

J. BOLMONT - LPNHE - PARIS

SOURCE-INTRINSIC ENERGY DEPENDENT TIME-DELAYS IN AGNS AND SEARCH FOR LORENTZ INVARIANCE VIOLATION

WORK DONE IN COLLABORATION WITH H. SOL (LUTH - MEUDON), C. LEVY (LPNHE/LUTH), U. PENSEC (LPNHE/LUTH), A. ROSALES DE LEON (LPNHE/LUTH)

Rijeka - COST Conference July 10-14, 2023

OUTLINE

- LIV searches and intrinsic time delays
- How we deal with source-intrinsic effects in LIV searches
- The most promising approaches
 - Population studies
 - Understanding the sources
 - A step towards discrimination between LIV and source intrinsic effects in blazar flares
- Conclusions

FOCUS ON HIGH AND VERY HIGH ENERGIES

DELAY DUE TO LORENTZ INVARIANCE VIOLATION

- > The delay is due to the quantum nature of spacetime at the Planck scale
- Expression of the time-lag between two photons emitted at the same time at redshift z, for a linear LIV:

$$\Delta t_{\rm LIV} = \frac{E_h - E_l}{E_{\rm QG}} \int_0^{z'} \frac{(1 + z')dz'}{H(z')}$$
INCREASE WITH DISTANCE

with
$$H(z) = H_0 \sqrt{\Omega_m (1+z)^3 + \Omega_{\Lambda}}$$

- Universe expansion is taken into account, here in the case of an explicit LIV (Jacob & Piran 2008)
 - Other models have a different redshift dependence (e.g. Rosati et al. 2015, Pfeifer 2018...)

A KEY POINT: THE LAG DEPENDS ON THE DISTANCE

COST - Rijeka 2023

SOURCE INTRINSIC EFFECTS

- Delays due to emission and acceleration mechanisms at the source
- These effects show up for all types of sources used in LIV searches
 - Pulsars
 - Gamma-ray bursts
 - Ajello et al. 2019: « when high-energy emission is observed in GRBs, this emission is delayed and lasts longer compared to that in the low-energy band »
 - AGN Flares
 - Only one case with a significant lag measured at TeV energies

A KEY POINT: THE LAG SHOULD NOT DEPEND ON THE DISTANCE

MRK 501 FLARE SEEN BY MAGIC IN 2005

- ~20 minute long flare on July 9, ~1500 photons, z = 0.034
- Negligible background
- Lag of 4±1 min measured between < 250 GeV and >1.2 TeV
 - Confirmed with 2 methods: MAGIC 2008, Martinez & Errando 2009
- $\tau_1 = (0.030 \pm 0.012) \text{ s/GeV, and}$ E_{QG,1} = $0.30^{+0.24}_{-0.10} \times 10^{18} \text{ GeV}$

Finally interpreted as a source intrinsic effect

HOW TO DEAL WITH SOURCE INTRINSIC EFFECTS IN LIV SEARCHES?

$$\Delta t_{n \text{ total}} = \Delta t_{n \text{ LIV}} + (1+z) \Delta t_{\text{source}}$$

> Several methods were used in the past:

- Neglect intrinsic effects
- Population studies (at low energies + GRBs only)
- Conservative modeling (see Vasileiou et al. 2013)
- In the future, **we need to focus on**:
 - Multi-source population studies at TeV energies (see Bolmont et al. 2022)
 - Full modeling of the sources, with a focus on studying source intrinsic effects (for AGNs: Perennes et al. 2020, Levy et al. in prep.)

NEGLECTING SOURCE INTRINSIC EFFECTS

- **Done in all LIV studies using only one source**
- It sounds bad, but...
 - All LIV studies were performed in a « small » energy range
 - Only one acceleration mechanism at play at the source (e.g. blazars in the TeV range → Inverse Compton)
 - No significant lag was measured in any LIV analysis.
 (Except for Mkn 501 flare of 2005)
- But reducing the energy range results in a decrease of sensitivity to LIV...

