 0 and $k = N_f - 1$, that is

$$U(\alpha_i) = e^{\frac{i\pi}{N_f}} \mathbb{1}_{2N_f}, \qquad U(\alpha_i) = e^{-\frac{i\pi}{N_f}} \mathbb{1}_{2N_f}.$$
(35)

The two solutions are related by a CP transformation $U \rightarrow U^{\dagger}$ and thus CP is spontaneously broken.

 $\blacksquare \theta$ -angle physics of 2 color QCD

Winter School of Theoretical Physics Pałac Wojanów

🔺 Alessandra D'Alise 🏛 Università degli studi di Napoli "Federico II"

Overview 0000	Near Conformal Window 00000	Solving QFT 000 0	Results 000000000000	Backup slides 000000000●00

CP breaking $N_f = 2$

For $\rm N_f>2$ the minima are separated by an energy barrier while for $\rm N_f=2$ the leading order quark-mass induced potential vanishes $_{\rm [Smilga:1998dh]}$, apparently leading to a paradoxical situation according to which one has massless pions and no explicit breaking of chiral symmetry.

Figure: θ -dependence of the energy for $N_f = 2$.

 $\exists \theta$ -angle physics of 2 color QCD

- Winter School of Theoretical Physics Pałac Wojanów
- 🔺 Alessandra D'Alise 🏛 Università degli studi di Napoli "Federico II"

Near Conformal Window 00000

Solving QFT

Results 00000000000000 Backup slides

Transformation properties of the fields

	[SU(2)]	$\rm SU(N_f)_L$	×	${\rm SU}({\rm N}_{\rm f})_{\rm R}$	×	$U(1)_V$	×	$U(1)_A$
$q_{\rm L}$				1		+1		+1
$\mathrm{i}\sigma_{2} au_{2}\mathrm{q}_{\mathrm{R}}^{*}$		1		$\overline{\Box}$		-1		+1
	[SU(2)]	$SU(2N_f)$	×	$U(1)_A$				
Q				+1				

Table: Transformation properties of q_L , $i\sigma_2\tau_2q_R^*$ and Q under the action of the symmetry groups.

 $\exists \theta$ -angle physics of 2 color QCD

Winter School of Theoretical Physics Pałac Wojanów

着 Alessandra D'Alise 🏛 Università degli studi di Napoli "Federico II"

Overview	Near Conformal Window	Solving QFT	Results	Backup slides
0000	00000	000	000000000000	00000000000

Axion

We denote by ν_{PQ} the scale of U(1)_{PQ} spontaneous symmetry breaking and by a_{PQ} the coefficient of the $U(1)_{PQ}$ anomalous term.

$$\mathcal{L}_{\hat{a}} = \nu^{2} \operatorname{Tr}\{\partial_{\mu} \Sigma \partial^{\mu} \Sigma^{\dagger}\} + \nu_{PQ}^{2} \partial_{\mu} N \partial^{\mu} N^{\dagger} + 4\mu \nu^{2} \operatorname{Tr}\{B\Sigma^{\dagger} \partial_{0} \Sigma\} + m_{\pi}^{2} \nu^{2} \operatorname{Tr}\{M\Sigma + M^{\dagger} \Sigma^{\dagger}\}$$

$$+ 2\mu^{2} \nu^{2} \left[\operatorname{Tr}\{\Sigma B^{T} \Sigma^{\dagger} B\} + \operatorname{Tr}\{BB\}\right] - a\nu^{2} \left(\theta - \frac{i}{4} \operatorname{Tr}\{\log \Sigma - \log \Sigma^{\dagger}\} - \frac{i}{4} a_{PQ} (\log N - \log N^{\dagger})\right)^{2}.$$

$$(36)$$

 $\exists \theta$ -angle physics of 2 color OCD

1

Winter School of Theoretical Physics Pałac Wojanów

着 Alessandra D'Alise 🏛 Università degli studi di Napoli "Federico II"

\