New physics from highenergy cosmic messengers

Mauricio Bustamante Niels Bohr Institute, University of Copenhagen

Quantum gravity phenomenology in the multi-messenger approach July 13, 2023

VILLUM FONDEN

New physics from highenergy cosmic messengers

Mauricio Bustamante Niels Bohr Institute, University of Copenhagen

Quantum gravity phenomenology in the multi-messenger approach July 13, 2023

VILLUM FONDEN

Synergies with lower energies

Synergies with lower energies

TeV–PeV ν

Today Next decade > 100 -PeV v

ν self-interactions

ν self-interactions

TXS 0506+056

IceCube HESE

6 years
6 years

SN 1987
Shalear ei

Lab g_c

MB, Rosenstrøm, Shalgar, Tamborra, *PRD* 2020

 $\phi\beta\beta(\alpha=e)$

BBN $(\Delta N_{\rm eff} = 1)$

 -5 -4 -3 -2 -1 0 1 2 3 4 5
Mediator mass $\log_{10}(M/\text{MeV})$

 0_m

 \mathcal{L}

 $\overline{}$

 $\overline{}$

 -4

 -5

Mediator coupling $\log_{10}(g_{\alpha\alpha})$

ν scattering on Galactic DM

Argüelles, Kheirandish, Vincent, *PRL* 2017

ν decay

ν self-interactions

TXS 0506+056

 $4\overline{5}$

IceCube HESE 6 years
6 years

-51N-1987
Salama

Lab g_e

MB, Rosenstrøm, Shalgar, Tamborra, *PRD* 2020

 $\phi\beta\beta(\alpha=e)$

BBN $(\Delta N_{\alpha} = 1)$

 -5 -4 -3 -2 -1 0 1 2 3
Mediator mass $\log_{10}(M/\text{MeV})$

<u>a da calca a basalan da basala sa basalan s</u>

 Ω

 $-$

coupling $\log_{10}(g_{\alpha\alpha})$

Mediator

 -5

 -6 L

ν scattering on Galactic DM

Argüelles, Kheirandish, Vincent, *PRL* 2017

ν decay

Dark matter decay

ν self-interactions

TXS 0506+056

 $4\overline{5}$

IceCube HESE 6 years
6 years

-51N-1987
Salama

Lab g_i

ν scattering on Galactic DM

Argüelles, Kheirandish, Vincent, *PRL* 2017

ν decay

ν-electron interaction

dan bankan banka bankan bankan bank

MB, Rosenstrøm, Shalgar, Tamborra, *PRD* 2020

 $\phi\beta\beta(\alpha=e)$

BBN $(\Delta N_{\alpha} = 1)$

 -5 -4 -3 -2 -1 0 1 2 3
Mediator mass $log_{10}(M/MeV)$

 Ω

 $-$

coupling $\log_{10}(g_{\alpha\alpha})$

Mediator

 -5

 -6 سىبا \sim

ν self-interactions

TXS 0506+056

IceCube HESE 6 years
6 years

a dan dan dan ka

 $4\overline{5}$

 $\frac{318}{1}$ 170

Lab g_i

ν scattering on Galactic DM

Argüelles, Kheirandish, Vincent, *PRL* 2017

MB, Rosenstrøm, Shalgar, Tamborra, *PRD* 2020

 $\phi\beta\beta(\alpha=e)$

BBN $(\Delta N_{\alpha\alpha} = 1)$

 -5 -4 -3 -2 -1 0 1 2 3
Mediator mass $\log_{10}(M/\text{MeV})$

 $-$

coupling $\log_{10}(g_{\alpha\alpha})$

Mediator

 -1

 -6^L

ν decay

ν decay

Song, Li, Argüelles, **MB**, Vincent, *JCAP* 2021

ν self-interactions

Lab g_i

 $\phi\beta\beta(\alpha=e)$

BBN $(\Delta N_{\alpha\alpha} = 1)$

TXS 0506+056

IceCube HESE 6 years
(this work)

a dan dan dan ka

 $4\overline{5}$

ν scattering on Galactic DM

Fundamental physics with high-energy cosmic neutrinos

 \blacktriangleright Numerous new v physics effects grow as $\sim \kappa_n \cdot E^n \cdot L$

 \blacktriangleright So we can probe κ_n ~ 4 · 10⁻⁴⁷ (*E*/PeV)^{-*n*} (*L*/Gpc)⁻¹ PeV^{1-*n*}

 \blacktriangleright Improvement over limits using atmospheric v: κ_0 < 10⁻²⁹ PeV, κ_1 < 10⁻³³

Fundamental physics with high-energy cosmic neutrinos

 \blacktriangleright Numerous new v physics effects grow as $\sim \kappa_n \cdot E^n \cdot L$ *E.g.*, *n* = -1: neutrino decay *n* = 0: CPT-odd Lorentz violation *n* = +1: CPT-even Lorentz violation

 \blacktriangleright So we can probe κ_n ~ 4 · 10⁻⁴⁷ (*E*/PeV)^{-*n*} (*L*/Gpc)⁻¹ PeV^{1-*n*}

\blacktriangleright Improvement over limits using atmospheric v: κ_0 < 10⁻²⁹ PeV, κ_1 < 10⁻³³

Note: ν sources can be steady-state or transient

TeV–PeV ν telescopes, ~today

ANTARES

- ▸ Mediterranean Sea
- ▸ Completed 2008
- $V_{\text{eff}} \sim 0.2 \text{ km}^3 \text{ (10 TeV)}$
- $V_{\text{eff}} \sim 1 \text{ km}^3 \text{ (10 PeV)}$
- ▸ 12 strings, 900 OMs
- ▸ Sensitive to ν from the Southern sky

IceCube

- ▸ South Pole
- ▸ Completed 2011
- $-V_{\rm eff} \sim 0.01~{\rm km}^3~(10~{\rm TeV})$
	- $V_{\text{eff}} \sim 1 \text{ km}^3 \, (> 1 \text{ PeV})$
- ▸ 86 strings, 5000+ OMs
- ▸ Sees high-energy
- astrophysical ν

