Testing Lorentz Invariance in the Multi-messanger (TeV) Era.

Tsvi Piran The Hebrew University of Jerusalem

Cost CA18108 Forth Annual Conference - Rijeka (Croatia)

- Lorentz Violation (or deformation) appears in various Quantum Gravity Theories.
- Energy dependent dispersion and speed of light.

- Lorentz Violation (or deformation) appears in various Quantum Gravity Theories.
- Energy dependent dispersion and speed of light.

- Lorentz Violation (or deformation) appears in various Quantum Gravity Theories.
- Energy dependent dispersion and speed of light.

- Lorentz Violation (or deformation) appears in various Quantum Gravity Theories.
- Energy dependent dispersion and speed of light.

A phenomenological Approach

The simplest leading order low-energy approximation of any theory that breaks Lorentz Invariance at a very high energy scale: ξm_{pl} , for the deformed dispersion relation:

$$E^{2} - p^{2} - m^{2} \approx \pm \left(\frac{E}{\xi_{n} m_{pl}}\right)^{n}$$
$$v \approx c \left[1 \pm \frac{(1+n)}{2} \left(\frac{E}{\xi_{n} m_{pl}}\right)^{n}\right]$$

Higher energy photons will arrive later (or earlier) than low energy ones emitted **simultaneously**.

 $dt_{LIV} \approx \pm \frac{d}{c} \left(\frac{E}{\xi_n m_{pl}}\right)^{\prime}$

dt

Fermi

H.E.S.S.; Magic

dt for a cosmological source at z=1 for n=1,2 ($\xi=1$)

$$^{n} \approx 0.01 \sec \left[10^{-19(n-1)} \left(\frac{E}{\xi_{n} GeV} \right)^{n} \right]$$

Gamma-Ray Bursts

- •Gamma-ray bursts (GRBs) are short (1-100 sec) bursts of (mostly) soft gamma-rays (~300 keV) arriving from random directions in the sky and from cosmological distances.
- Long GRBs collapsing stars: "Collapsars"
- •Short GRBs merging neutron stars: "Mergers".
- •The prompt emission is highly variable up to a scale of milliseconds.
- •GRBs are followed by long-lasting afterglow in radio, optical, x-rays and VHE (TeV).

Gamma-Ray Bursts

- •Gamma-ray bursts (GRBs) are short (1-100 sec) bursts of (mostly) soft gamma-rays (~300 keV) arriving from random directions in the sky and from cosmological distances.
- Long GRBs collapsing stars: "Collapsars"
- •Short GRBs merging neutron stars: "Mergers".
- •The prompt emission is highly variable up to a scale of milliseconds.
- •GRBs are followed by long-lasting afterglow in radio, optical, x-rays and VHE (TeV).

A rough sketch of a GRB

Short highly variable

PromptAfterglowvariableLong lasting smooth

Fermi Observations of GRB 090510

Credit: Fermi Collaboration

$$\begin{split} &Z{=}0.903 \\ &\Delta t(0.1 MeV{-}30 GeV) < 0.9 sec \\ &\Rightarrow E(1)_{QG} > 1.2 \cdot 10^{19} \ GeV = 1.2 \ m_{\text{pl}} \end{split}$$

limit on	Reason for choice of	E_l	valid	lower limit on	limit on $M_{\rm Q}$
$ \Delta t $ (ms)	t_{start} or limit on Δt	(MeV)	for s_n	$M_{\rm QG,1}/M_{\rm Planck}$	in $10^{10} { m GeV}$
< 859	start of any observed emission	0.1	1	> 1.19	> 2.99
< 299	start of main $< 1 \mathrm{MeV}$ emission	0.1	1	> 3.42	> 5.06
< 199	start of > 100 MeV emission	100	1	> 5.12	> 6.20
< 99	start of > 1 GeV emission	1000	1	> 10.0	> 8.79
< 10	association with $< 1 \mathrm{MeV}$ spike	0.1	± 1	> 102	> 27.7
< 19	if $0.75 \mathrm{GeV} \ \gamma$ is from 1^{st} spike	0.1	-1	> 1.33	> 0.54
< 30 ms/GeV	lag analysis of all LAT events		± 1	> 1.22	

