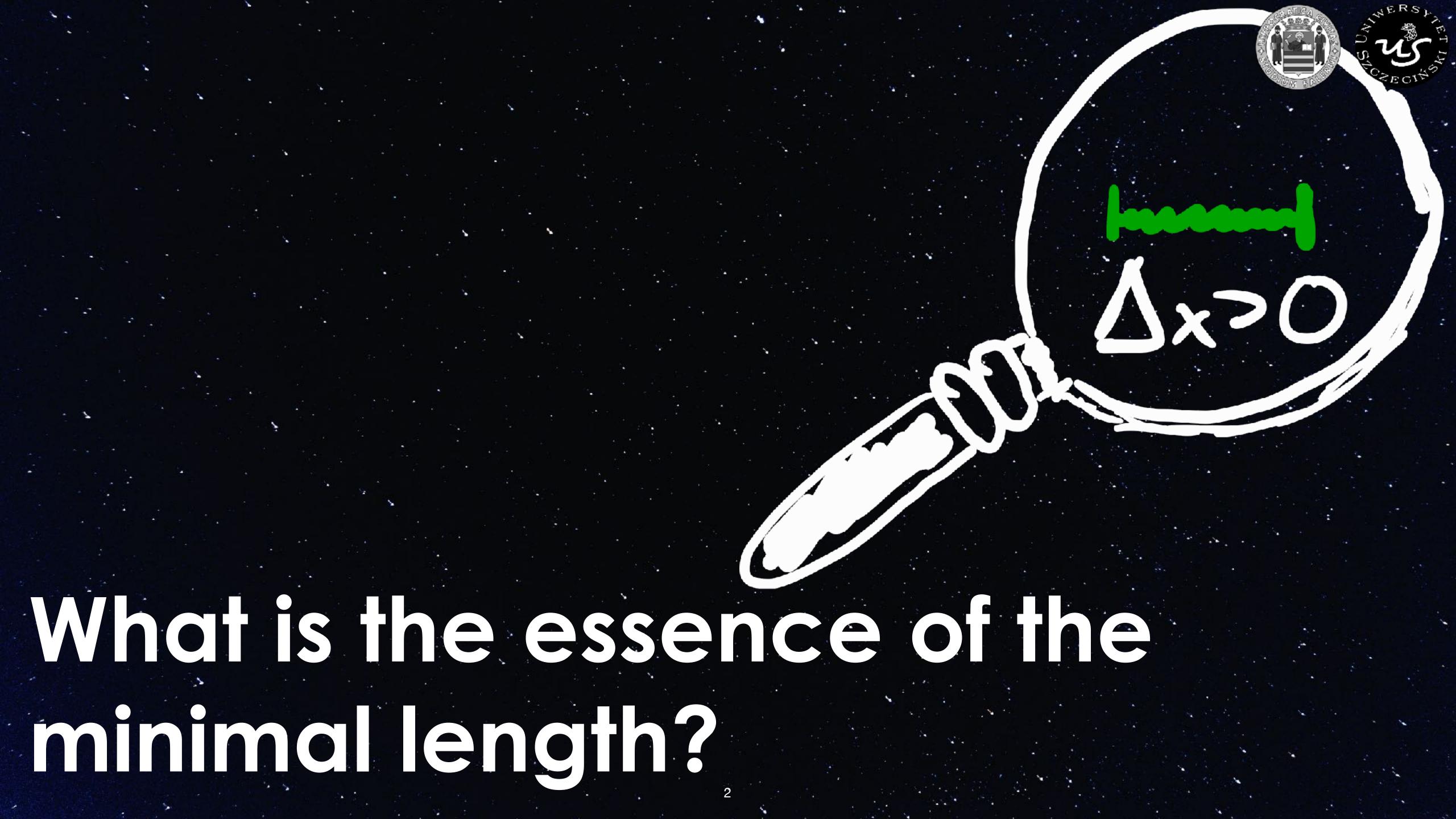