POPULATION STUDIES (GRBS ONLY)

- The delay is parameterized as $\frac{\Delta t_{\rm meas}}{1+z} = a_{\rm LIV} \, \kappa(z) + b_{\rm int}$
 - where a_{LIV} accounts for the LIV effect and b_{int} for the intrinsic delay
- Most of these studies use both long and short bursts
- Intrinsic delays are assumed to be identical for all bursts

See also Bernardini et al. 2018, Bolmont et al. 2008, Ellis et al. 2000, 2003, 2006, 2019, ...

UNDERSTANDING THE SOURCES

UNDERSTANDING INTRINSIC EFFECTS

Focusing on blazars... at HE and VHE energies

 The jet is the main contributor for the observed HE emission

©ESA/NASA, the AVO project and Paolo Padovani

A SIMPLE « BLOB-IN-JET » LEPTONIC MODEL

Purely leptonic « blob-in-jet » model

- A hotter and denser plasmoid of e⁻/e⁺ moving along the jet: the blob
- The VHE emission is entirely governed by the blob
- Strong magnetic fields
 - Synchrotron radiation
- Synchrotron photons can interact with the electrons in the blob
 - Inverse Compton
- Synchrotron Self-Compton (SSC)
- Inverse Compton of photon fields external to the jet or the AGN itself → External Inverse Compton (EIC)

A SIMPLE « BLOB-IN-JET » LEPTONIC MODEL

Purely leptonic « blob-in-jet » model

- A hotter and denser plasmoid of e⁻/e⁺ moving along the jet: the blob
- The VHE emission is entirely governed by the blob
- Strong magnetic fields
 - Synchrotron radiation
- Synchrotron photons can interact with the electrons in the blob
 - Inverse Compton
- Synchrotron Self-Compton (SSC)
- Inverse Compton of photon fields external to the jet or the AGN itself → External Inverse Compton (EIC)

A SIMPLE « BLOB-IN-JET » LEPTONIC MODEL

Purely leptonic « blob-in-jet » model

- A hotter and denser plasmoid of e⁻/e⁺ moving along the jet: the blob
- The VHE emission is entirely governed by the blob
- Strong magnetic fields
 - Synchrotron radiation
- Synchrotron photons can interact with the electrons in the blob
 - Inverse Compton
- Synchrotron Self-Compton (SSC)
- Inverse Compton of photon fields external to the jet or the AGN itself → External Inverse Compton (EIC)

QUANTIFYING INTRINSIC LAGS

C. Levy, H. Sol, A. Rosales, JB Plots from C. Levy

11

- First attempts to characterize intrinsic effects in blazar flares in connexion to LIV searches
- SED and light curves produced from a simple SSC model (Katarzyński et al. 2001)
- Temporal evolution due to
 - Electron acceleration ()
 - Electron energy losses and decrease of magnetic field (^{*})
- ∆t = t_E t_{ref} computed from a reference light curve (lowest energy)

Perennes et al. (w JB) 2020, Levy et al. (w JB) in prep. + ICRC 2021

NEGATIVE LAG: HIGH ENERGY PEAK BEFORE LOW ENERGY PEAK

QUANTIFYING INTRINSIC LAGS

C. Levy, H. Sol, A. Rosales, JB Plots from C. Levy

11

- First attempts to characterize intrinsic effects in blazar flares in connexion to LIV searches
- SED and light curves produced from a simple SSC model (Katarzyński et al. 2001)
- Temporal evolution due to
 - Electron acceleration ()
 - Electron energy losses and decrease of magnetic field (^{*})
- ∆t = t_E t_{ref} computed from a reference light curve (lowest energy)

Perennes et al. (w JB) 2020, Levy et al. (w JB) in prep. + ICRC 2021

NEGATIVE LAG: HIGH ENERGY PEAK BEFORE LOW ENERGY PEAK

QUANTIFYING INTRINSIC LAGS

- Time delays show three types of regimes due to the competition between acceleration and cooling processes
 - Increasing trend: slow acceleration
 - Decreasing trend: fast acceleration
 - « Flat » regime: acceleration and cooling are balanced
- Changing the model parameters in their validity ranges allows to retrieve the different trends