OM: optical module

Baikal NT200+

▸ Lake Baikal

ICECUBE

- ▸ Completed 1998
- (upgraded 2005)
- $\blacktriangleright V_{\rm eff} \sim 10^4~{\rm km}^3~(10~{\rm TeV})$
	- $V_{\text{eff}} \sim 0.01 \text{ km}^3 \text{ (10 PeV)}$
- \triangleright 8 strings, 192+ OMs

Key developments: Bigger detectors \rightarrow larger statistics Better reconstruction Smaller astrophysical uncertainties

Note: ν sources can be steady-state or transient

Note: ν sources can be steady-state or transient

Note: ν sources can be steady-state or transient

Key developments: Bigger detectors \rightarrow larger statistics Better reconstruction Smaller astrophysical uncertainties

Key developments: Bigger detectors \rightarrow larger statistics Better reconstruction Smaller astrophysical uncertainties

Today Next decade $\sqrt{\text{TeV}-\text{PeV}\,\text{V}}$ > 100-PeV v

Key developments: Bigger detectors \rightarrow larger statistics Better reconstruction Smaller astrophysical uncertainties

Today Next decade $T_{\text{e}}V - P_{\text{e}}V v$ > 100-PeV v

> Make predictions for a new energy regime

Key developments: Bigger detectors \rightarrow larger statistics Better reconstruction Smaller astrophysical uncertainties

Today Next decade $\text{TeV}-\text{PeV}$ ν $> 100-\text{PeV}$ ν

> Make predictions for a new energy regime

Key developments: **Discovery** New detection techniques Better UHE ν flux predictions

Key developments: Bigger detectors \rightarrow larger statistics Better reconstruction Smaller astrophysical uncertainties

Today Next decade TeV–PeV $v > 100$ –PeV $v > 100$ –PeV v

> Make predictions for a new energy regime

Key developments: **Discovery** New detection techniques Better UHE ν flux predictions

Made robust and meaningful by accounting for all relevant particle and astrophysics uncertainties

Key developments: Bigger detectors \rightarrow larger statistics Better reconstruction Smaller astrophysical uncertainties

Today Next decade $\text{TeV}-\text{PeV}$ ν $> 100-\text{PeV}$ ν

> Make predictions for a new energy regime

Key developments: **Discovery** New detection techniques Better UHE ν flux predictions

Similar to the evolution of cosmology to a high-precision field in the 1990s

Made robust and meaningful by accounting for all relevant particle and astrophysics uncertainties

A selection of neutrino physics

Neutrino-matter cross section

New tests of Lorentz invariance
1. Neutrino-matter cross section: *From TeV to EeV*

Measuring the high-energy ν*N* cross section

Below ~ 10 TeV: Earth is transparent

Above \sim 10 TeV: Earth is opaque

Measuring the high-energy ν*N* cross section

Below \sim 10 TeV: Earth is transparent

Above \sim 10 TeV: Earth is opaque

Measuring the high-energy ν*N* cross section

Below \sim 10 TeV: Earth is transparent

Above \sim 10 TeV: Earth is opaque

TeV–PeV:

Earth is *almost fully* opaque, some upgoing ν still make it through

IceCube ν ν ν ν ν ν TeV–PeV:

> 100 PeV:

Earth is *almost fully* opaque, some upgoing ν still make it through

Earth is *completely* opaque, but horizontal ν still make it through

2. Flavor: *Towards precision, finally (with the help of lower-energy experiments)*

Astrophysical sources **Earth**

Different production mechanisms yield different flavor ratios: $(f_{e.S.} f_{\mu.S.} f_{\tau.S.}) = (N_{e.S.} N_{\mu.S.} N_{\tau.S.})/N_{\text{tot}}$

Flavor ratios at Earth ($\alpha = e$, μ , τ):

$$
f_{\alpha,\oplus} = \sum_{\beta=e,\mu,\tau} P_{\nu_{\beta} \to \nu_{\alpha}} f_{\beta,\mathcal{S}}
$$

Astrophysical sources **Earth**

Different production mechanisms yield different flavor ratios: $(f_{e,S}, f_{\mu,S}, f_{\tau,S}) = (N_{e,S}, N_{\mu,S}, N_{\tau,S})/N_{\text{tot}}$

Flavor ratios at Earth (
$$
\alpha = e, \mu, \tau
$$
):
\n
$$
f_{\alpha,\oplus} = \sum_{\beta=e,\mu,\tau} P_{\nu_{\beta} \to \nu_{\alpha}} f_{\beta,S}
$$
\n
$$
\begin{array}{c}\n\text{Standard oscillations} \\
\text{new physics} \\
\text{new physics}\n\end{array}
$$

From sources to Earth: we learn what to expect when measuring $f_{\alpha,\oplus}$

One likely TeV–PeV ν production scenario: $p + \gamma \rightarrow \pi^+ \rightarrow \mu^+ + \nu_\mu$ followed by $\mu^+ \rightarrow e^+ + \nu_e + \overline{\nu_\mu}$

Full π decay chain $(1/3:2/3:0)_{S}$

Note: v and \bar{v} are (so far) indistinguishable in neutrino telescopes

One likely TeV–PeV ν production scenario: $p + \gamma \rightarrow \pi^+ \rightarrow \mu^+ + \nu_\mu$ followed by $\mu^+ \rightarrow e^+ + \nu_e + \overline{\nu_\mu}$ 0.0 $\frac{S}{Q}$ -1.0 π decay Full π decay chain 0.1 -0.9 $(1/3:2/3:0)_{S}$ 0.2 -0.8 0.3 -0.7 Endrico De Live Ettackiens 0.4 -0.6 $0.5\,$ -0.5 0.6 -0.3 0.8 -0.2 0.9 -0.1 1.0 -0.0 *Note:* ν and $\overline{\nu}$ are (so far) indistinguishable 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 in neutrino telescopes Fraction of v_e