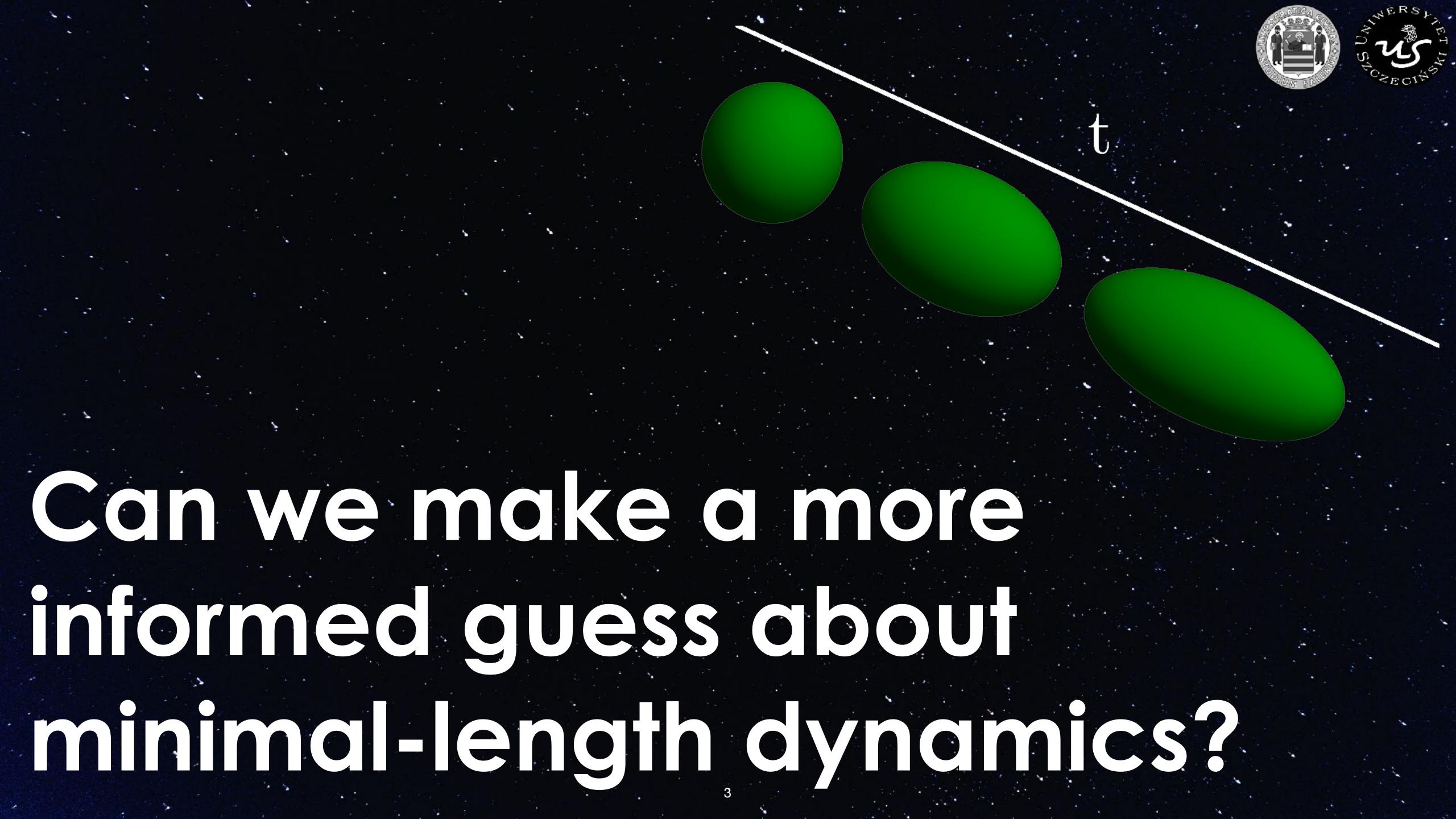
Fabian Wagner, 29/05/2023 QGMM 2023