12

INCREASE: SLOW ACCELERATION WRT COOLING PROCESSES LE PEAK BEFORE HE

DECREASE: FAST ACCELERATION WRT COOLING PROCESSES HE PEAK BEFORE LE

TWO DELAY REGIMES

- Two delay regimes due to imbalance between acceleration and cooling processes
 - > The two processes happen at the same time, but with different efficiencies

Increasing delays - slow acceleration

- Max Lorentz factor reached after lightcurves start to decay (t_{max} > t_E)
 - → slow acceleration wrt decay processes
 - → HE photons emitted later
 - → HE peak after LE

Decreasing delay - fast acceleration

- Max Lorentz factor reached before lightcurves start to decay (t_{max} < t_E)
 - → fast acceleration wrt decay processes
 - \rightarrow HE photons emitted sooner
 - \rightarrow HE peak before LE

t_{max}

F

Plots from C. Levy

14

INTRINSIC EFFECTS VS LIV EFFECTS

- When introducing LIV effects, here for z = 0.03, we see that
 - LIV can result in a change of regime
 - LIV can cancel intrinsic effects out
- Here we show only the MeV-TeV range
- What happens when the energy range is extended to lower energies?

DISCRIMINATING LIV AND INTRINSIC EFFECTS

- A very interesting outcome:
 - The same trend is observed in both X-ray and gamma-ray domains
 - A remarkably stable and robust feature
 - External Inverse Compton tend to decrease the correlation, but it's still there
 - EBL absorption and Klein-Nishina effects do not change this trend
- A key point for intrinsic vs. LIV effects discrimination

DISCRIMINATING LIV AND INTRINSIC EFFECTS

- A very interesting outcome:
 - The same trend is observed in both X-ray and gamma-ray domains
 - A remarkably stable and robust feature
 - External Inverse Compton tend to decrease the correlation, but it's still there
 - EBL absorption and Klein-Nishina effects do not change this trend
- A key point for intrinsic vs. LIV effects discrimination

DISCRIMINATING LIV AND INTRINSIC EFFECTS

- LIV effects are negligible in the Xray regime
- Comparing gamma and x-ray data will help disentangling LIV and intrinsic effects
- A strong case for simultaneous multi-lambda observations!
- More details will be available the article in preparation

CONCLUSIONS (1/2)

- Source-intrinsic spectral lags must be carefully considered in LIV searches
- They can be neglected in some conditions
- They can't be ignored when increasing the energy range
- In case of a positive lag detection, they will have to be separated from LIV effects
 - Population studies → using LIV effect dependance on z
 - Source modeling
- Both are developed and will be extended in the future

CONCLUSIONS (2/2)

- Intrinsic delay non-detection can also help to constrain models!
- Next developments for AGN jet modeling:
 - Investigate lepto-hadronic scenarios (A. Rosales)
 - Investigate CTA performance to detect the lags in the purely leptonic scenario (U. Pensec, A. Rosales)
- Intrinsic effects are certainly not universal
- Dedicated studies will be needed to interpret future positive lag detections

THANKS !

« CONSERVATIVE MODELING » OF SOURCE EFFECTS

Vasileiou et al. 2013

20

• Measure the Confidence Interval on $\Delta t_{n total}$ from data

- Assume the range of Δt_{source}
 - is as wide as the CI on $\Delta t_{n \text{ total}}$
 - is zero on average (bright bursts, no significant lag measured)
- Deduce the allowed range for $\Delta t_{n LIV}$
- Take the value of $\Delta t_{n LIV}$ which gives the least stringent constraint

J. Bolmont - LPNHE, Paris

 $\Delta t_{n \text{ total}} = \Delta t_{n \text{ LIV}} + (1+z) \,\Delta t_{\text{source}}$

LIMITS ON $E_{QG,1}$ and $E_{QG,2}$ for the subliminal case (95%CL)

