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T. Trześniewski Carrollian and Galilean 3D deformed symmetries



(Deformed) kinematical algebras
Quantum contractions overview

Outline:

1 Introduction

2 Kinematical algebras, r -matrices and quantum contractions
Classical Carrollian and Galilean symmetries
Deriving their coboundary deformations

3 Pictorial overview of (almost) all (coboundary) deformations
Comparing with the classifications of r -matrices
Carrollian and Galilean cases
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Quantum contractions overview

Context and motivation

Landscape of spacetime symmetries:

Kinematical algebras, e.g. Poincaré, Carroll and Galilei; also their
(central) extensions, e.g. Bargmann
Asymptotic-symmetry algebras, e.g. BMS (and extensions); also
their non-Lorentzian versions, e.g. Carroll-BMS and Galilei-BMS
Quantum (Hopf-algebraic) deformations of both kinds of algebras,
e.g. κ-Poincaré, as well as e.g. κ-BMSext

Non-Lorentzian versions of the latter, e.g. κ-Carroll and κ-Galilei

In 2+1 dimensions, with the cosmological constant Λ:

Recently completed classification of (quantum) deformations
The cases of Λ ̸= 0 and Λ = 0 related by quantum contractionsa

Such deformations arise in the classical theory of (2+1)d gravity
aKowalski-Glikman, Lukierski & T. T., JHEP 09, 096 (2020)
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Context and motivation – non-Lorentzian kinematics

Carrollian symmetries:

Associated with the Carroll (or ultrarelativistic) limit c → 0
Ultralocality – trivial dynamics of free particles
Two Carroll limits of GR: “electric” and “magnetic”
Strong-gravity expansion, BKL conjecture, asymptotic silencea

Symmetries of null hypersurfaces one dimension higher
Black-hole horizons, plane gravitational waves
BMS group ∼= a conformal extension of Carroll group

aMielczarek & T. T., PRD 96, 024012 (2017)

Galilean symmetries:

Associated with the Galilei (or “nonrelativistic”) limit c → ∞
Weak-gravity expansion, gravitational waves research

Algebraic/geometric structures “dual” to the Carrollian ones
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Classical non-Lorentzian
Reaching the quantum

Lorentz, Carroll and Galilei in (2+1)d
The brackets of Poincaré and (anti-)de Sitter algebras in (2+1)d can
be written in a unified fashion (with Λ = 0, Λ < 0 or Λ > 0):

[J0,Ka] = ϵ b
a Kb , [K1,K2] = −J0 , [J0,Pa] = ϵ b

a Pb , [J0,P0] = 0 ,

[Ka,Pb] = δabP0 , [Ka,P0] = Pa , [P1,P2] = Λ J0 , [P0,Pa] = −ΛKa . (1)

Denoting J := J0 ,Ta := Pa and rescaling Qa := c Ka ,T0 := c P0, we
take the limit c → 0 to obtain Carroll / (anti-)de Sitter-Carroll algebra:

[J,Qa] = ϵ b
a Qb , [Q1,Q2] = 0 , [J,Ta] = ϵ b

a Tb , [J,T0] = 0 ,

[Qa,Tb] = δabT0 , [Qa,T0] = 0 , [T1,T2] = Λ J , [Ta,T0] = ΛQa . (2)

If we denote J := J0 ,T0 := P0 and rescale Qa := c−1Ka ,Ta := c−1Pa,
the limit c → ∞ leads to Galilei / (anti-)de Sitter-Galilei algebra:

[J,Qa] = ϵ b
a Qb , [Q1,Q2] = 0 , [J,Ta] = ϵ b

a Tb , [J,T0] = 0 ,

[Qa,Tb] = 0 , [Qa,T0] = Ta , [T1,T2] = 0 , [Ta,T0] = ΛQa . (3)

These are examples of contractions, which relate various kinematical
(Lie) algebras with each other.
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Why para-Euclidean and para-Poincaré?