A new perspective on minimal-length quantum mechanics





Overview

Introduction to the conventional model The essence of the minimal length Minimal-length compatible relativity principles Conclusion

Deformed Heisenberg algebra

 $[\hat{x}, \hat{p}] = if(\hat{p})$

Deformed Heisenberg $[\hat{x}, \hat{p}] = if(\hat{p})$

Robertson-Schrödinger

 $\Delta x \Delta p \geq -\langle f \rangle$

Deformed Heisenberg $[\hat{x}, \hat{p}] = i(1 + \ell^2 \hat{p}^2)$

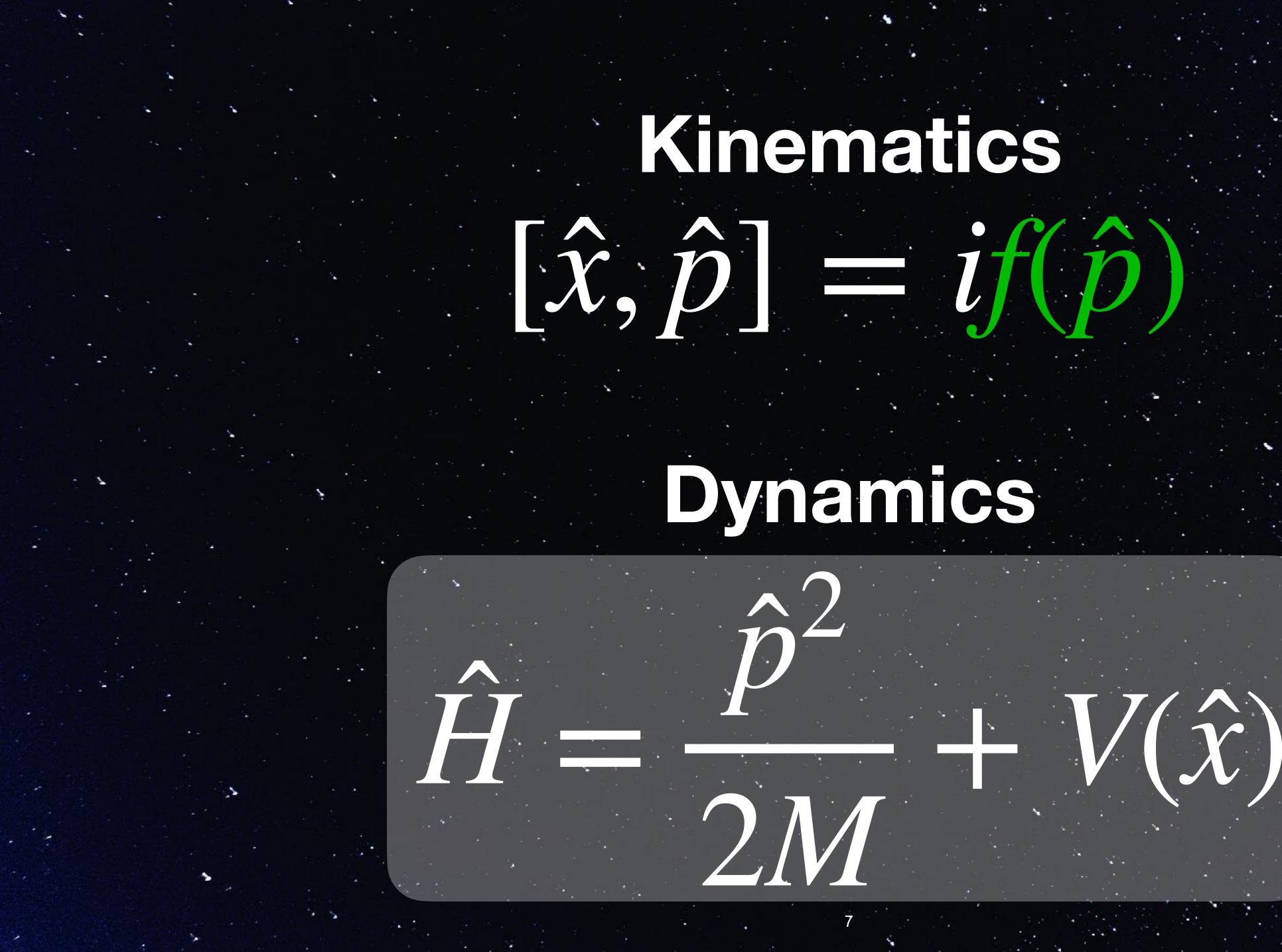
Kempf, Mangano, Mann (1994)