From sources to Earth: we learn what to expect when measuring $f_{\alpha,\oplus}$

Note:

Note:

Three reasons to be excited

Three reasons to be excited

Flavor measurements:

New neutrino telescopes = more events, better flavor measurement
Three reasons to be excited

Flavor measurements:

New neutrino telescopes = more events, better flavor measurement

Oscillation physics: We will know the mixing parameters better (JUNO, DUNE, Hyper-K,

IceCube Upgrade)

Three reasons to be excited

Flavor measurements:

New neutrino telescopes = more events, better flavor measurement

Oscillation physics:

We will know the mixing parameters better (JUNO, DUNE, Hyper-K, IceCube Upgrade)

Test of the oscillation framework: We will be able to do what we want even if oscillations are non-unitary

How knowing the mixing parameters better helps

Theoretically palatable regions: $2020 \rightarrow 2040$ 2020 2040

Repurpose the flavor sensitivity to test new physics:

Repurpose the flavor sensitivity to test new physics:

Repurpose the flavor sensitivity to test new physics:

▸ Neutrino decay

 [Beacom *et al.*, *PRL* 2003; Baerwald, **MB**, Winter, JCAP 2010; **MB**, Beacom, Winter, *PRL* 2015; **MB**, Beacom, Murase, *PRD* 2017]

Repurpose the flavor sensitivity to test new physics:

▸ Neutrino decay

 [Beacom *et al.*, *PRL* 2003; Baerwald, **MB**, Winter, JCAP 2010; **MB**, Beacom, Winter, *PRL* 2015; **MB**, Beacom, Murase, *PRD* 2017]

▸ Tests of unitarity at high energy

 [Xu, He, Rodejohann, *JCAP* 2014; Ahlers, **MB**, Mu, *PRD* 2018; Ahlers, **MB**, Nortvig, *JCAP* 2021]

Repurpose the flavor sensitivity to test new physics:

▸ Neutrino decay

 [Beacom *et al.*, *PRL* 2003; Baerwald, **MB**, Winter, JCAP 2010; **MB**, Beacom, Winter, *PRL* 2015; **MB**, Beacom, Murase, *PRD* 2017]

▸ Tests of unitarity at high energy

 [Xu, He, Rodejohann, *JCAP* 2014; Ahlers, **MB**, Mu, *PRD* 2018; Ahlers, **MB**, Nortvig, *JCAP* 2021]

▸ Lorentz- and CPT-invariance violation

 [Barenboim & Quigg, *PRD* 2003; **MB**, Gago, Peña-Garay, *JHEP* 2010; Kostelecky & Mewes 2004; Argüelles, Katori, Salvadó, *PRL* 2015]

Repurpose the flavor sensitivity to test new physics:

▸ Neutrino decay

 [Beacom *et al.*, *PRL* 2003; Baerwald, **MB**, Winter, JCAP 2010; **MB**, Beacom, Winter, *PRL* 2015; **MB**, Beacom, Murase, *PRD* 2017]

▸ Tests of unitarity at high energy

 [Xu, He, Rodejohann, *JCAP* 2014; Ahlers, **MB**, Mu, *PRD* 2018; Ahlers, **MB**, Nortvig, *JCAP* 2021]

▸ Lorentz- and CPT-invariance violation

 [Barenboim & Quigg, *PRD* 2003; **MB**, Gago, Peña-Garay, *JHEP* 2010; Kostelecky & Mewes 2004; Argüelles, Katori, Salvadó, *PRL* 2015]

▸ Non-standard interactions

 [González-García *et al.*, *Astropart. Phys.* 2016; Rasmussen *et al.*, *PRD* 2017]

Repurpose the flavor sensitivity to test new physics:

▸ Neutrino decay

 [Beacom *et al.*, *PRL* 2003; Baerwald, **MB**, Winter, JCAP 2010; **MB**, Beacom, Winter, *PRL* 2015; **MB**, Beacom, Murase, *PRD* 2017]

▸ Tests of unitarity at high energy

 [Xu, He, Rodejohann, *JCAP* 2014; Ahlers, **MB**, Mu, *PRD* 2018; Ahlers, **MB**, Nortvig, *JCAP* 2021]

▸ Lorentz- and CPT-invariance violation

 [Barenboim & Quigg, *PRD* 2003; **MB**, Gago, Peña-Garay, *JHEP* 2010; Kostelecky & Mewes 2004; Argüelles, Katori, Salvadó, *PRL* 2015]

▸ Non-standard interactions

 [González-García *et al.*, *Astropart. Phys.* 2016; Rasmussen *et al.*, *PRD* 2017]

▸ Active-sterile ν mixing

 [Aeikens *et al.*, *JCAP* 2015; Brdar, Kopp, Wang, *JCAP* 2017; Argüelles *et al.*, *JCAP* 2020; Ahlers, **MB**, *JCAP* 2021]

Repurpose the flavor sensitivity to test new physics:

▸ Neutrino decay

 [Beacom *et al.*, *PRL* 2003; Baerwald, **MB**, Winter, JCAP 2010; **MB**, Beacom, Winter, *PRL* 2015; **MB**, Beacom, Murase, *PRD* 2017]

▸ Tests of unitarity at high energy

 [Xu, He, Rodejohann, *JCAP* 2014; Ahlers, **MB**, Mu, *PRD* 2018; Ahlers, **MB**, Nortvig, *JCAP* 2021]

▸ Lorentz- and CPT-invariance violation

 [Barenboim & Quigg, *PRD* 2003; **MB**, Gago, Peña-Garay, *JHEP* 2010; Kostelecky & Mewes 2004; Argüelles, Katori, Salvadó, *PRL* 2015]

▸ Non-standard interactions

 [González-García *et al.*, *Astropart. Phys.* 2016; Rasmussen *et al.*, *PRD* 2017]

▸ Active-sterile ν mixing

 [Aeikens *et al.*, *JCAP* 2015; Brdar, Kopp, Wang, *JCAP* 2017; Argüelles *et al.*, *JCAP* 2020; Ahlers, **MB**, *JCAP* 2021]

▸ Long-range *e*ν interactions [**MB** & Agarwalla, *PRL* 2019]

3. New tests of Lorentz invariance

How to fill out the flavor triangle?