Let us also show the brackets of (inhomogeneous) Euclidean algebra:

[J3,Ka] = ϵ b
a Kb , [K1,K2] = J3 , [J3,Pa] = ϵ b

a Pb , [J3,P3] = 0 ,

[Ka,Pb] = −δabP3 , [Ka,P3] = Pa , [P1,P2] = 0 , [P3,Pa] = 0 . (4)

It describes different kinematics but is related by the isomorphism

Ka 7→ Λ−1/2Ta , Pa 7→ Λ1/2Qa , J3 7→ J , P3 7→ T0 (5)

with de Sitter-Carroll algebra, hence called the “para-Euclidean”. Mean-
while, Poincaré algebra is mathematically related by the isomorphism

Ka 7→ |Λ|−1/2Ta , Pa 7→ −|Λ|1/2Qa , J0 7→ J , P0 7→ T0 (6)

with anti-de Sitter-Carroll algebra, hence called the “para-Poincaré”.

Meanwhile, the name “expanding/oscillating Newton-Hooke” is some-
times used for dS-Galilei/adS-Galilei algebra.
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Coboundary (quantum) deformations

A Lie bialgebra is a Lie algebra (g, [ , ]) equipped with a cobracket:

δ : g → g⊗ g , (g, δ) is a Lie coalgebra ,
∀x,y∈g : δ([x , y ]) = [x ⊗ 1 + 1 ⊗ x , δ(y)] + [δ(x), y ⊗ 1 + 1 ⊗ y ] . (7)

The structure of a coboundary Lie bialgebra is determined by

r ∈ g ∧ g , ∀x∈g : δ(x) = [x ⊗ 1 + 1 ⊗ x , r ] . (8)

Such r is called a (antisymmetric) classical r -matrix and is actually an
equivalence class with respect to automorphisms of g. Moreover, it is
a solution of the classical Yang-Baxter equation

[[r , r ]] = t Ω , Ω ∈ g⊗ g⊗ g , t ∈ C , (9)

where Ω is g-invariant and [[ , ]] denotes Schouten bracket. r -matrix is
quasitriangular if t ̸= 0, or triangular if t = 0.
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Quantum contractions and deformation parameters

To perform a (quantum) contraction of a quantum-deformed algebra,
one not only needs to rescale the appropriate generators but also each
deformation parameter q is rescaled to:

q̂ := q/ω2 or q̃ := q/ω or q = q ; (10)

with ω = |Λ| for Λ → 0, and ω = c for c → 0, and ω = c−1 for c → ∞.

Obtaining the most general contraction limit may require a redefinition
of parameters before their rescaling, e.g. γ, ς are replaced by γ̃, γ̂,
where ς = (ς − γ) + γ =: c2γ̂ + c γ̃ (see the next slide).

On the other hand, after the contraction, some parameters can be
eliminated by an automorphism (see the next slide).
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Quantum contractions and automorphisms

If we transform a deformed algebra by a suitable automorphism, this
may lead to a separate contraction limit, e.g. two representatives of
the r -matrix class rIV for anti-de Sitter algebra

rIV (γ, ς) = γ
(
J0 ∧ K2 − P′

0 ∧ P′
1 − K1 ∧ P′

2
)
− ς

2
(
J0 − P′

1
)
∧
(
K2 + P′

0
)
,

r a
IV (γ, ς) = −γ

(
J0 ∧ P′

1 + K2 ∧ P′
0 + K1 ∧ P′

2
)
+

ς

2
(
J0 − K2

)
∧
(
P′

0 + P′
1
)

(11)

(P ′
µ ≡ |Λ|−1/2Pµ) are equivalent but their Carrollian contraction limits

rCIV (γ̃, ς̃) = γ̃
(
J ∧ Q2 − T ′

0 ∧ T ′
1 − Q1 ∧ T ′

2
)
− ς̃

2
(
J − T ′

1
)
∧
(
Q2 + T ′

0
)
,

rCIVa(γ̃, γ̂) = −γ̃
(
J ∧ T ′

0 + Q1 ∧ T ′
2 − Q2 ∧ T ′

1
)
− γ̂ Q2 ∧ T ′

0

∼= −γ̃
(
J ∧ T ′

0 + Q1 ∧ T ′
2 − Q2 ∧ T ′

1
)
= rCIVa(γ̃) (12)

(T ′
µ ≡ |Λ|−1/2Tµ), describing deformations of adSC algebra, are not.