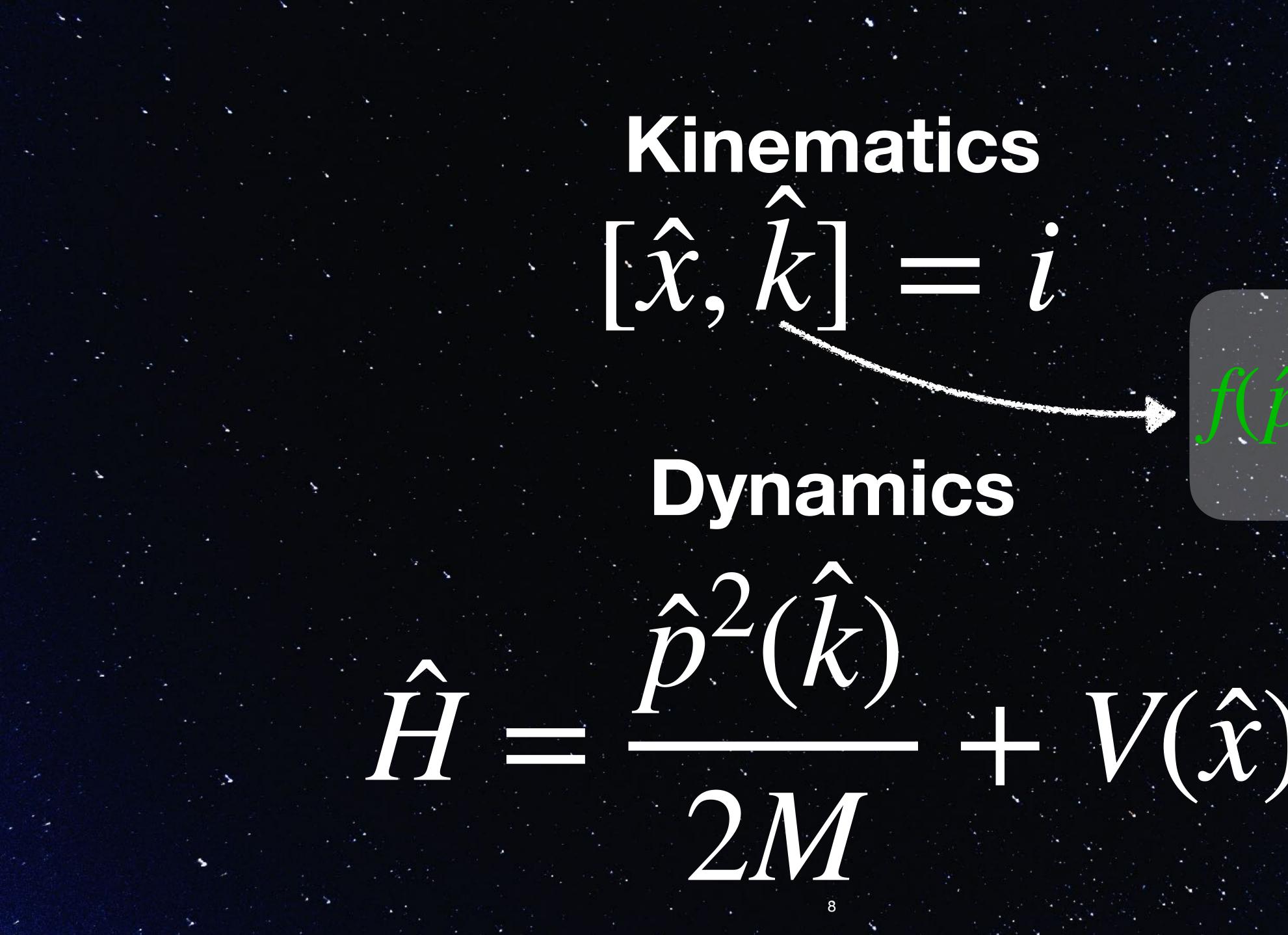
Robertson-Schrödinger

Deformed Heisenberg **OBEDIO** pf, Many

o, <u>(</u>1994)