 $H_{\rm tot}=H_{\rm std}+H_{\rm NP}$ $H_{\text{std}} = \frac{1}{2E} U_{\text{PMNS}}^{\dagger}$ diag $(0, \Delta m_{21}^2, \Delta m_{31}^2) U_{\text{PMNS}}$ $H_{\text{NP}} = \sum_{n} \left(\frac{E}{\Delta_n}\right)^n U_n^{\dagger}$ diag $(O_{n,1}, O_{n,2}, O_{n,3}) U_n$

This can populate *all* of the triangle –

▸ Use current atmospheric bounds on *On,i*: O_0 < 10⁻²³ GeV, O_1/Λ_1 < 10⁻²⁷ GeV

▸ Sample the unknown new mixing angles

How to fill out the flavor triangle?

 $0.01.0$ For $n = 0$ $H_{\text{tot}} = H_{\text{std}} + H_{\text{NP}}$ (similar for $n = 1$) $\bigcirc (1:2:0)$ $\bigcirc(1:0:0)$ $H_{\text{std}} = \frac{1}{2E} U_{\text{PMNS}}^{\dagger}$ diag $(0, \Delta m_{21}^2, \Delta m_{31}^2) U_{\text{PMNS}}$ 0.8 0.2 \bigcirc (0:1:0) $\bigcirc (0:0:1)$ $H_{\text{NP}} = \sum_{n} \left(\frac{E}{\Lambda_n}\right)^n U_{n}^{\dagger}$ diag $(O_{n,1}, O_{n,2}, O_{n,3}) U_{n}$ 0.4 0.6 \mathcal{L}^{\otimes} This can populate *all* of the triangle – 0.6 0.4 ▸ Use current atmospheric bounds on *On,i*: O_0 < 10⁻²³ GeV, O_1/Λ_1 < 10^{27} GeV 0.8 0.2 ▶ Sample the unknown new miking angles 0.0 0.2 0.4 0.6 0.8 0.0 1.0 $\alpha_e^{\,\oplus}$ See also: Ahlers, **MB**, Mu, *PRD* 2018; Rasmusen *et al.*, *PRD* 2017; **MB**, Beacom, Winter *PRL* 2015;

 MB, Gago, Peña-Garay *JCAP* 2010; Bazo, **MB**, Gago, Miranda *IJMPA* 2009; + many others

IceCube-Gen2 Radio

 $-30m$

 100_m

But radio-detection of UHE neutrinos in IceCube-Gen2 cannot distinguish between flavors!

Amundsen-Scott South Pole Station

tion Vertex

small λ add destructively

Askaryan radiation

IceCube-Gen2, *J. Phys. G* 2021 ARA / WIPAC

 $=20 \text{ m}$

large λ add

coherently

But GRAND detects only $v_t!$

10 km

• Antenna optimized for horizontal showers

 μ

- · Bow-tie design, 3 perpendicular arms
- Frequency range: 50-200 MHz
- · Inter-antenna spacing: 1 km

Song, Li, Argüelles, MB, Vincent, *JCAP* 2020 **MB**, Beacom, Winter, *PRL* 2015 63

$$
\Delta \Phi^{\alpha} \equiv \text{ Relative variation of flux of } v_{\alpha} = \frac{\Phi^{\alpha} - \langle \Phi^{\alpha} \rangle}{\langle \Phi^{\alpha} \rangle}
$$

 $\Delta \Phi^{\alpha} \equiv$ Relative variation of flux of $v_{\alpha} = \frac{\Phi^{\alpha} - \langle \Phi^{\alpha} \rangle}{\langle \Phi^{\alpha} \rangle}$

If the fluxes of all flavors were isotropic—

ν*e* flux skymap (= ν*^τ* v_{μ} v_{μ} flux skymap

 $\Lambda \Phi^e = \Lambda \Phi^{\tau}$

Telalovic & **MB**, *In prep.*

Telalovic & **MB**, *In prep.*

Telalovic & **MB**, *In prep.*

Telalovic & **MB**, *In prep.*

72

Telalovic & **MB**, *In prep.*

72

72

What's next?

Many TeV–EeV ν telescopes in planning for 2020–2040

Abraham *et al.* (inc. **MB**), *J. Phys. G: Nucl. Part. Phys.* 59, 11 (2022) [2203.05591]

Is happening: Using many neutrino sources *vs*. one source

Is happening: Using many neutrino sources *vs*. one source

Must happen: Astrophysical unknowns cannot be ignored

Is happening: Using many neutrino sources *vs*. one source

Must happen: Astrophysical unknowns cannot be ignored

See also (pseudo-Dirac ν): Rink & Sen 2211.16520, Carloni *et al.* 2212.00737

The flux of v_i is attenuated by exp[- $(L/E) \cdot (m_i/\tau_i)$] Mass of ν*ⁱ* Lifetime of ν*ⁱ*

L ~ up to a few Gpc

What does neutrino decay change?

Flavor composition $\langle \frac{1}{\langle x,y\rangle} \rangle$ Spectrum shape $\langle \frac{1}{\langle x,y\rangle} \rangle$ Event rate

What does neutrino decay change?

Invisible decay: ν_2 , ν_3 unstable, ν_1 stable [All limits: 95% C.L.]