The corresponding automorphism of adS is not inherited by adSC.
Automorphisms yield additional contraction limits also for dSG.
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Trivialized/reduced deformations – examples

A classical r -matrix is determined up to an antisymmetric split-Casimir,
i.e. such Cs ∈ g ∧ g that ∀x∈g : [x ⊗ 1 + 1 ⊗ x , Cs] = 0. We find that
Galilei algebra has an antisymmetric split-Casimir

Cs1 := Q1 ∧ T1 + Q2 ∧ T2 , (13)

while (anti-)de Sitter-Galilei algebra has both (13) and

Cs2 := Q1 ∧ Q2 − Λ−1T1 ∧ T2 . (14)

The quantum contraction limits are simplified by dropping such terms.
Incidentally, r -matrix of the form (13) describes timelike κ-deformation.

Spacelike κ-deformation for Carroll and (a)dS-Carroll is reduced to:

r(γ) = γ (J0 ∧ P1 + K2 ∧ P0) −−−→
c→0

r(γ̂) = γ̂ Q2 ∧ T0 . (15)
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Classifications of deformations vs their contractions

Semisimple or inhomogeneous-(pseudo)orthogonal algebras have only
coboundary deformations, which can be completely classified in terms
of r -matrices. This has been achieved for 2+1-dimensional algebras:

Poincaré (as well as Euclidean)a,
(anti-)de Sitterb,
(anti-)de Sitter-Carroll (isomorphisms with Poincaré/Euclidean)c.

Quantum contractions of (anti-)de Sitter r -matrices in the limit:
Λ → 0, leading to Poincaréd,
c → 0, leading to (a)dS-Carrollc,

recover all r -matrix classes for a given target algebra, up to a few
missing terms in some classes.

aStachura, JPA 31, 4555 (1998)
bBorowiec, Lukierski & Tolstoy, JHEP 11, 187 (2017)
cT. T., arXiv:2306.05409 [hep-th]
dKowalski-Glikman, Lukierski & T. T., JHEP 09, 096 (2020)
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Deformations of Poincaré and (a)dS algebras

de Sitter:

{

Poincaré:

anti-dS:

{

rI rII rIII rIV

raIrbI raII raIII raIV

r1 r2 r3r4r5 r6 r7 r8

rI rII rIII rIVrV rIII′ rIII′′ rV ′′

raI rbI raII raIV

Λ → 0

Λ → 0

Figure: Quantum Λ → 0 contractions relating all r -matrices for (anti-)de Sitter
and Poincaré algebras; double-headed arrows denote automorphisms; arrows
leading to r8 are lightened for legibility; quasitriangular cases are red.
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Deformations of Carroll and Galilei algebras

We derived the Carroll/Galilei r -matrices by quantum c → 0 / c → ∞
contractions of the Poincaré ones. Possibly, some deformations can
not be obtained in this way. There may also exist non-coboundary
deformations of these algebrasa.

Carroll:

Poincaré:

Galilei:

rC2rC3 rC6 rC8

r1r2r3 r4r5 r6 r7 r8

rG1rG2rG3 rG5 rG6 rG8

c → 0

c → ∞

Figure: Quantum c → 0 / c → ∞ contractions relating all r -matrices for
Poincaré with those obtained for Carroll/Galilei algebra; a dashed line means
that a given contraction leads to a subclass; quasitriangular cases are red.

aBallesteros et al., PLB 805, 135461 (2020)
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Deformations of (a)dS, (a)dSC and Carroll algebras

dS:

dSC:

Carroll:

adSC:

adS:

rIrIIrIII rIV

r3′∼=rCIIar1′ ∼= rCIIIa r2′

rC2rC3 rC6rC8

r1′r4′ r8′r2′ r6′ r7′r5′r3′

rIrIIrIII rIVrVrIII′ rIII′′ rV ′′

c → 0

Λ → 0

Λ → 0

c → 0

Figure: Quantum c → 0 and Λ → 0 contractions relating all r -matrices for
(anti-)de Sitter and (a)dS-Carroll, and those obtained for Carroll algebra; a
dashed line means that a given c → 0 contraction leads to a subclass.
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Deformations of (a)dS, (a)dSG and Galilei algebras

dS:

dSG:

Galilei:

adSG:

adS:

rIrIIrIII rIV

rGI rGIarGIbrGIIrGIIIrGIIIa rGIV a

rG1rG2 rG3 rG5rG6 rG8

rGIrGIII rGIV rGVrGIII′ rGIII′′

rIrIIrIII rIV rVrIII′ rIII′′ rV ′′

c → ∞

Λ → 0

Λ → 0

c → ∞

Figure: Quantum c → ∞ and Λ → 0 contractions relating all r -matrices for
(anti-)de Sitter with those obtained for (a)dS-Galilei and Galilei algebras; a
dashed line means that a given c → ∞ contraction leads to a subclass.

