Signed Coordinate Invariance, invariant lagrangians

and manifolds, the time problem in quantum cosmology,

quantum space time, spacetimes and antispacetimes.
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In an interesting paper, Linde formulated a model that claims to resolve the cosmological constant problem [1].
This requires the existence of two universes, each with its own set of coordinates r* and y* containing matter and
gravity components that mirror each other, but with the corresponding actions having opposite signs, like spacetime
and an antispacetime, as in
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R(r) is defined in terms of a g, metric, while R(y) is defined in terms of a g,, metric and where L(x) and L(y)
have exactly the same functional form with respect to their corresponding mirror fields, like for a scalar field ¢(z),
there will be a potential V(¢(x)), same with kinetic terms, etc. that are appearing in L(x) , while in L(y) there
will be corresponding field ¢(y) with a potential V(¢(y)), then in L(y) the metric .. appears instead of the metric
Gy, then the theory is obviously invariant under V' — V' + constant [1]. This non local coexistece of a spacetime
and an antispacetime was shown by Linde to have remarkable properies concerning its behavior with respect to the
cosmological constant problem. As we will see , we can think of this as having regions where the measure of integration
can change sign, an effect that must take place at the same time as we double the space time, to realize Linde "s ideas.

The model by Linde is however non local, so this is an aspect that is not desirable,



1I. GENERAL RELATIVITY AND OTHER THEORIES USE A RIEMANNIAN VOLUME ELEMENT
THAT IS NOT INVARIANT UNDER SIGNED GENERAL COORDINATE TRANSFORMATIONS

The action of GR, and other theories that use the standard Riemannian volume element d*z,/= g is of the form,
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where L is a generally coordinate invariant lagrangian. Now notice that under a general coordinate transformation,
d*z = Jd'x

, while

V=g =717 V=g
where .J is the jacobian of the transformation and | J | is the absolute value of the transformation. Therefore
diz,/—q — -I%lr_f‘l:r —g, s0 invariance is achieved only for J =| .J |, that is if J > 0, that is signed general coordinate
transformations are excluded.

One could argue that when taking the square root of the determinant of the metric one may choose the negative
solution when it suit us, but this would be an arbitrary procedure if no specific rule is given to choose the positive
or the negative root. We choose instead to declare that /=g is always positive and replace it in the measure by
something else whose sign is well defined.



A. Invariance of the action with non invariant lagrangian density (integrand) and compensating non
invariant manifold of integration?

If conditions are optimal, the non invariance of the lagrangian density (integrand) , which includes the measure, in
a signed coordinate transformation, could be compensated by the non invariance of the manifold of integration. For
example, in a time reversal transformation, the integrand will change sign, but , if there no obstructions, and we can
then change the limits of integrations, the exchange of the limits of integrations will involve an additional exchange
of signs that can compensate for the sign change in the integrand.

If the manifold has boundaries in coordinate space, introducing coordinate transformations that change the bound-
aries involve compensationg terms at the boundaries, even when the transformations are infinitesimal, so at this point
the invariance of the action becomes complicated and problematic, in particular in cosmology where the universe may
have a beginning in time.

As we discuss in the next sections, where we will discuss a possible realization of the invariance under signed general
coordinate transformations in the context of the non local Linde Universe multiplication model, without invoking a
change in the manifold of integration, but rather transforming the field variables, and then in the following section a
return to a local theory by the use of the modified measure formalism.



Anti space (y space time) solves the problem
in Linde Mode|

ITII. INVARIANCE OF SIGNED GENERAL COORDINATE TRANSFORMATIONS IN THE NON
LOCAL LINDE UNIVERSE MULTIPLICATION MODEL, OR SPACETIME ANTISPACE MODEL

The Linde non loecal model can offer a limited way out to obtain signed general coordinate invariance, so we can
allow general coordinate transformations where the jacobian of the transformation, say in the x space , is negative,
but still we do not consider the possibility that it could change from positive to negative.

As long as the jacobian is uniformly negative over all space, invariance will be achieved if the same transformation
is performed both in the  and y coordinates In these cases, we do not invoke any transformation or change in the
manifold of integration, which we have argued is a questionable operation.