190114C MAGIC Collaboration Nature 575, 455-458(2019)

The Teraelectronvolt Era Teraelectronvolt emission from the **y-ray burst GRB**

dt

 $dt_{LIV} \approx \pm \frac{d}{c} \left(\frac{E}{\xi_n m_{pl}}\right)^n \approx 10 \text{ sec } 10^{-16(n-1)} \left(\frac{E}{\xi_n TeV}\right)^n$

Fermi

H.E.S.S.; Magic

LHAASO

dt

 $dt_{LIV} \approx \pm \frac{d}{c} \left(\frac{E}{\xi_n m_{pl}}\right)$

Fermi

H.E.S.S.; Magic

E/GeV

$$)^{n} \approx 10 \text{ sec } 10^{-16(n-1)} \left(\frac{E}{\xi_{n} TeV}\right)^{n}$$

LHAASO

TeV photons from z=0.45

SSC <u>afterglow</u> emission (Derishev & Piran 2019)

Many early predictions including: Fan, TP, Narayan 2008 Petropoulou, Mastichiadis, TP 2015

The time delay \leq a few dozen seconds $dt_{LIV} \approx \pm \frac{d}{c} \left(\frac{E}{\xi_n m_{pl}}\right)^n \approx 10 \text{ se}$

z=0.45 + dt ~30-60 sec

LC model	Minimal (step function)	Theoret	Theoretical ([19])		
	η^{UL}	η^{LL}	$\eta^{\rm BF}$	η^{UL}	
η_1	4.4	-2.2	0.3	2.1	
η_2	2.8	-4.8	1.3	3.7	
	subluminal	superluminal		subluminal	
$E_{\rm OG,1}$ [10 ¹⁹ GeV]	0.28	0.55		0.58	
$E_{\rm QG,2}$ [10 ¹⁰ GeV]	7.3	5.6		6.3	

A factor of 4 (7) below the GRB 090510 limits

Comparable to AGN flare limits (Abdalla et al., 2019)

Acciari et al., (Magic Collaboration) + L. Nava 2020 Supported by COST18108!

ec
$$10^{-16(n-1)} \left(\frac{E}{\xi_n TeV}\right)^n$$
 (For z=1)

221009A

221009A

- •Z=0.151 (745 Mpc)
- •E_{iso=}1.5 x 10⁵⁵ erg
- •If $\vartheta_i = 0.7^\circ$ then E=1.15 10⁵¹

erg

- •T₉₀=330 sec
- LHAASO 5000 photons > 500 GeV up to 18 TeV
- The afterglow emission is much less energetic, and it is comparable to other TeV **GRBs e.g. 990114c.**

The Low-Energy Afterglow

221009A TeV Afterglow - SSC (Within the "pair balance" model)

Ssc including Klein-Nishina and self absorption Regular parameters but $E_{k,iso} \sim 10^{53}$ erg and not 10^{55} erg

221009A TeV Afterglow - SSC (Within the "pair balance" model)

Prompt

Afterglow (from Lan et al., 23)

High Energy

Inconsistent with LIV "solution" for an 18 TeV photon from z=0.151 (EBL)

A constant spectral shape during the first 20-40 seconds => Strong LIV limits

$$10^{-16(n-1)} \left(\frac{7 \text{ TeV}}{\xi_n TeV} \right)^n$$

52

Inconsistent with LIV "solution" for an 18 TeV photon from z=0.151 (EBL)

A constant spectral shape during the first 20-40 seconds => Strong LIV limits

$$10^{-16(n-1)} \left(\frac{7 \text{ TeV}}{\xi_n TeV} \right)^n$$

52

Intrinsic Spectral Evolution?