Possibly, not all deformations of (a)dSG can be obtained by contrac-
tions and there may also exist non-coboundary ones.
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Summary – special cases of deformations

The cases of particular interest are time- and spacelike κ-deformations,
and the Lorentz double. They also survive under (almost) all quantum
contractions (Λ → 0, c → 0, or c → ∞) for both Λ > 0 and Λ < 0.

algebra timelike κ-deformation spacelike κ-deformation Lorentz double
dSC rCIII(γ̃+) ∼= r1′ (γ) rCIIIa(γ̂−) ∼= r1′ (θ12) rCIV (γ̃) ∼= r2′ (γ)

Carroll rC3(γ̃) rC2(γ̂) rC6(γ̃)
adSC rCIII′ (γ̃+) ∼= r3′ (γ) rCIII(γ̂+) ∼= r2′ (θ20) rCIVa(γ̃) ∼= r7′ (γ)

dS rIII(γ+) ra
III(γ−) ∼= rIII(γ−) rIV (2γ = ς)

Poincaré r3(γ) r2(γ) r7(γ)
adS rIII′ (γ+) ∼= rIII′ (γ−) rIII(γ+) ∼= rIII(γ−) rIV (2γ = −ς)
dSG 0 rGIIIa(γ̃−) rGIVa(2γ̂ = −ς̂)

Galilei 0 rG2(γ̃) rG6(γ̂ = ς̂)
adSG 0 rGIII(γ̃+) ∼= rGIII(γ̃−) rGIV (2γ̂ = −ς̂)

Table: r -matrices (only ̸= 0 deformation parameters) that characterize special
cases of deformations, depending on a kinematical algebra; quasitriangular
ones are red.
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Abridged definition of the Hopf algebra
A Hopf algebra A is the vector space over a field K , equipped with a
product (e.g. a Lie bracket) ∇ : A ⊗ A → A, satisfying the associativity

∇ ◦ (∇⊗ id) = ∇ ◦ (id ⊗∇) ; (16)

a coproduct ∆ : A → A ⊗ A, satisfying the coassociativity

(∆⊗ id) ◦∆ = (id ⊗∆) ◦∆ ; (17)

and an antipode S : A → A, satisfying the relation

∇ ◦ (S ⊗ id) ◦∆ = ∇ ◦ (id ⊗ S) ◦∆ = 1 . (18)

The tensor product of a pair of algebra representations (ρ1,V1), (ρ2,V2)
(where ρ1,2 : A → GL(V1,2)) is given by (ρ,V1 ⊗ V2), such that

ρ(a)(v1 ⊗ v2) = (ρ1 ⊗ ρ2)(∆(a))(v1 ⊗ v2) , (19)

where a ∈ A, v1,2 ∈ V1,2.

T. Trześniewski Carrollian and Galilean 3D deformed symmetries 16 / 15
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Example – the Hopf algebra corresponding to rIII

Denoting H0 ≡ H, H1 ≡ H̄, E0± ≡ E±, E1± ≡ Ē± and q0 ≡ eγ/2,
q1 ≡ eγ̄/2, θ ≡ eη/4, we write down the deformed brackets

[Hk ,Ek±] = Ek± , [Ek+,Ek−] =
q2Hk

k − q−2Hk
k

qk − q−1
k

, (20)

where k = 0,1. In the limit qk → 1 it reduces to [Ek+,Ek−] = 2Hk .
Meanwhile, the coproducts have the form

∆(Hk ) = Hk ⊗ 1 + 1 ⊗ Hk ,

∆(Ek±) = Ek± ⊗ qHk
k θ∓(−1)k Hk+1 + θ±(−1)k Hk+1q−Hk

k ⊗ Ek± (21)

and antipodes

S(Hk ) = −Hk , S(Ek±) = −q±1
k Ek± . (22)

The dual of the subalgebra of translations are spacetime coordinates

[X0,Xa] = 2γ Xa , [Xa,Xb] = 0 , a,b = 1,2 . (23)