As we will see in the next section, the use of Metric Independent Non-Riemannian Volume-Forms and Volume
elements allows us to resolve this issue with no such restrictions on possible changes of signs of the jacobian of the
coordinate transformation in different regions of space time and without inveking non local actions.



IV. METRIC INDEPENDENT NON-RIEMANNIAN VOLUME-FORMS AND VOLUME ELEMENTS
INVARIANT UNDER SIGNED GENERAL COORDINATE TRANSFORMATIONS

(One can define a metric independent measure from a totally anti symmetric tensor gauge field, for example

IR
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Then, under a general coordinate transformation
B(A) — J (A

. Therefore d*z®(A) — d*z®(A), so invariance is achieved regardless of the sign of .J.



Some ideas concerning theories using these
measures

First we review our previous papers where we have considered the action of the general form involving two inde-
pendent non-metric integration measure densities generalizing the model analyzed in [22] is given by
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Here the following definitions are used:

¢ The quantities ®4(A) and ®2(B) are two densities and these are independent non-metric volume-forms defined
in terms of field-strengths of two auxiliary 3-index antisymmetric tensor gauge fields
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The density ®(H ) denotes the dual field strength of a third auxiliary 3-index antisymmetric tensor
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e The scalar curvature B = ¢g"" R, (') and the Ricei tensor R,,.(I') are defined in the first-order (Palatini)
formalism, in which the affine connection I, is a priori independent of the metric g,,,. Let us recall that
R + R? gravity within the second order formalism was originally developed in [3].

e The two different Lagrangians L'*?) correspond to two matter field Lagrangians

On the other hand, the variation of (4) w.r.t. auxiliary tensors A, B, and H,,, becomes
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whose solutions are
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Here the parameters M, and M, are arbitrary dimensionful and the quantity yo corresponds to an arbitrary dimen-
sionless integration constant.
The resulting theory is called a Two Measure Theory, due to the presence of the Two measures ®,(A) and ®4(A).




But for the purpose of this paper this is two general, since we want to restrict to a theory that will give us ordinary
General Relativity, and we want to keep the general coordinate invariance under signed general coordinate invariance.
For obtaining GR dynamics, we can restrict to one measure, so let us take

B1(A) = B3(B) = Q

also to make some contact for example with [9] , where an additional set of four fields is introduced, we express ®
in terms of four scalar fields

1
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(one has to point out that in the earlier formulations of modified measures theories we used the 4 scalar field repre-
sentation for the measure, see [12] , ) The mapping of the four scalars to the coordinates x* may be topologically non
trivial, as in [9] and this multivaluedness could be of use to obtain Linde "s Universe multiplication as well. Finally,
we have to correct the equation

Da(B)
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for another equation the will be invariant under signed general coordinate invariant transformations, which will be

= Yo = const. (10)

=y = K? = const > 0. 11
9 )
without loss of generality we define K to be positive. The resulting action that replaces (5) is
o(H
g = f&n[RJrL /d4 o2 {{ }}] (12)
g

the density ¢(H) remains defined eq. (6) so the integration obtained from the variation of the H gauge field is eq.
(11) now. The solution of eq. (11) are



The solution of eq. (11) are

0
(—g)

VI. THE INVARIANT SCALAR INTEGRATION MANIFOLD AND INVARIANT LAGRANGIAN
DENSITY

— ::H.

Notice that using the volume element converts the the integration over coordinates in the action into integration
over scalar fields, since

bdir = dip1dpadpsdipy

The integration manifold existing in the four scalar field manifold is in fact completely unaffected by any coordinate
transformation taking place in the x space. The lagrangian density is also a scalar not affected by any coordinate
transformation, the theory formulated in this way does not require any boundary terms if the boundaries are for
example formulated in the scalar field space.