	Source(s)	Experiment	Method	Results	
Individual GRB	GRB 021206	RHESSI	Fit + mean arrival time in a spike	$E_{QG,1} > 1.8 \times 10^{17} \text{ GeV}$	10
	GRB 080916C	Fermi GBM + LAT	associating a 13 GeV photon with the trigger time	$E_{QG,1} > 1.3 \times 10^{18} \text{ GeV}$	$E_{QG,2} > 0.8 \times 10^{10} \text{ GeV}$
	GRB 090510	Fermi GBM + LAT	associating a 31 GeV photon with the start of any observed emission, DisCan	$E_{QG,1} > 1.5 \times 10^{19} \text{ GeV}$	$E_{QG,2} > 3.0 \times 10^{10} \text{ GeV}$
		Fermi LAT	PairView, SMM, likelihood	$E_{OG,1} > 9.3 \times 10^{19} \text{ GeV}$	$E_{OG,2} > 1.3 \times 10^{11} \text{ GeV}$
	GRB 190114C	MAGIC	Likelihood	$\tilde{E}_{QG,1} > 0.6 \times 10^{19} \text{ GeV}$	$E_{QG,2} > 6.3 \times 10^{10} \text{ GeV}$
Several GRB	9 GRBs	BATSE + OSSE	Fit	$E_{QG,1} > 10^{15} \text{ GeV}$	
	9 GRBs	BATSE + OSSE	wavelets	$E_{QG,1} > 0.7 \times 10^{16} \text{ GeV}$	$E_{QG,2} > 2.9 \times 10^6 \text{ GeV}$
	15 GRBs	HETE-2	wavelets	$E_{QG,1} > 0.4 \times 10^{16} \text{ GeV}$	
	17 GRBs	INTEGRAL	likelihood	$E_{QG,1} > 3.2 \times 10^{11} \text{ GeV}$	
	35 GRBs	BATSE + HETE-2 + Swift	wavelets	$E_{QG,1} > 1.4 \times 10^{16} \text{ GeV}$	
	15 GRBs	SWIFT	CCF (50-100 keV, 150-200 keV)	$E_{OG,1} > 1.48 \times 10^{16} \text{ GeV}$	
	8 GRBs	Fermi LAT	irregularity, kurtosis, skewness estimators	$E_{QG,1} > 10^{17} \text{ GeV}$	
ndividual PSR	Crab pulsar	EGRET	average time of the main pulse in different	$E_{QG,1} > 0.2 \times 10^{16} \text{ GeV}$	
			energy bands, fit of main pulse	17	
		VERITAS	DisCan	$E_{QG,1} > 1.9 \times 10^{17} \text{ GeV}$	
		MAGIC	likelihood	$E_{QG,1} > 7 \times 10^{17} \text{ GeV}$	$E_{QG,2} > 4.6 \times 10^{10} \text{ GeV}$
IJ	Vela pulsar	H.E.S.S.	likelihood	$E_{QG,1} > 3.5 \times 10^{15} \text{ GeV}$	$E_{QG,2} > 6.4 \times 10^8 \text{ GeV}$

Best limit so far: E_{QG,1} > 9.3x10¹⁹ GeV with GRB 090510

- Population studies lead to E_{QG,1} > 10¹⁷ GeV
- Competitive results possible for pulsars on E_{QG,2}

J. Bolmont - LPNHE, Paris

HEXGALUNIV Workshop 2020

LIMITS ON $E_{QG,1}$ and $E_{QG,2}$ for the subliminal case (AGN)