Valera, Fiorillo, Esteban, **MB**, *In prep.*

Valera, Fiorillo, Esteban, **MB**, *In prep.*

Assuming that the flavor composition at the sources *is known Not assuming it is known*

Assuming that the flavor composition at the sources *is known Not assuming it is known*

Assuming that the flavor composition at the sources *is known Not assuming it*

is known

Valera, Fiorillo, Esteban, **MB**, *In prep.*

Invisible decay: ν_2 , ν_3 unstable, ν_1 stable [All limits: 95% C.L.]

Valera, Fiorillo, Esteban, **MB**, *In prep.*

Using high-energy ν from NGC 1068 galaxy v_2 , solar v_3 , accelerator & reactor Free $E_{\nu, \rm tot}$] $\llbracket f_{\rm S}$ pion $\llbracket \Gamma_2 \neq \mathbb{I}$ f_S pion Free $E_{\nu, \text{tc}}$ f_S pion $\Gamma_2 \neq \Gamma_3$ Free $E_{\nu, \text{tot}}$ $\int f_S$ pion Free $E_{\nu, \text{tot}}$ Free $E_{\nu, \text{tot}}$ f_S pion $\Gamma_2 = \Gamma_3$ Free E_{vto} $f_{\rm s}$ pion Free $E_{\nu, \text{tot}}$ Γ_5 free $\Gamma_2 \neq \Gamma_3$ Free $E_{\nu, \text{tot}}$ $\lfloor f_S \text{ free} \rfloor$ Free $E_{\nu, \text{tot}}$ \blacksquare f_S free \blacksquare $\Gamma_2 \neq \Gamma$ $\int f_S$ free Free $E_{\nu, \rm tot}$ Free $E_{\nu, \text{tot}} \blacksquare f_{\text{S}}$ free $\blacksquare \Gamma_2 = \Gamma_2$ $\mathbf{f}_\mathbf{S}$ free Free E_{total} Tight $E_{\nu, \text{tot}}$ \blacksquare f_S pion \blacksquare $\Gamma_2 \neq \Pi$ Tight $E_{\nu,\text{to}}$ f_S pion Tight $E_{\nu, \text{tot}}$ \blacksquare f_S pion \blacksquare $\Gamma_2 \neq \bot$ Tight $E_{\nu, \text{tot}}$ \mathbf{f}_{S} pion If Tight $E_{\nu, \text{tot}}$ If ϵ pion If $\Gamma_2 = \Gamma_3$ Tight $E_{\nu, {\rm tot}}$ of $f_{\rm S}$ pion \blacksquare $\Gamma_2 = \Gamma_1$ $|\nu_{2,3}|$ ------Tight $E_{\nu, \rm tot}$ $\llbracket f_{\rm S}$ free \rangle Tight $E_{v, \text{tot}}$ \int f_s free Tight $E_{\nu, \text{tot}}$ \blacksquare f_S free \blacksquare $\Gamma_2 \neq \Gamma$ Tight $E_{v, \text{tot}}$ \int f_s free \blacksquare PL \blacksquare Tight $E_{\nu, \text{tot}}$ \blacksquare f_S free \blacksquare $\Gamma_2 = \Gamma_3 \blacksquare$ $\nu_{2,3}$ PL Tight $E_{\nu, \text{tot}}$ f_S free $\Gamma_2 = \Gamma_3 \Gamma_2$ |-------**1**

Assuming that the flavor composition at the sources *is known Not assuming it*

is known

Using high-energy ν from NGC 1068 galaxy

No prior on the energy emitted in neutrinos

Tight prior from X-ray observations
Using high-energy ν from NGC 1068 galaxy

No limits on neutrino lifetime from a point source if we acknowledge unknowns!

When you have eliminated all which is impossible then whatever remains, however improbable, must be the truth.

—Sherlock Holmes (*The Case-Book of Sherlock Holmes*, Arthur Conan Doyle)

Standard Model explanations

When you have eliminated all which is impossible then whatever remains, however improbable, must be the truth.

—Sherlock Holmes (*The Case-Book of Sherlock Holmes*, Arthur Conan Doyle)

Argüelles, **MB**, Kheirandish, Palomares-Ruiz, Salvadó, Vincent

VPLATE (vplate.ru)

VPLATE (vplate.ru)

VPLATE (vplate.ru)

How it started

How it's going

PeV ν

discovered

First predictions of high-energy

cosmic ν

Hints of sources First tests of *v* physics

EeV ν discovered Precision tests with PeV ν First tests with EeV ν

Thanks!

Here, There & **Everywhere**

PhD Summer School on Neutrinos

July 17-21, 2023

 \odot

Niels Bohr Institute, Copenhagen

Guest lectures:

Neutrino Theory & Phenomenology Gabriela Barenboim Instituto de Física Corpuscular, Valencia

Neutrino Cosmology

Steen Hannestad Institut for Fysik og Astronomi, Aarhus

Neutrino Astrophysics & Astronomy

Walter Winter Deutsches Elektronen-Synchrotron, Zeuthen

Local organizers: Markus Ahlers & Mauricio Bustamante

Registration: www.nbia.dk/neutrino2023

纂

Deadline: April 30, 2023

For PhD students and advanced MSc students

VILLUM FONDEN

▸ In-person school with remote participation

▸ No registration fee

▸ Neutrino theory & phenomenology Neutrino cosmology Neutrino astrophysics & astronomy

▸ Sign up here:

 Θ nbia.nbi.ku.dk/neutrino2023

Backup slides

$$
p + \gamma_{\text{target}} \rightarrow \Delta^{+} \rightarrow \left\{ \begin{array}{l} p + \pi^{0}, \text{ Br} = 2/3 \\ n + \pi^{+}, \text{ Br} = 1/3 \end{array} \right\}
$$

$$
(p) \gamma_{\text{target}} \rightarrow \Delta^{+} \rightarrow \begin{cases} p + \pi^{0}, \text{ Br} = 2/3 \\ n + \pi^{+}, \text{ Br} = 1/3 \end{cases}
$$

$$
\underbrace{(p)}_{\text{target}} \underbrace{(p + \pi^0, \text{ Br} = 2/3}_{n + \pi^+, \text{ Br} = 1/3} \underbrace{P + \pi^0, \text{ Br} = 2/3}_{\text{F4}} \underbrace{P}{P}^2
$$

$$
(p) \sqrt[n]{\lim_{\text{target}} \rightarrow \Delta^{+} \rightarrow \left\{ p + \pi^{0}, \text{ Br} = 2/3 \atop n + \pi^{+}, \text{ Br} = 1/3 \atop \pi^{0} \rightarrow \gamma + \gamma} \right\}
$$
\n
$$
\pi^{+} \rightarrow \mu^{+} + \nu_{\mu} \rightarrow \bar{\nu}_{\mu} + e^{+} + \nu_{e} + \nu_{\mu}
$$
\n
$$
n \text{ (escapes)} \rightarrow p + e^{-} + \bar{\nu}_{e}
$$
\n
$$
\text{Energy}
$$
\n
$$
(p) \sqrt[n]{\lim_{\text{energy}} \left\{ p + \pi^{0}, \text{ Br} = 2/3 \atop \text{energy} \right\}}
$$

$$
p + \gamma_{\text{target}} \rightarrow \Delta^{+} \rightarrow \begin{cases} p + \pi^{0}, \text{ Br} = 2/3 \\ n + \pi^{+}, \text{ Br} = 1/3 \end{cases}
$$

\n
$$
\pi^{0} \rightarrow \gamma + \gamma
$$

\n
$$
\pi^{+} \rightarrow \mu^{+} + \nu_{\mu} \rightarrow \bar{\nu}_{\mu} + e^{+} + \nu_{e} + \nu_{\mu}
$$

\n
$$
n \text{ (escapes)} \rightarrow p + e^{-} + \bar{\nu}_{e}
$$

Neutrino energy = Proton energy $/ 20$ Gamma-ray energy = Proton energy $/ 10$

Coleman, Ericsson, MB, Glaser, *In prep.*

Large UHE ν flux

Coleman, Ericsson, MB, Glaser, *In prep.*

Large UHE ν flux Small UHE ν flux

Coleman, Ericsson, MB, Glaser, *In prep.*

How knowing the mixing parameters better helps

We can compute the oscillation probability more precisely:

$$
f_{\alpha,\oplus} = \sum_{\beta=e,\mu,\tau} P_{\beta\alpha} f_{\beta,\mathcal{S}}
$$

So we can convert back and forth between source and Earth more precisely

Assumes underlying unitarity – sum of projections on each axis is 1

How to read it: Follow the tilt of the tick marks

Assumes underlying unitarity – sum of projections on each axis is 1

How to read it: Follow the tilt of the tick marks

Assumes underlying unitarity – sum of projections on each axis is 1

How to read it: Follow the tilt of the tick marks

Assumes underlying unitarity – sum of projections on each axis is 1

How to read it: Follow the tilt of the tick marks

Predicted in 1960:

First reported by IceCube in 2021:

Predicted in 1960: First reported by IceCube in 2021: a Posterior probability density Data 0.5 ν*e* 0.4 hadrons 6.3 PeV *W* 0.3 (π, *n*, …) 0.2 $Br \approx 67\%$ *e* 0.1 0 $\frac{1}{\sqrt{2}}$ 5 $\overline{6}$ 8 9 Δ Visible energy (PeV) ν*e* + *l*

e W Br $\approx 33\%$ *l* - 6.3 PeV

A feel for the in-Earth attenuation

Earth matter density

(Preliminary Reference Earth Model)

Neutrino-nucleon cross section

A feel for the in-Earth attenuation

MB & Connolly, *PRL* 2019

MB & Connolly, *PRL* 2019

Valera, **MB**, Glaser, *JHEP* 2022

Valera, **MB**, Glaser, *JHEP* 2022

Larger neutrino-nucleon cross section

Valera, **MB**, Glaser, *JHEP* 2022

Larger neutrino-nucleon cross section

Valera, **MB**, Glaser, *JHEP* 2022

Theoretically palatable flavor regions ≡ Allowed regions of flavor ratios at Earth derived from oscillations **MB**, Beacom, Winter, *PRL* 2015

Note: The original palatable regions were frequentist [**MB**, Beacom, Winter, *PRL* 2015]; the new ones are Bayesian

Theoretically palatable flavor regions

≡ Allowed regions of flavor ratios at Earth derived from oscillations **MB**, Beacom, Winter, *PRL* 2015

Ingredient #1: Flavor ratios at the source, $(f_{e,S}, f_{\mu,S}, f_{\tau,S})$

Fix at one of the benchmarks (pion decay, muon-damped, neutron decay)

or

Explore all possible combinations

Note: The original palatable regions were frequentist [**MB**, Beacom, Winter, *PRL* 2015]; the new ones are Bayesian

Theoretically palatable flavor regions

≡ Allowed regions of flavor ratios at Earth derived from oscillations **MB**, Beacom, Winter, *PRL* 2015

Ingredient #1: Ingredient #2: Flavor ratios at the source, $(f_{e,S}, f_{\mu,S}, f_{\tau,S})$

Fix at one of the benchmarks (pion decay, muon-damped, neutron decay)

or

Explore all possible combinations

Note: The original palatable regions were frequentist [**MB**, Beacom, Winter, *PRL* 2015]; the new ones are Bayesian

Theoretically palatable flavor regions

≡ Allowed regions of flavor ratios at Earth derived from oscillations **MB**, Beacom, Winter, *PRL* 2015

Ingredient #1: Flavor ratios at the source, $(f_{e,S}, f_{\mu,S}, f_{\tau,S})$

Fix at one of the benchmarks (pion decay, muon-damped, neutron decay)

or

Explore all possible combinations

Note: The original palatable regions were frequentist [**MB**, Beacom, Winter, *PRL* 2015]; the new ones are Bayesian