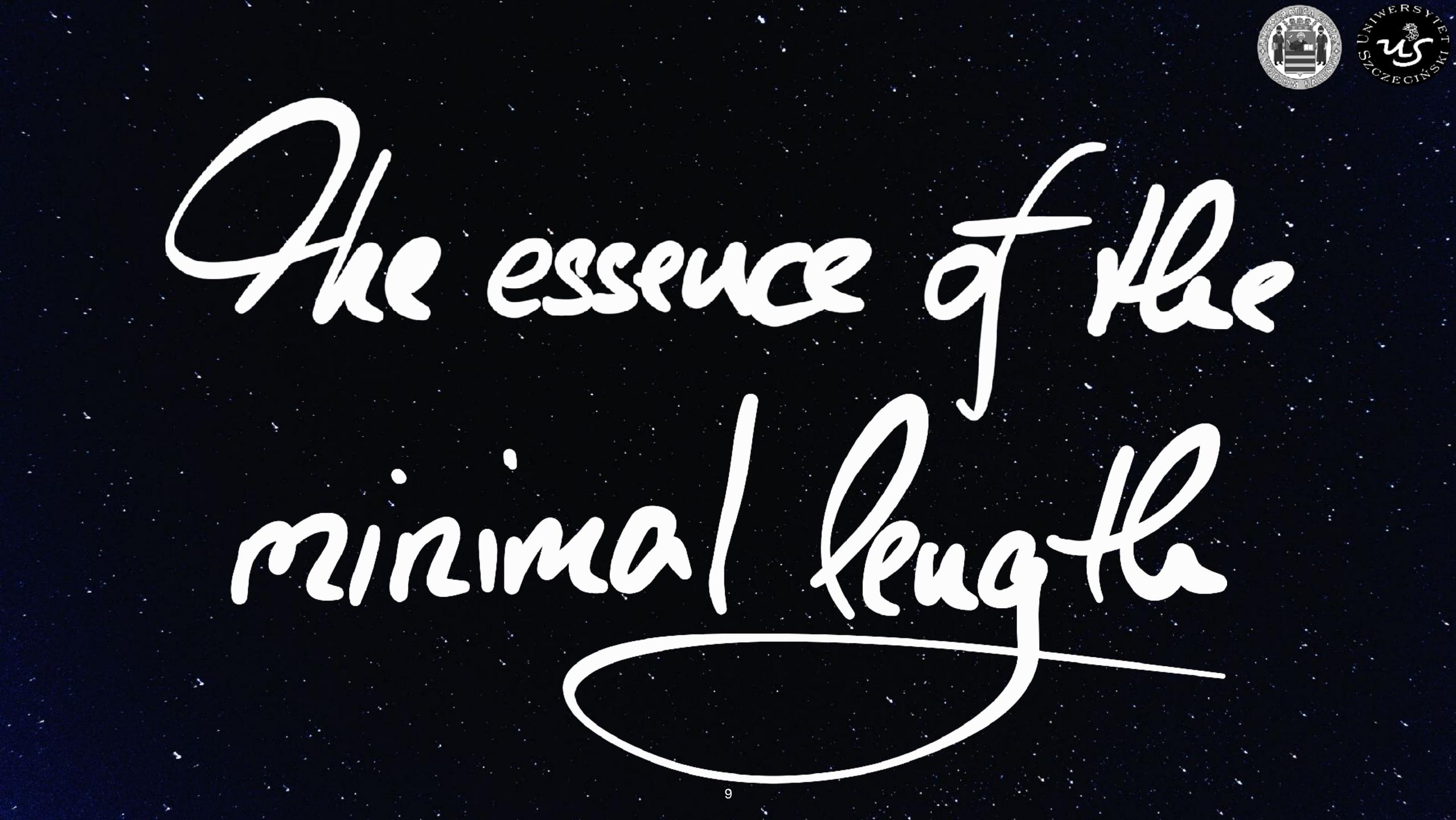
Robertsch-Schrödinger





dp

dk



The minimal length as starting point

The minimal length as storing point • Δx invariant under translations $\rightarrow \ell = \sqrt{\lambda_0}$ smallest eigenvalue of \hat{x}^2 •put system into box in k-space $-B \leq k \leq B$

Í

 $\sqrt{\lambda_0} = \frac{1}{2B}$

The minimal length as storing point • Δx invariant under translations $\rightarrow \ell = \sqrt{\lambda_0}$ smallest eigenvalue of \hat{x}^2 •put system into box in k-space $-B \leq k \leq B$

π

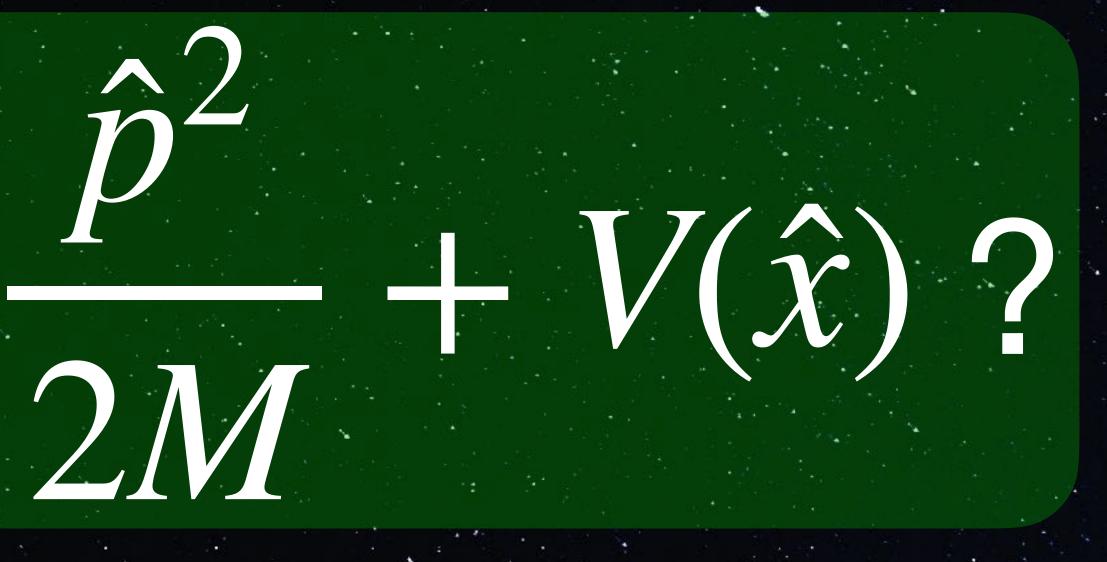
 $[\hat{x}, \hat{p}] = i\sqrt{1 + l^2 \hat{p}^2}$