In the case of (12) for example,
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., where
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VII. GRAVITATIONAL EQUATIONS OF MOTION

We start by considering the equation that results from the variation of the degrees of freedom that define the
measure {2, that is the scalar fields ., these are,

Ao, {R+L+2ﬂ¢l(H}] =0 (14)
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Notice that the determinant of A*® is proportional to €%, so if the measure is not vanishing, the matrix A*® is non

singular and therefore d,(R + L + EQT I;J ) = 0, so that,
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The variation with respect to the metric g"¥, we obtain.
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solving ﬂ%%l from (16) and inserting into (17), we obtain,
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which gives exactly the form of Einstein equation with the canonical energy momentum defined from L




One issue that should be addressed is that of the gauge fixing in the p, space. Indeed, we notice that the only
thing where these fields appear in the equations of motion is €2, but this quantity is invariant under volume preserving
diffeomorphisms of the fields ¢,, ¢, = ¢, () which satisfy
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s0 the study of the best gauge for the ¢, fields for further comparison with the z# space could be a very important
subject. Of course when we say that the mapping between the g, and the xz* spaces, we want to exclude multi
valuedness due to volume preserving diffeormorphisms of the fields p,, if for example different signs for (1 are associated
to the same point in x* space, it is clear that there are at least two points in ¢, space associated to one point in
x* space, and these two points in the p, are not related through a volume preserving diff. This could be an effect
analogous to the Universe Multiplication of Linde.

VIII. LINDE’S UNIVERSE MULTIPLICATION AND RELATION TO A BRANE ANTI BRANE
SYSTEM AND MEASURE FIELD MULTIVALUEDNESS INSTEAD OF NON LOCALITY

We can immediately see some similar features between the Linde universe multiplication as deseribed by eq. (1)
and the modified measure theory, with the measure assuming a positive or a negative value, as expressed by eq,
(13), instead of the obvious non loecality of the Linde approch, the modified measure approach can offer instead multi
valued feature of the , space with respect to the x# space. The double solution for the measure (13) can be valid
for the same coordinate x* | which may correspond however to non unigque values in the ¢, space. The doubling of
the measure (13) has its correspondence in the signed reparametrization invariant formulation of modified measure
[38] and the corresponding existence of strings and antistrings as well as branes and anti branes in such fromulation.



What your measure fields can do !

IX. TURNING MANIFOLDS WITH BOUNDARIES INTO MANIFOLDS WITHOUT BOUNDARIES,
THE PROBLEM OF TIME IN QUANTUM COSMOLOGY, QUANTUM SPACE TIME, SPACE TIMES
AND ANTI SPACE TIMES

As we will discuss in this section, these concepts can have interesting applications to gquantum cosmology: 1) the
consideration of one of the measure fields as a time, instead of the ordinary coordinate time can transform a manifold
with boundaries, as a universe with an origin of time, which is difficult to handle, into a manifold which avoids these
difficulties in by considering that the fundamental manifold in terms of the measure fields does not have boundaries
and 2) the problem of time, associated with the coordinate time, which produces vanishing Hamiltonians is avoided.
Considering instead one of the measure fields as time avoids this problem and lead us to a new formulation of a
gquantum space time, 3) using the measure fields as the basis to construct the quantum space time 4) defining space
times and antispacetimes, this is in fact related to 1).

Indeed, concerning the first point, in most cosmological models we assume that the universe has an origin in time,
this leads then to a manifold with boundaries if we think the fundamental manifold is coordinate space and time. A
well known example of such a phenomena is the pair creation in QED, which we review in the next subsection.



First look at a well known example in QED

A. Pair Creation in a Strong Uniform Electric Field in QED, as an example of turning a manifold with
boundary in time to a manifold without boundary in proper time

From the 'Feynman’' perspective, negative energy waves propagating into the past are physically realized as the
antiparticles propagating into the future. As he has shown [32] that from the classical equations of motion for a
particle in an external field can be written as

42 zH dz, .., _
o (21)

Tr

where 7 is the proper time. If we note as Feynman has that if we allow 7 —+ —7 the equation becomes

d2 2 iz,
— —¢
dr2 dT

m S (22)
which is identical to the previous equation except that the particles charge has changed. In other words, as far as its
charge is concerned, it has become the antiparticle. Thus, proper time running backward (i.e., 7 —+ —7), while keeping
the coordinate time unchanged. led to the particle becoming an antiparticle. Of course we can take the equivalent,
but more suitable for our purposes transformation that we change the direction of coordinate time, while requiring
that the proper time remains unchanged.