T. Trześniewski Carrollian and Galilean 3D deformed symmetries 17 / 15
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Poisson structure via the Fock-Rosly construction
g equipped with r becomes the Lie algebra of a Poisson-Lie group of
spacetime symmetries, dual to the particle phase space. At the same
time, r determines the Hopf-algebraic deformation of g, providing the
quantization of the theory. The consistency with 3D gravity requires

r = rA + rS , rS = α (Pµ ⊗ Jµ + Jµ ⊗ Pµ)

+ β (Λ Jµ ⊗ Jµ − Pµ ⊗ Pµ) , α, β ∈ R , (24)

where rS corresponds to the generalized form of the inner product in
Chern-Simons action (β = 0 in the standard case), while r satisfies
the homogeneous Yang-Baxter equation, hence rA:

[[rA, rA]] = −[[rS, rS]]

= −(α2 − Λβ2)
(
Λ J0 ∧ J1 ∧ J2 +

1
2 ϵµνσ Jµ ∧ Pν ∧ Pσ

)

− 2αβ
( 1

2 Λ ϵµνσ Jµ ∧ Jν ∧ Pσ + P0 ∧ P1 ∧ P2
)
. (25)

We call such a rA to be FR-compatible and classify all of them in
J. Kowalski-Glikman, J. Lukierski & T. T., JHEP 09, 096 (2020).
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r -matrices of 3D (A)dS algebra relevant for gravity
Calculating the Schouten bracket [[rA, rA]], we find that r -matrices are:

FR-compatible ∀α, β FR-compatible for β = 0 FR-compatible for α, β ̸= 0
o(3, 1) rIII , ra

III rIV , ra
IV

ȯ(2, 2) rIII rIV , ra
IV rV

ȯ′(2, 2) rIII

Example – FR-compatible r -matrices of dS algebra:

rIII(γ − γ̄, γ + γ̄, η; Λ) = 1
2 (γ − γ̄)

(
J1 ∧ J2 − Λ−1P1 ∧ P2

)
+ Λ−1/2 1

2 (γ + γ̄) (J1 ∧ P2 − J2 ∧ P1) + Λ−1/2 η

2
J0 ∧ P0 ,

ra
III(γ − γ̄, γ + γ̄, η; Λ) = Λ−1/2 1

2 (γ − γ̄) (J0 ∧ P2 − J2 ∧ P0)

+ 1
2 (γ + γ̄)

(
J0 ∧ J2 − Λ−1P0 ∧ P2

)
+ Λ−1/2 η

2
J1 ∧ P1 ,

rIV (γ, ς; Λ) = γ
(

J1 ∧ J2 − Λ−1/2J0 ∧ P0 − Λ−1P1 ∧ P2

)
+

ς

2

(
J1 − Λ−1/2P2

)
∧

(
J2 + Λ−1/2P1

)
,

ra
IV (γ, ς; Λ) = Λ−1/2

γ (J0 ∧ P1 − J1 ∧ P0 − J2 ∧ P2)

+ Λ−1/2 ς

2
(J0 − J1) ∧ (P0 − P1) . (26)

To be compared with P. K. Osei & B. J. Schroers, CQG 35, 075006 (2018).
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r -matrices of (A)dS algebra in the Λ → 0 limit
Quantum IW contractions of r -matrices of (A)dS algebra lead to the
following r -matrices of 3D Poincaré algebra:

r -matrix automorphism classa o(3, 1)↓ ȯ(2, 2)↓ ȯ′(2, 2)↓
r1 = χ (J0 + J1) ∧ J2 rb

I ra
I

r̂2 = γ̂ (J0 ∧ P2 − J2 ∧ P0) +
1
2 η̂ J1 ∧ P1 r̂a

III r̂III

r̂3 = γ̂ (J1 ∧ P2 − J2 ∧ P1) +
1
2 η̂ J0 ∧ P0 r̂III r̂III

r̂4 = 1√
2
χ̂ (J+ ∧ P1 − J1 ∧ P+) − ς̂ J+ ∧ P+ r̂a

II r̂a
II

r̂5 = 1
2
ˆ̄χJ1 ∧ (P0 + P2) r̂a

I r̂V
r̂6 = γ̂ (J0 ∧ P2 − J2 ∧ P0 − J1 ∧ P1) − ς̂ J+ ∧ P+ r̂a

IV r̂a
IV

r̂7 = γ̂ (J0 ∧ P0 − J1 ∧ P1 − J2 ∧ P2) r̂IV r̂IV

(as well as the irrelevant cases ∼ Pµ ∧ Pν), where J+ ≡ 1√
2
(J0 + J2),

P+ ≡ 1√
2
(P0 + P2). Only r̂2, r̂6 and r̂7 are relevant for 3D gravity, i.e.

