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Perturbation theory of LSS

The study of the Large Scale Structure (LSS) has emerged as a core technique
to understand the properties of the Universe.

LSS is mainly studied via numerical simulations.

However, it is important to develop analytical approaches to investigate the non-
linear growth of cosmic structures.

Standard Perturbation Theory (SPT) Lagrangian Perturbation Theory (LPT)




Lagrangian perturbation theory

We consider cold dark matter interacting via Newtonian gravity.

For a fluid element at position g at some initial time, its position x at later times is
written in terms of the displacement field w(q,t)

x(q,t) = q+(q,t)

The matter power spectrum is

P(k) + (27)%0p (k) = / Paeika (pksvia)

where Ay (q) = v (%) — (—%)

Lagrangian perturbation theory (LPT) expands y(q) as

(g, t) =¢v(a,t) + v (q,t) + v (q,t) +.

and solves the EOM perturbatively.

[Z. Vlah, M. White, A. Aviles, JCAP 09 (20.15) 014]

L Effective field theory [R. A. Porto, L. Senatore, M. Zaldarriaga, JCAP 05 (2014) 022] |



The large k expansion

We consider the matter power spectrum .
P(k) 4 (27T)35D(k) _ /d?)qez'k-q <€ik.A?,b(q)> |

and expand the relative displacement field Ayw(q) as
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The coefficients can be expressed in terms of probability distribution functions
(PDFs) for the derivatives of y(q,t). E.g.

Co = { / By ' 0+ M)y _ (27)3P

[S. Chen, M. Pietroni, JCAP 06 (2020) 033]
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The PDFs are dominated by the non-linear dynamics and can be computed in
simulations.

In this talk we relate the large k expansion to LPT.



The Zel’dovich approximation

ZEL'DOVICH POWER SPECTRUM
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This is the leading order in LPT. %
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Large k and LPT: leading order

We expand X(q) and Y(q) around g=0 as
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The Zel'dovich power spectrum becomes
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General coefficients
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The coefficients are non-perturbative in o,,.
[S. Chen, M. Pietroni, JCAP 06 (2020) 033]

[S. Konrad, M. Bartelmann Mon.Not.Roy.Astron.Soc. 515 (2022) 2]
The coefficients can be written as
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Large k and LPT: 1-loop EFT

1-LOOP POWER SPECTRUM
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V(q) and T(q) come from the three-point function Wy,

Wije(@) = (A (@) AV;(q)AVk(Q)) = V(9)Gidin + T(q)q:d;x

We have e.g.

Bessel function Counterterms

+ (}flePL(]f)) dk

and the same for X(q), V(q), T(q).



Large k and LPT: 1-loop EFT

We again expand X(q), Y(q), V(q), T(q) around g=0 as e.qg.
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We are computing the coefficients of the large k expansion in LEFT.
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Symmetry constraints at one loop

At one-loop the combination Wy, = T" + 5V appears.
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The small g expansion consistent with large k scaling is
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However one would naively conclude that Wy(q) ~ ¢ I
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These hold for every P, (k) and come from symmetry.




Large k and LPT: the power spectrum

We start from the matter power spectrum

P(k) + (27)°0p (k) = /queik'q (elAvi@)

and use the cumulant theorem to expand it as
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The structure follows from dimensional analysis, translation invariance, and

parity. We have
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By expanding the exponential for small kUV/k at fixed N, one generates
the large k expansion with the corresponding coefficients C; at the N-th
order in LEFT




Integral constraints and counterterms
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Consistency between | and |

constraints for the functions and counterterms appearing in Lagrangian EFT.

) implies an infinite series of integral

An analogous result can be obtained for even N.



Integral constraints and counterterms

The integral constraints are
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The a; are the coefficients of the Maclaurin ~N=0,..., . i=0,...,
series of the spherical Bessel functions.



Comparisons in d=1+1 dimensions
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The Zel'vovich approximation (blue) The large k expansion is a saddle point
and the large k expansion at various expansion (around g=0). Including
orders. subleading saddles improves the results.
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