- Intrinsic spectral variations are mostly a problem for a <u>positive</u> signal of spectral evolution
- It is unlikely that intrinsic spectral evolution and LIV will combine to give a constant spectrum

221009A vs 090510 ~ 30 GeV ~ 0.2 sec 15 Counts/Bin 0 5 0_2 320 300 310 270 280 290 -1 Time since (263607781.97) (s)

This was also an afterglow (Ghirlanda et al., 2010)

t limit on	Reason for choice of	E_l	valid	lower limit on	limit on $M_{\rm QG,2}$
) $ \Delta t $ (ms)	t_{start} or limit on Δt	(MeV)	for s_n	$M_{\rm QG,1}/M_{\rm Planck}$	in $10^{10} \text{ GeV}/c^2$
) < 859	start of any observed emission	0.1	1	> 1.19	> 2.99
< 299	start of main $< 1 \mathrm{MeV}$ emission	0.1	1	> 3.42	> 5.06
< 199	start of $> 100 \text{ MeV}$ emission	100	1	> 5.12	> 6.20
< 99	start of > 1 GeV emission	1000	1	> 10.0	> 8.79
< 10	association with $< 1 \mathrm{MeV}$ spike	0.1	±1	> 102	> 27.7
< 19	if $0.75 \mathrm{GeV} \ \gamma$ is from 1^{st} spike	0.1	-1	> 1.33	> 0.54
$ \Delta E < 30 \text{ ms/GeV}$	lag analysis of all LAT events	—	±1	> 1.22	
	$\begin{array}{c c c c c c c c c } t & limit on \\ \hline \Delta t \ (ms) \\ \hline 0 & < 859 \\ \hline 0 & < 299 \\ \hline 0 & < 199 \\ \hline 0 & < 99 \\ \hline 0 & < 10 \\ \hline & < 19 \\ \hline /\Delta E < 30 \ ms/GeV \\ \hline \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

20 \approx 0.03 $\land \land$

We should also take into account that 221009A was about 6 times nearer

Comparable LIV limits for n=1. Much better limits for n=2

LIV limits from the prompt Phase

• $\delta t = \max{\delta t_{instrument}, \delta t_{flux}, \delta_{tintrinsic}} \gtrsim a few msec$

•
$$\mathsf{E}_{\max} \stackrel{?}{\lesssim} 100 \text{ MeV}$$

 $dt_{LIV} \approx \pm \frac{d}{c} \left(\frac{E}{\xi_n m_{pl}}\right)^n \approx 0.01 \text{sec } 10^{-19(n-1)} \left(\frac{E}{\xi_n GeV}\right)^n$

 Prompt emission time of flight limits will be typically below 0.1M_{pl} or lower.

LIV and TeV

- <u>GRB TeV emission is Afterglow</u> (Derishev & Piran 2019) (KumAr & Barniyol Duran 2010; Ghisellini et al., 2010 for GeV emission).
- TeV afterglows are nicely explained as SSC within the "pair balance" model (Derishev Piran 2016,2019,2021)
- The Afterglow is smooth :(
- But, the rising afterglow phase can reveal or set limits on L
- LIV n=1 time of flight limits from 090510A (GeV) 190114c (TeV) and 221009A (TeV) are: $\frac{E_{LIV(1)} > a few m_{pl}}{E_{LIV(1)} > a few m_{pl}}$
- LIV explanations of the 18 TeV photons
- Prompt emission ($\delta t > 0.01 \sec \& E \stackrel{?}{<} 100 \text{ MeV}$) time of flight limits will necessarily be below $0.1m_{pl}$:(

Fuzzy (stochastic) propagation (Vasileiou, Granot, TP & Amelino-Camelia, 2015)

$$\delta v(E) = \left(\frac{E}{\xi_f M_{pl}}\right)^n$$
$$\delta T(E) = \delta v(E)T$$

time

 $dt_{LIV} = dt_s(E) + \delta t_f(E)$

Fuzzy (stochastic) propagation (Vasileiou, Granot, TP & Amelino-Camelia, 2015)

$$\delta v(E) = \left(\frac{E}{\xi_f M_{pl}}\right)^n$$
$$\delta T(E) = \delta v(E)T$$

time

 $dt_{LIV} = dt_s(E) + \delta t_f(E)$

Fuzzy limits from GRB 090510

(Vasileiou, Granot, Piran & Amelino-Camelia 2015)

 $t=t_{em} + (\Delta t/dE)_s E + f(\delta T/dE)_f E$ f is a random Gaussian variable

We find $(\delta T/dE)_f < 0.04 \text{ sec/GeV for}$ the fuzzy shift and $(\Delta t/dE)_s < 0.01 sec/GeV$ for the systematic shift. The limit on "fuzzy" LIV energy scale is> $2 m_{pl}$.