	Source(s)	Experiment	Method	Results	
Individual flaring AGN	Mrk 421	Whipple	average time of the main pulse in different energy bands	$E_{QG,1} > 0.4 \times 10^{17} \text{ GeV}$	
	Mrk 421	MAGIC	likelihood	$E_{QG,1} > 5.4 \times 10^{18} \text{ GeV}$	$E_{QG,2} > 1.4 \times 10^{11} \text{ GeV}$
	Mrk 501	MAGIC	ECF, likelihood	$E_{QG,1} > 0.2 \times 10^{18} \text{ GeV}$	$E_{QG,2} > 2.6 \times 10^{10} \text{ GeV}$
			likelihood	$E_{QG,1} > 0.3 \times 10^{18} \text{ GeV}$	$E_{QG,2} > 5.7 \times 10^{10} \text{ GeV}$
	Mrk 501	H.E.S.S.	likelihood	$E_{QG,1} > 3.6 \times 10^{17} \text{ GeV}$	$E_{QG,2} > 8.5 \times 10^{10} \text{ GeV}$
	PKS 2155-304	H.E.S.S.	MCCF	$E_{QG,1} > 7.2 \times 10^{17} \text{ GeV}$	$E_{QG,2} > 0.1 \times 10^{10} \text{ GeV}$
			wavelets	$E_{QG,1} > 5.2 \times 10^{17} \text{ GeV}$	
			likelihood	$E_{QG,1} > 2.1 \times 10^{18} \text{ GeV}$	$E_{QG,2} > 6.4 \times 10^{10} \text{ GeV}$
	PG 1553+113	H.E.S.S.	likelihood	$E_{QG,1} > 4.1 \times 10^{17} \text{ GeV}$	$E_{QG,2} > 2.1 \times 10^{10} \text{ GeV}$
	3C279	H.E.S.S.	likelihood	$E_{QG,1} > 1.6 \times 10^{17} \text{ GeV}$	$E_{QG,2} > 1.5 \times 10^{10} \text{ GeV}$

5 different objects

- Redshift ranging from 0.03 (Mrk 421) to 0.54 (3C279)
- Best limits for EQG,1 and EQG,2 : Mrk 421

References available on a back-up slide

LIMITS ON $E_{QG,1}$ and $E_{QG,2}$ for the subliminal case (AGN)

	Source(s)	Experiment	Method	Results	
ndividual flaring AGN	Mrk 421	Whipple	average time of the main pulse in different energy bands	$E_{QG,1} > 0.4 \times 10^{17} \text{ GeV}$	
	Mrk 421	MAGIC	likelihood	$E_{QG,1} > 5.4 \times 10^{18} \text{ GeV}$	$E_{QG,2} > 1.4 \times 10^{11} \text{ GeV}$
	Mrk 501	MAGIC	ECF, likelihood	$E_{QG,1} > 0.2 \times 10^{18} \text{ GeV}$	$E_{QG,2} > 2.6 \times 10^{10} \text{ GeV}$
			likelihood	$E_{QG,1} > 0.3 \times 10^{18} \text{ GeV}$	$E_{QG,2} > 5.7 \times 10^{10} \text{ GeV}$
	Mrk 501	H.E.S.S.	likelihood	$E_{QG,1} > 3.6 \times 10^{17} \text{ GeV}$	$E_{QG,2} > 8.5 \times 10^{10} \text{ GeV}$
IJ	PKS 2155-304	H.E.S.S.	MCCF	$E_{QG,1} > 7.2 \times 10^{17} \text{ GeV}$	$E_{QG,2} > 0.1 \times 10^{10} \text{ GeV}$
			wavelets	$E_{QG,1} > 5.2 \times 10^{17} \text{ GeV}$	
			likelihood	$E_{QG,1} > 2.1 \times 10^{18} \text{ GeV}$	$E_{QG,2} > 6.4 \times 10^{10} \text{ GeV}$
	PG 1553+113	H.E.S.S.	likelihood	$E_{QG,1} > 4.1 \times 10^{17} \text{ GeV}$	$E_{QG,2} > 2.1 \times 10^{10} \text{ GeV}$
	3C279	H.E.S.S.	likelihood	$E_{QG,1} > 1.6 \times 10^{17} \text{ GeV}$	$E_{QG,2} > 1.5 \times 10^{10} \text{ GeV}$

5 different objects

- Redshift ranging from 0.03 (Mrk 421) to 0.54 (3C279)
- Best limits for EQG,1 and EQG,2 : Mrk 421

References available on a back-up slide

J. Bolmont - LPNHE, Paris

PREPARING POPULATION STUDIES

- Simulated data from published spectra and light curves
 - GRB 190111C detected by MAGIC
 - Three AGN flares detected by MAGIC and H.E.S.S.
 - Two VHE Pulsars detected by H.E.S.S., VERITAS and MAGIC

PREPARING POPULATION STUDIES

- Technical paper on the method to appear in early 2021
- Final paper with all available sources to follow