This would be exactly analogous to taking one of the four scalars as an analogous of the proper time and the
coordinate time, which would be another entitv,



particle in a field is most convenient written in terms of the Maxwell tensor F),, where for a constant electric E in

the z—direction, F°' = — E, F°=F F% =FE, F' = E. More explicitly, we have
0 E00
E0 00
oo
Fo=10 000 (23)
0 0 00
The equation of motion for this particle in a constant electric field is
d* dx”
m— =[iFHU? (24)
The formal solution of for u* = ‘:LL: is u”(7) = exp|[=F"47|bu”(0) The exponential can be expanded and we
have
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Separating even and odd power in Eq. 25 we have
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Integrating with respect to 7 yields (where we have dropped arbitrary constants of integration)
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We choose the following boundary conditions «'(0) =0, u«"(0) = 1 which leads to

o m 1 eFT
r° = —sinh
el m

' = %Lﬂﬁh ({if:) (29)
and for the boundary condition u*(0) =0, u?(0) = —1 leads to
0 _ m el
T = -5 sinh (—m )
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The solution given by Eq. 29 represents a particle solution while the solution of Eq. 30 represents the anti-particle
solution. Both solutions, together satisfy

(@) -2 = (=) (1)






At classical level, these solutions are distinet and one solution can not evolved into the other. Thus, a particle
couldn’t evolve to an anti-particle. However, the semi-classical approximation which consists of considering the
classical equations of motion but with imaginary time. Then inserting t = —itg we obtain that the hyperbola of Eq.
31 becomes a circle

(@) + 8 = () (32)

This tunneling solution can now interpolate between the anti-particle and particle solutions. In the imaginary time
region, the action, § = —iSg where Sg is given by
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Introduction the angular variable # where & = ZFcosf, tg = -5 sinf we obtain that Sg = wm? JeE. Since the

probability is given (up to pre factors) by exp (=5 E} n:-.xp{——} for e £ > 0. Notice that the distance of the particle
and antiparticle at the moment of creation is Ax = E which has a physical interpretation is manifest in writing it as
W = eEAx = 2me? (34)

where we have restored the "¢’ to make its physical meaning clearer. Thus we can create a pair of particle-antiparticle
in a constant electric field by performing work, W in a distance Ax equal to the the sum of the rest masses of the
particles, i.e. 2me?. In the case for an electric field that doesn’t extend through all of space, still it must be extended
enough to perform the work equal to the sum rest masses of the two particles in order to create a pair.

From the point of view of our discussion here, we see that in the pair ereation process, the proper time proceeds
from minus infinity to plus infinity, while for this manifold the minimum coordinate time sits in euclidean space at
tp = —=&, the coordinate manifold is a manifold with boundaries, while the proper time manifold does not have
boundaries associated with it.






Another problem with the use of coordinate time
in cosmology that we could resolve now |

B. Resolution of The problem of Time in Quantum Cosmology using one of the measure fields as time

A related difficulty related to the use of coordinate time in quantum cosmology is that the invariance under
reparametrizations in the coordinate time leads to the constraint that the Hamiltonian equals zero. In this case the
analogous of rge Schroedinger equation for Quantum gravity will tell us that the wave function is time independent.

In the presence of this problem, the "time problem in Quantum Cosmology”™, many proposals for alternative fields
to replace the cosmic time were proposed, for a review see [35].

To choose the corresponding time among the four measure fields, we can use the volume preserving diffeomorphisms
(20) or the general coordinate invariance to choose three of the measure scalars as the three spacial coordinates x. y, =z,
the remaining scalar can be defined as the time like coordinate, which cas run in the same direction of the coordinate
time or against.



S our universe bouncing or created from

nothing? _

1, If one of the

Measure fields is the {
Physical time, it is {\X

BOUNCING.