High-Energy Neutrinos

If GRBs are also sources of high energy neutrinos we can compare the neutrinos' arrival time with the photons' arrival time.

High-Energy Neutrinos

If GRBs are also sources of high energy neutrinos we can compare the neutrinos' arrival time with the photons' arrival time.

GRB photons and HE neutrinos (Jacob and TP, 2007)

Possible intrinsic **delay**

With Lorentz violation

dt

dt for a cosmological source at z=1 for n=1,2 (ξ =1)

Antares

IceCube

dt

 $dt_{LIV} \approx \pm \frac{d}{c} \left(\frac{E}{\xi_n E_p l}\right)^n$

$$^{n} \approx 10^{-2-19(n-1)} \left(\frac{E}{\xi_{n} GeV}\right)^{n} sec$$

dt for a cosmological source at z=1 for n=1,2 (ξ =1)

IceCube

Antares

Fast Radio Bursts (the new player in town)

(a) VLA localization of FRB 121102

- msec duration pulses at a ~ GHz
- Limit on photon mass of $< 10^{-10}$ eV (Chibisov 2016)
- Modest cosmological distances
- Ideal for time of flight LIV if accompanied by a high energy counterpart
- So far non was detected
- Emission mechanism still unknown
- If high energy counterpart is detected we will have to be sure that there is no intrinsic time delay

Gravitational waves?

- (CGW Cphotons)/ $C \le O(10^{-15})$

• Weak equivalence principle $\gamma < 10^{-7}$ -10⁻¹⁰

Implications from GW 170817 (e.g. Abbot + 17)

~10¹⁶ sec ; including ~10¹⁰ sec of Shapiro time delay

400 LIGO - Virgo

뛷³⁰⁰⁻

<u>ි</u> 200

g 100-

(By the way) GRB 170817A was not a regular short GRB

Aliens living here observed a regular sGRB

GW Lorentz Invariance time of flight?

For known astronomical objects

 $\omega \approx \sqrt{G\rho} < 10^4 Hz \rightarrow \hbar \omega < 10^{-20} GeV$ $\int \rho < 10^{15} gm/cm^3$

Even with some unexpected physics

$$h_{GW} < \frac{GM}{c^2 D} \approx \frac{c}{\omega D} \approx \frac{1}{\omega T}$$

$$LIV \quad dt = \left(\frac{\hbar\omega}{E_{pl}}\right)T \quad \rightarrow \quad \omega T = -\frac{\omega}{c^2}$$

What can we learn from GW on LIV?

- No direct LIV time of flight effects
- Need an EM or neutrinos high energy counterpart
- GW can set the time identifying a critical moment (e.g. coalescence time in a merger)
- However, like in GW 170817 and GRB 170817A we cannot use this information without a robust physical model or an additional observation (?) that could tell us what is the intrinsic time delay.

A remark on the quantum nature of macroscopic GW sources

A Gravitational wave generator

Area of

Summary

- We cannot observe energetic (> TeV) photons from distant GBs = $dt_{LIV} < a$ second (for n=1) • The observed TeV emission is afterglow, that is smooth but rise time can provide some limit. • GRB 090510 190114c & 221009: the best limits on LIV - $\xi_1 \approx 1, \xi_1 \approx 10^{-8}$

- A comparable limit for stochastic LIV for GRB 090510 (but some concern?)
- Prompt emission is highly variable but doesn't have high energy photons $\xi_1 \leq 0.1$ Intrinsic time delay is a major obstacle. Can be resolved only using statistics on MANY sources and requires reasonable astrophysics.
- HE (PeV) GRB neutrinos can provide much stronger limits (scratching Planck for n=2) • FRBs are new interesting candidates to explore time of flight LIV (but no high energy)
- component so far)
- GW 170817+GRB 170817A amazing limits o(10⁻¹⁵) on C_{GW} vs C_{photons}
- Impossible to observe LIV time of flight with GWs alone. lacksquare
- GWs can serve as an onset baseline but the intrinsic time delay issue remains.
- Because of quantum mechanics waving your hands don't lead to GWs. A jet airplane produces \bullet a single graviton per turn around an airport (Planck energy is a macroscopic large quantity).