Maggiore (1993), Fadel, Maggiore (2021)

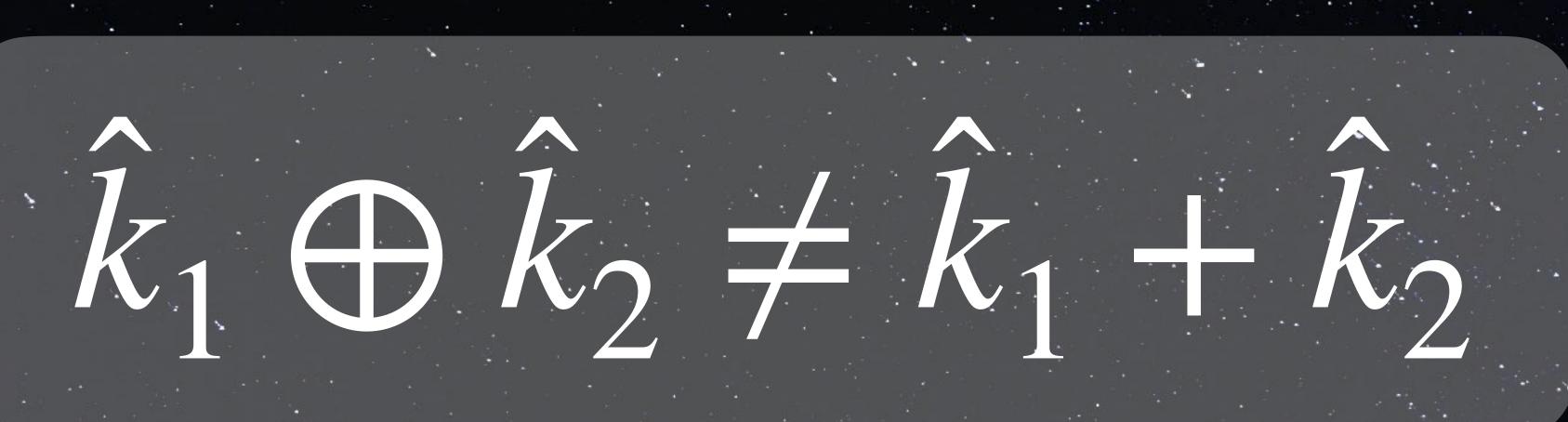
Summery

Why $\hat{H} =$

•minimal length = cut-off in wave-number space • \hat{p} and deformed Heisenberg = additional structure



Wave-number addition minimal length = cut-off in wave-number space



Deformed Galilean minimal length = cut-off in wave-number space

 $[k, H_0] = 0$

[G,k] = iMg(k)

 $[G, H_0] = \iota H_0(k)g(k)$

Relativity principle: Consequences • $\hat{k}_A \oplus \hat{k}_B$ associative and commutative • $\exists \hat{p} = p(\hat{k})$ such that

deformed Heisenberg algebra:

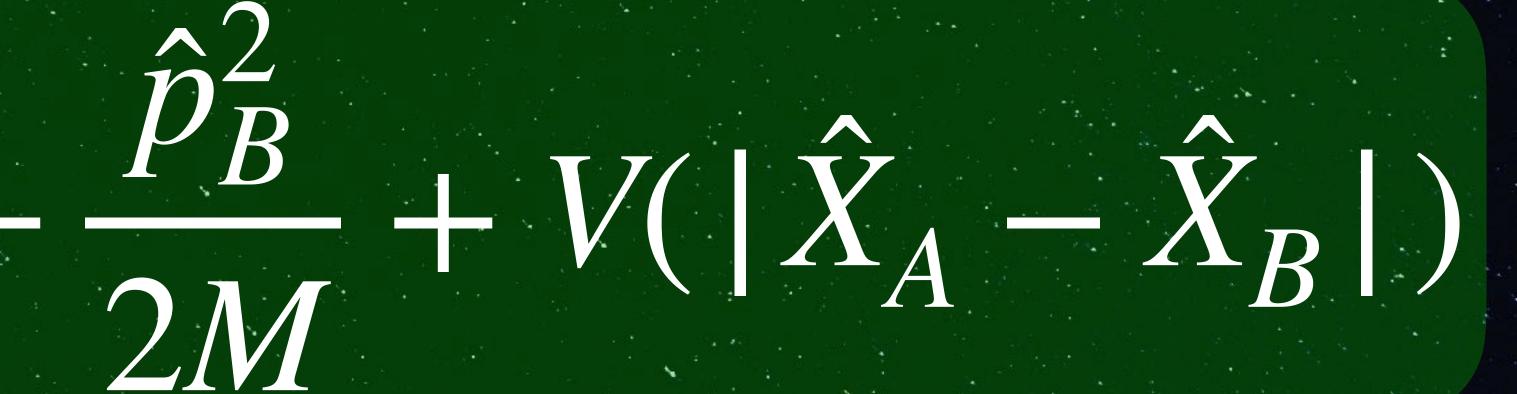
 $[\hat{x}, p(k)] = ip'(k) \equiv if(\hat{p})$