Ingredient #2: Probability density of mixing parameters $(\theta_{12}, \theta_{23}, \theta_{13}, \delta_{CP})$

Theoretically palatable flavor regions

≡ Allowed regions of flavor ratios at Earth derived from oscillations **MB**, Beacom, Winter, *PRL* 2015

Ingredient #1: Flavor ratios at the source, $(f_{e,S}, f_{\mu,S}, f_{\tau,S})$

Fix at one of the benchmarks (pion decay, muon-damped, neutron decay)

or

Explore all possible combinations

Note: The original palatable regions were frequentist [**MB**, Beacom, Winter, *PRL* 2015]; the new ones are Bayesian

Ingredient #2: Probability density of mixing parameters $(\theta_1, \theta_2, \theta_3, \theta_1, \delta_{CP})$

2020: Use χ^2 profiles from 2.0_r the NuFit 5.0 global fit 1.8 (solar + atmospheric 1.6 1.4 + reactor + accelerator) 1.2 Esteban *et al.*, *JHEP* 2020 δ_CP/π www.nu-fit.org 1.0 $0.8¹$ $0.6₁$ $0.4¹$ $_{0.2}$ NuFit 5.0 0.40 0.45 0.50

 0.65

Theoretically palatable flavor regions

≡ Allowed regions of flavor ratios at Earth derived from oscillations **MB**, Beacom, Winter, *PRL* 2015

Ingredient #1: Flavor ratios at the source, $(f_{e,S}, f_{\mu,S}, f_{\tau,S})$

Fix at one of the benchmarks (pion decay, muon-damped, neutron decay)

or

Explore all possible combinations

Note: The original palatable regions were frequentist [**MB**, Beacom, Winter, *PRL* 2015]; the new ones are Bayesian

Ingredient #2: Probability density of mixing parameters $(\theta_1, \theta_2, \theta_3, \theta_1, \delta_{CP})$

Number of detected neutrinos (simplified for presentation):

$$
N \propto \underbrace{\Phi_{\nu} \sigma_{\nu N} e^{-\tau_{\nu N}}}_{\text{Neutrino flux}} = \Phi_{\nu} \sigma_{\nu N} e^{-L \sigma_{\nu N} n_N}
$$

Number of detected neutrinos (simplified for presentation):

$$
N \propto \Phi_{\nu} \sigma_{\nu N} e^{-\tau_{\nu N}} = \Phi_{\nu} \sigma_{\nu N} e^{-L \sigma_{\nu N} n_N}
$$

Neutrino flux Cross section

Downgoing neutrinos $(L \text{ short} \rightarrow \text{no matter})$

 $N \propto \Phi_{\nu} \sigma_{\nu N}$

Number of detected neutrinos (simplified for presentation):

$$
N \propto \underbrace{\Phi_{\nu} \sigma_{\nu N} e^{-\tau_{\nu N}}}_{\text{Neutrino flux}} = \Phi_{\nu} \sigma_{\nu N} e^{-L \sigma_{\nu N} n_N}
$$

Downgoing neutrinos $(L \text{ short} \rightarrow \text{no matter})$

Number of detected neutrinos (simplified for presentation):

$$
N \propto \Phi_{\nu} \sigma_{\nu N} e^{-\tau_{\nu N}} = \Phi_{\nu} \sigma_{\nu N} e^{-L \sigma_{\nu N} n_N}
$$

Neutrino flux Cross section

Downgoing neutrinos $(L \text{ short} \rightarrow \text{no matter})$

> $N \propto \Phi_{\nu} \sigma_{\nu N}$ **Degeneracy**

Upgoing neutrinos $(L \text{ long} \rightarrow \text{ lots of matter})$

 $N \propto \Phi_{\nu} \sigma_{\nu N} e^{-L \sigma_{\nu N} n_N}$

Number of detected neutrinos (simplified for presentation):

$$
N \propto \Phi_{\nu} \sigma_{\nu N} e^{-\tau_{\nu N}} = \Phi_{\nu} \sigma_{\nu N} e^{-L \sigma_{\nu N} n_N}
$$

Neutrino flux Cross section

Downgoing neutrinos $(L \text{ short} \rightarrow \text{no matter})$

$$
N \propto \underbrace{\Phi_{\nu} \sigma_{\nu N}}_{\text{Degeneracy}}
$$

Upgoing neutrinos $(L \text{ long} \rightarrow \text{ lots of matter})$

$$
N \propto \Phi_{\nu} \sigma_{\nu N} e^{-L \sigma_{\nu N} n_N}
$$

Breaks the degeneracy

No unitarity? *No problem*

What does neutrino decay change?

See also: Beacom *et al.*, *PRL* 2002 / Baerwald, **MB**, Winter, *JCAP* 2012 / **MB**, Beacom, Murase, *PRD* 2017/ Rasmussen *et al.*, *PRD* 2017 / Denton & Tamborra, *PRL* 2018 / Abdullahi & Denton, *PRD* 2020 / Song, Li, Argüelles, **MB**, Vincent, *JCAP* 2020

New physics in the UHE ν*N* cross section

New physics in the UHE ν*N* cross section

Heavy sterile neutrinos via the dipole portal

Huang, Jana, Lindner, Rodejohann, 2204.10347
New physics in the UHE ν*N* cross section

Heavy sterile neutrinos via the dipole portal

Multiple v_τ-induced bangs

New physics in the UHE ν*N* cross section

Huang, Jana, Lindner, Rodejohann, 2204.10347

Huang, *EPJC* 2022 [2207.02222]

Huang, Jana, Lindner, Rodejohann, *JCAP* 2022 [2112.09476]

How knowing the mixing parameters better helps

Flavor composition \leq Spectrum shape \leq Event rate

Flavor content of mass eigenstates:

Are neutrinos forever?