2. If the coordinate time is the physical time, then the universe is
created from nothing as in Hawking picture.

| prefer 1, we live in the space, we said, means
p (%3‘(ﬁL/{£f) p

BOUNCE!
L



C. Quantum Space Time

By considering a gauge (of the volume preserving diffeomorphisms or the general coordinate invariance groups )
where three of the coordinates (t, z.y, z), say (x,y, z) are set to be equal to three of the measure fields, we define a
procedure by means of which coordinates become dynamical , since the measure fields are real dynamical variables
and space is now represented by the measure fields. Notice that these measure fields have non vanishing canonically
conjugated momenta, etc. so they represent the dynamical and quantized space time (for some papers and a review
of quantum space time see [36]).

One can see that the for the canonically conjugate momenta for the measure fields, the system shows constraints
that relate the canonically conjugate momenta with the spacial derivatives of these measure gauge fields, indeed,

7P = M2 K9 0 000 Difa, (35)

Showing a constraint that relates the canonically conjugate momenta of the measure fields with the spacial derivatives
of these fields. The commutators could be calculated not from the Poison brackets but from the Dirac brackets [37],
that are defined from the Poisson brackets of the constraints, including the gauge fixing, like the ones we have

mentioned. On the mass shell M is a constant. but off the mass shell it must be defined as M = B+ L +EHTJ_%1. The

quadratic term in €2 in the action implies that the dependence of the action on the measure time derivatives is not
linear, which is good because lagrangian systems linear in the time derivatives of some variable have some difficulties.

If the Dirac brackets between the measure fields can be non vanishing, even if the Poisson brackets are zero, we
could obtain a non commutative space time .



DIRAC BRACKETS

At this point, the second class constraints will be labeled &u. Define a matrix with entries

Mg = {¢,, ¢} pr5.

In this case, the Dirac bracket of two functions on phase space, fand g, is defined as

{f:-g}DE — {frg}PE _ Z{f}fzgﬂ}FHMi;bl{qghig}PH ¥
i, b

where M‘lﬂb denotes the ab entry of M's inverse matrix. Dirac proved that M will always be invertible.



D. Particles vs antiparticles, Strings vs anti Stings , Branes vs anti Branes and Space Time vs anti Space
Time

We have reviewed already the discussion of particles vs antiparticles due to Feynman, which consisted of interpreting
antiparticles as particles where the proper time moves in the opposite direction of the coordinate time.

In the case of extended objects, which also can be formulated in terms of modified measures, as we have mentioned
before, and in particular, one can advance the concepts of strings vs anti strings and that of branes vs anti branes [38] .
The antistrings are identified, in analogy with the Feynman picture for antiparticles when the sign of the Riemannian
measiure is opposite to the metric independent measure, defined in terms of world sheet scalars, so the same rule
should be applied with the identification of the anti space time in comparison with the space time. To see this more
clearly, in the case of a string, we can use the volume preserving diffeomorphisms to set one measure field to a spatial
world sheet variable, then the remaining measure field is a time like coordinate that can go in the direction of the
world sheet coordinate or the opposite, which is the difference between strings and anti strings and similar for branes
and anti branes.

For a 4D space time (or we can say a space time filling brane), we use the volume preserving diffeomorphisms to
set a gauge where three measure fields are set equal to three spatial coordinates, then the remaining measure field is
the analog of the proper time in the particle case, which can run in the same direction or oposite to the coordinate
time, defining a space time or an anti space time.



For the future,

One could also o0 l]-r.r{m{i General Relativity like theories, and generalize the modified measure theory (4) in the
following way,
_ . - . D(H) ,
S = ]ri"'l.r 1111(‘-1}[11' + L”-‘] + /d*.;- @jqﬁ}[Lﬁf-' +eR? 4 qrg(ﬁ]ﬁ] | (36)
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» Study in more details consequences the proposed quantum space
time in different gauges that connect measure fields and coordinates.

e Study in more detail universe creation with a no boundary
formulation and without nasty boundary terms thanks to the
coordinate invariant measuse fields manifolds, etc

THANK YOU FOR YOUR ATTENTION !
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