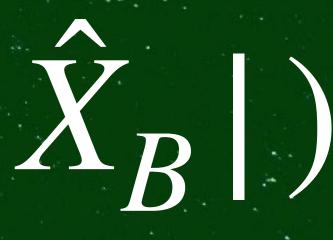
15

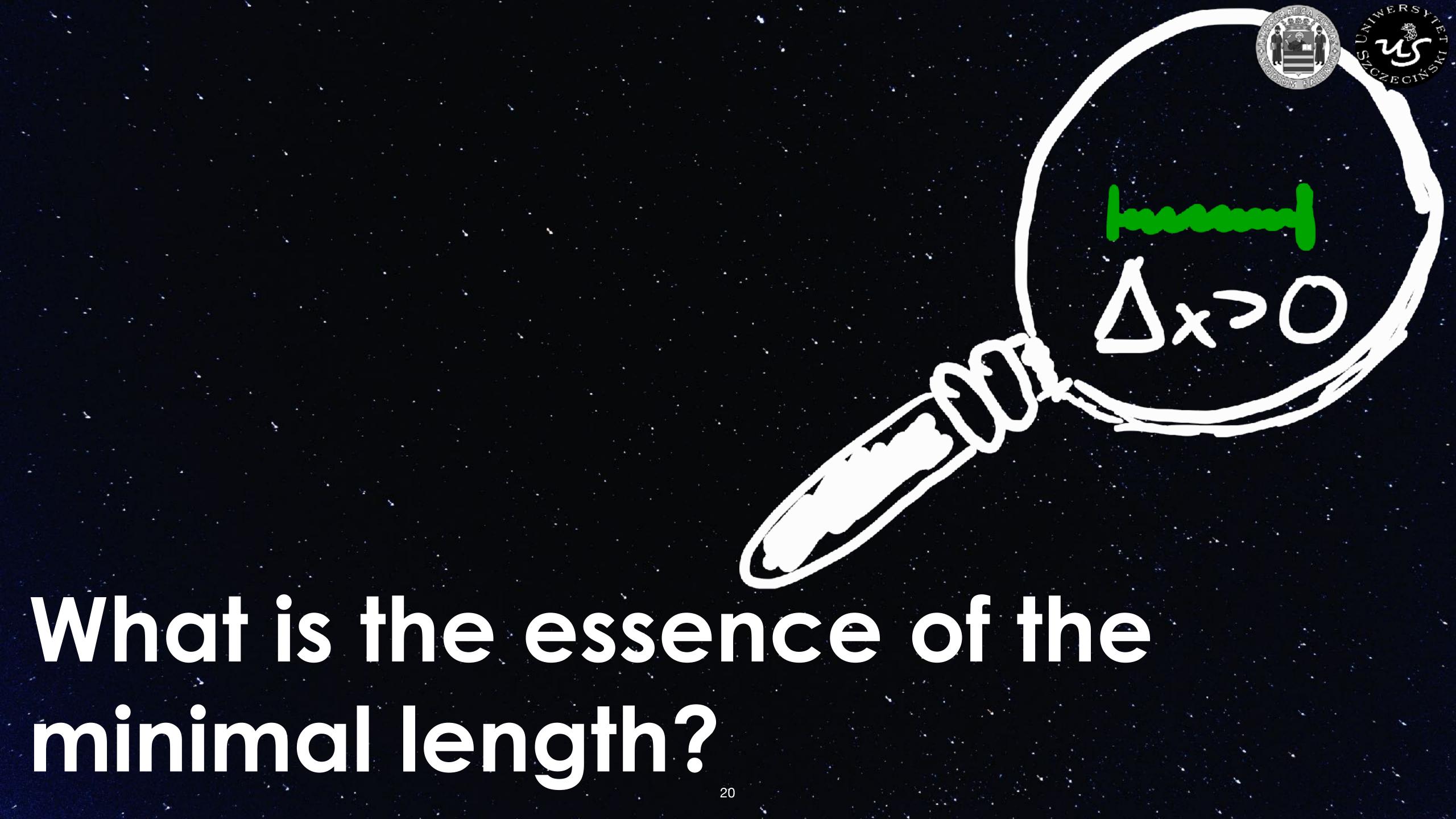
Relativity principle: Consequences

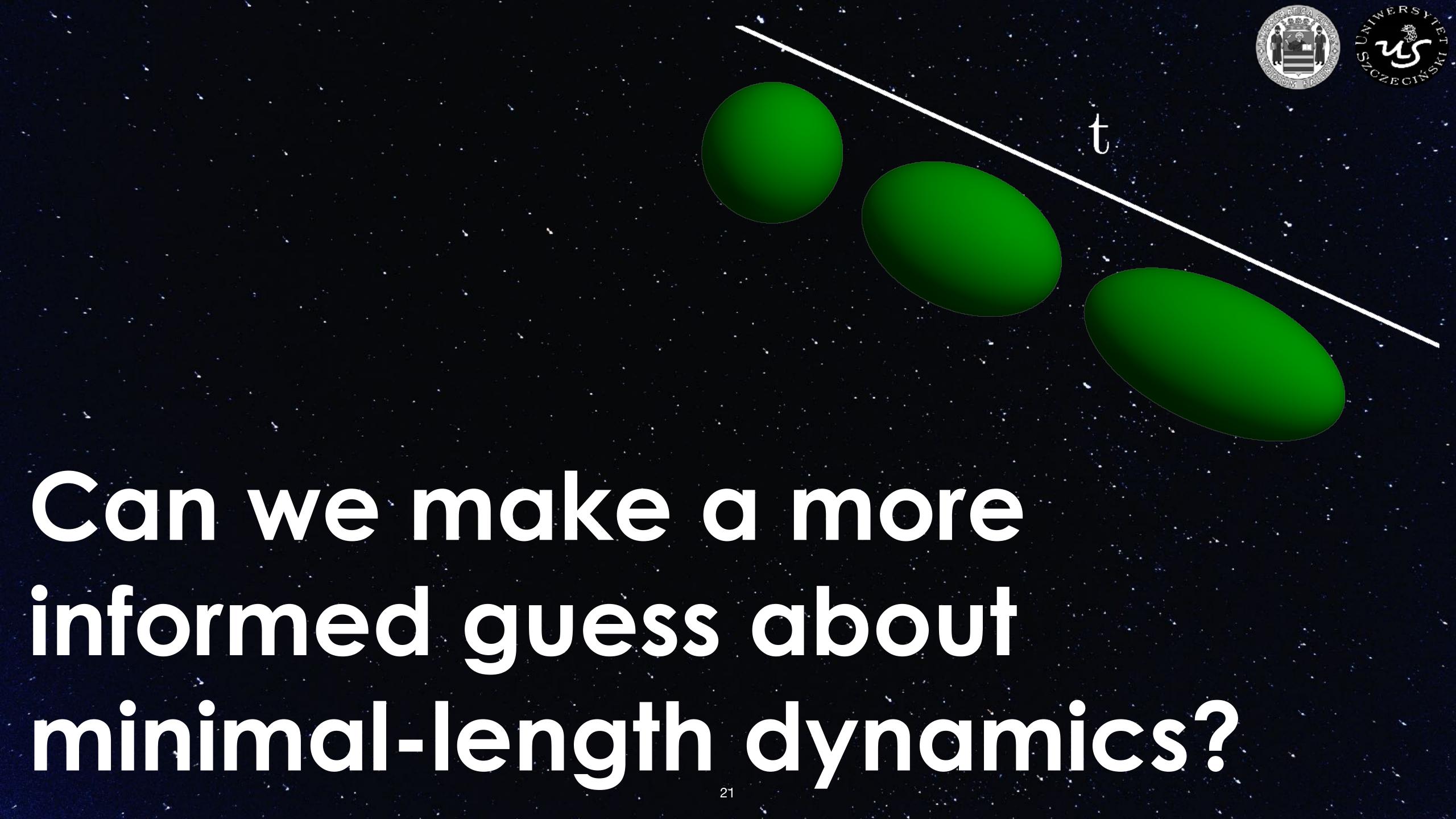
p_A

•momentum-space diffeomorphism = canonical trafo









Tckeaways

 minimal length = cut-off in wave-number space • momentum \hat{p} and GUP = additional structure Choice of Hamiltonian rather arbitrary Hamiltonian from deformed relativity principle • momentum \hat{p} and GUP emerge dynamics canonically related to Galilean one \rightarrow nontrivial evolution of positions \rightarrow relative-locality like effects