 \blacktriangleright In the Standard Model (vSM), neutrinos are essentially stable ($\tau > 10^{36}$ yr):

- \rightarrow One-photon decay ($v_i \rightarrow v_j + γ$): τ > 10³⁶ (*m_i*/eV)⁻⁵ yr
- \blacktriangleright Two-photon decay ($v_i \rightarrow v_j + \gamma + \gamma$): $\tau > 10^{57}$ (m_i / eV)⁻⁹ yr
- ► Three-neutrino decay ($v_i \rightarrow v_j + v_k + v_k$): τ > 10^{55} ($m_i /$ eV)⁻⁵ yr

 \blacktriangleright BSM decays may have significantly higher rates: $v_i \rightarrow v_j + \varphi$

▸ We work in a model-independent way: the nature of φ is unimportant if it is invisible to neutrino detectors

» Age of Universe

(~ 14.5 Gyr)

Are neutrinos forever?

 \blacktriangleright In the Standard Model (vSM), neutrinos are essentially stable ($\tau > 10^{36}$ yr):

- \rightarrow One-photon decay ($v_i \rightarrow v_j + γ$): τ > 10³⁶ (*m_i*/eV)⁻⁵ yr
- \blacktriangleright Two-photon decay ($v_i \rightarrow v_j + \gamma + \gamma$): $\tau > 10^{57}$ (m_i / eV)⁻⁹ yr
- ► Three-neutrino decay ($v_i \rightarrow v_j + v_k + v_k$): τ > 10^{55} ($m_i /$ eV)⁻⁵ yr

» Age of Universe (~ 14.5 Gyr)

BSM decays may have significantly higher rates: $v_i \rightarrow v_j + \varphi$ boson of a broken Nambu-Goldstone symmetry

▸ We work in a model-independent way: the nature of φ is unimportant if it is invisible to neutrino detectors

See also: Beacom *et al.*, *PRL* 2002 / Baerwald, **MB**, Winter, *JCAP* 2012 / **MB**, Beacom, Murase, *PRD* 2017/ Rasmussen *et al.*, *PRD* 2017 / Denton & Tamborra, *PRL* 2018 / Abdullahi & Denton, *PRD* 2020 / Song, Li, Argüelles, **MB**, Vincent, *JCAP* 2020

MB, 2004.06844

See also: Beacom *et al.*, *PRL* 2002 / Baerwald, **MB**, Winter, *JCAP* 2012 / **MB**, Beacom, Murase, *PRD* 2017/ Rasmussen *et al.*, *PRD* 2017 / Denton & Tamborra, *PRL* 2018 / Abdullahi & Denton, *PRD* 2020 / Song, Li, Argüelles, **MB**, Vincent, *JCAP* 2020

MB, 2004.06844

See also: Beacom *et al.*, *PRL* 2002 / Baerwald, **MB**, Winter, *JCAP* 2012 / **MB**, Beacom, Murase, *PRD* 2017 / Rasmussen *et al.*, *PRD* 2017 / Denton & Tamborra, *PRL* 2018 /Abdullahi & Denton, *PRD* 2020 / **MB**, 2004.06844

Flavor composition \leq Spectrum shape \leq Event rate

See also: Beacom *et al.*, *PRL* 2002 / Baerwald, **MB**, Winter, *JCAP* 2012 / **MB**, Beacom, Murase, *PRD* 2017 / Rasmussen *et al.*, *PRD* 2017 / Denton & Tamborra, *PRL* 2018 /Abdullahi & Denton, *PRD* 2020 / **MB**, 2004.06844

Flavor composition \leq Spectrum shape \leq Event rate

See also: Beacom *et al.*, *PRL* 2002 / Baerwald, **MB**, Winter, *JCAP* 2012 / **MB**, Beacom, Murase, *PRD* 2017 / Rasmussen *et al.*, *PRD* 2017 / Denton & Tamborra, *PRL* 2018 /Abdullahi & Denton, *PRD* 2020 / **MB**, 2004.06844

Flavor composition \leq Spectrum shape \leq Event rate

New neutrino interactions: *Are there secret νν interactions?*

Galactic (kpc) or extragalactic (Mpc – Gpc) distance

Galactic (kpc) or extragalactic (Mpc – Gpc) distance

Standard case: ν free-stream

(And oscillate)

See also: Esteban, Pandey, Brdar, Beacom, *PRD* 2021 Creque-Sarbinowski, Hyde, Kamionkowski, *PRD* 2021 Ng & Beacom, *PRD* 2014 Cherry, Friedland, Shoemaker, 1411.1071 Blum, Hook, Murase, 1408.3799

"Secret" neutrino interactions between astrophysical v (PeV) and relic v (0.1 meV):

MB, Rosenstroem, Shalgar, Tamborra, *PRD* 2020 See also: Esteban, Pandey, Brdar, Beacom, *PRD* 2021 Creque-Sarbinowski, Hyde, Kamionkowski, *PRD* 2021 Ng & Beacom, *PRD* 2014 Cherry, Friedland, Shoemaker, 1411.1071 Blum, Hook, Murase, 1408.3799

Looking for evidence of νSI

- ▸ Look for dips in 6 years of public IceCube data (HESE)
- ▸ 80 events, 18 TeV–2 PeV
- ▸ Assume flavor-diagonal and universal: $g_{aa} = g \delta_{aa}$
- ▸ Bayesian analysis varying *M*, *g*, shape of emitted flux (γ)
- ▸ Account for atmospheric ν, in-Earth propagation, detector uncertainties

No significant ($>$ 3σ) evidence for a spectral dip ...

MB, Rosenstroem, Shalgar, Tamborra, *PRD* 2020 See also: Shalgar, **MB**, Tamborra, *PRD* 2020

No significant (> 3σ) evidence for a spectral dip … … so we set upper limits on the coupling *g*

MB, Rosenstroem, Shalgar, Tamborra, *PRD* 2020 See also: Shalgar, **MB**, Tamborra, *PRD* 2020

No significant (> 3σ) evidence for a spectral dip … … so we set upper limits on the coupling *g*