[[r1, r1]] = [[r̂4, r̂4]] = [[r̂5, r̂5]] = 0 ,

[[r̂3, r̂3]] = γ̂2ϵµνσJµ ∧ Pν ∧ Pσ ,

[[r̂2, r̂2]] = [[r̂6, r̂6]] = [[r̂7, r̂7]] = −γ̂2ϵµνσJµ ∧ Pν ∧ Pσ . (27)

aP. Stachura, J. Phys. A: Math. Gen. 31, 4555 (1998)
T. Trześniewski Carrollian and Galilean 3D deformed symmetries 20 / 15
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Chern-Simons action of 3D gravity (with Λ)
Instead of the metric gαβ , gravity can be described in terms of the
vielbein e µ

α and spin connection ω µν
α , defined as

e µ
α e ν

β ηµν = gαβ , ω µν
α = e µ

β ∂αeβν + e µ
β Γβαγeγν . (28)

In (2+1)D, they neatly combine into a gauge field – with values in the
local isometry algebra g (3D Poincaré or (Anti-)de Sitter) – which is the
Cartan connection

A = − 1
2ϵ

µ
νσω

νσ
α Jµdxα + e µ

α Pµdxα , (29)

where Jµ, Pµ are generators of g. Then, the Einstein-Hilbert action
can be written as the Chern-Simons theory action

S =
1

16πG

∫ (
⟨dA ∧ A⟩+ 1

3
⟨A ∧ [A,A]⟩

)
(30)

if the scalar product on g is given by

⟨Jµ,Pν⟩ = ηµν , ⟨Jµ, Jν⟩ = ⟨Pµ,Pν⟩ = 0 . (31)
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How to couple a conical defect

The massive point-particle spacetime interval looks as in vacuum:

ds2 = (1 − Λr2)dt2 − (1 − Λr2)−1dr2 − r2d ϕ̃2 , (32)

when the polar angle is rescaled to ϕ̃ := (1−4Gm)ϕ (a conical defect).
Similarly, spin ̸= 0 introduces a jump in the time coordinate.

If spacetime has the topology R× S, the field A may be expressed as
A = Atdt + AS and the action of gravity with a particle is

S =

∫
dt L =

1
16πG

∫
dt

∫

S

〈
ȦS ∧ AS

〉
−
∫

dt
〈

c0h−1ḣ
〉
+

∫
dt

∫

S

〈
At

(
1

8πG
FS − hc0h−1δ2(x⃗ − x⃗∗)dx1 ∧ dx2

)〉
. (33)

Mass ̸= 0 and spin of a particle are encoded by g ∋ c0 = m J0 + s P0,
while a gauge group element h acting via hc0h−1 = p+j determines its
momentum p = pµJµ and (generalized) angular momentum j = jµPµ.
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Relating the gravitational and particle DOFs
At acts as a Lagrange multiplier imposing a constraint on the curvature
of spatial connection FS = dAS + [AS,AS]:

FS = 8πG hc0h−1δ2(x⃗ − x⃗∗)dx1 ∧ dx2 . (34)

From FS = RS + TS + CS (CS is the cosmological-constant term), it
follows that the spatial Riemann curvature and torsion are given by

RS = −CS + 8πG p δ2(x⃗ − x⃗∗)dx1 ∧ dx2 ,

TS = 8πG j δ2(x⃗ − x⃗∗)dx1 ∧ dx2 , (35)

i.e. they vanish (on the constant background RS = −CS ) everywhere
except a singularity at the particle’s worldline.
Alternatively, g can be equipped with the scalar product

⟨Jµ,Pν⟩ = 0 , ⟨Jµ, Jν⟩ = −Λ−1 ⟨Pµ,Pν⟩ = ηµν . (36)

If our action is defined using it, j generates RS and p generates TS .
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