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Context and motivation

Landscape of spacetime symmetries:

@ Kinematical algebras, e.g. Poincaré, Carroll and Galilei; also their
(central) extensions, e.g. Bargmann

@ Asymptotic-symmetry algebras, e.g. BMS (and extensions); also
their non-Lorentzian versions, e.g. Carroll-BMS and Galilei-BMS

@ Quantum (Hopf-algebraic) deformations of both kinds of algebras,
e.g. k-Poincaré, as well as e.g. xk-BMS.y,

@ Non-Lorentzian versions of the latter, e.g. x-Carroll and «-Galilei

In 2+1 dimensions, with the cosmological constant A:

@ Recently completed classification of (quantum) deformations
@ The cases of A # 0 and A = 0 related by quantum contractions?
@ Such deformations arise in the classical theory of (2+1)d gravity

4Kowalski-Glikman, Lukierski & T. T., JHEP 09, 096 (2020)
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Context and motivation — non-Lorentzian kinematics

Carrollian symmetries:

@ Associated with the Carroll (or ultrarelativistic) limit ¢ — 0

e Ultralocality — trivial dynamics of free particles

e Two Carroll limits of GR: “electric” and “magnetic”

e Strong-gravity expansion, BKL conjecture, asymptotic silence?
@ Symmetries of null hypersurfaces one dimension higher

@ Black-hole horizons, plane gravitational waves
e BMS group = a conformal extension of Carroll group

4Mielczarek & T. T., PRD 96, 024012 (2017)

Galilean symmetries:

@ Associated with the Galilei (or “nonrelativistic”) limit ¢ — oo
o Weak-gravity expansion, gravitational waves research

@ Algebraic/geometric structures “dual” to the Carrollian ones
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(Deformed) kinematical algebras Classical non-Lorentzian
Reaching the quantum

Lorentz, Carroll and Galilei in (2+1)d

The brackets of Poincaré and (anti-)de Sitter algebras in (2+1)d can
be written in a unified fashion (with A =0, A <0 or A > 0):
[Jo, Kol = €a'Ko,  [Ki,Ke] = —do, [do, Pal = €2'Po, [o, Po] =0,
[Kaan]:éabPO, [K67P012P57 [P17P2]:AJ07 [P07Pa]:_/\Ka' (1)
Denoting J := Jy, T; := P, and rescaling Q, := cK,, Tp := ¢ Py, we
take the limit ¢ — 0 to obtain Carroll / (anti-)de Sitter-Carroll algebra:
[J,Qa] = €’Qp, [Qr,Q]=0, [, T=eTp, [J,To]=0,
[037 Tb] = 5abT0 ) [037 TO] = Oa [7-13 T2] = /\J’ [Ta, TO] = /\ Oa . (2)
If we denote J := Jy, Tp := Ppandrescale Q; .= ¢ 'Ky, Ta:= ¢ Py,
the limit ¢ — oo leads to Galilei / (anti-)de Sitter-Galilei algebra:
[V, Qal =2 @, [Q,Q]=0, [JT=e'To, [J,To]=0,
[087 Tb] = 07 [087 TO] = Ta, [7—17 T2] = 07 [Ta7 TO] =A Oa . (3)
These are examples of contractions, which relate various kinematical
(Lie) algebras with each other.
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(Deformed) kinematical algebras Classical non-Lorentzian
Reaching the quantum

Why para-Euclidean and para-Poincaré?

Let us also show the brackets of (inhomogeneous) Euclidean algebra:

[Ja,Ka] :Eabev [K17K2] :J37 [Jg,Pa] :Gabev [J37P3] :07
[Ka,Pb]:*(sabPSa [K87P3]:Paa [P13P2]:07 [PSaPa]:O~ (4)

It describes different kinematics but is related by the isomorphism
Kas N12T,, Pas NV2Qa, s d, Py Ty (5)

with de Sitter-Carroll algebra, hence called the “para-Euclidean”. Mean-
while, Poincaré algebra is mathematically related by the isomorphism

Ko [N7V2T,, Pas —NY2Qs, Jo—d, Po—=Ty (6)

with anti-de Sitter-Carroll algebra, hence called the “para-Poincaré”.

Meanwhile, the name “expanding/oscillating Newton-Hooke” is some-
times used for dS-Galilei/adS-Galilei algebra.
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(Deformed) kinematical algebras Classical non-Lorentzian
Reaching the quantum

Coboundary (quantum) deformations

A Lie bialgebra is a Lie algebra (g, [,]) equipped with a cobracket:

0:g—g®g, (g,0) is a Lie coalgebra,
Vxyeg :0([Xy]) = [x@1+1@x,6(y)] + [6(x),y@1+1@y]. (7)

The structure of a coboundary Lie bialgebra is determined by
reghg, Vxeg 1 0(X) =[x®@1+1@x,1]. (8)

Such r is called a (antisymmetric) classical r-matrix and is actually an
equivalence class with respect to automorphisms of g. Moreover, it is
a solution of the classical Yang-Baxter equation

([r,r]] =tQ, Qegrgrg, teC, 9)

where Q is g-invariant and [[,]] denotes Schouten bracket. r-matrix is
quasitriangular if t # 0, or triangular if t = 0.
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(Deformed) kinematical algebras

Quantum contractions and deformation parameters

To perform a (quantum) contraction of a quantum-deformed algebra,
one not only needs to rescale the appropriate generators but also each
deformation parameter q is rescaled to:

g:= q/w2 or g:=q/w or g=q; (10)

with w = |A] for A = 0,and w = cfor ¢ — 0, and w = ¢~ for ¢ — oo.

Obtaining the most general contraction limit may require a redefinition
of parameters before their rescaling, e.g. ~, ¢ are replaced by 7, 4,
where ¢ = (s — ) + v =: ¢4 + ¢ (see the next slide).

On the other hand, after the contraction, some parameters can be
eliminated by an automorphism (see the next slide).
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(Deformed) kinematical algebras

Quantum contractions and automorphisms

If we transform a deformed algebra by a suitable automorphism, this
may lead to a separate contraction limit, e.g. two representatives of
the r-matrix class ryy for anti-de Sitter algebra

o (7,5) =7 (o A Ko — Py A P — Ky A Pj) — %(Jo— P)) A (Ko + Ph),
M(1.5) = = (Jo A Py + Ko A PG+ Ky A PE) + 5 (do — Ko) A (Po + PY) (1)

(P, = |A|="/2P,) are equivalent but their Carrollian contraction limits

rew (9, <) :’3‘/(-.]/\02* T(;/\ T1/*Q1 N Tgl) — %(J* 7—1,) N (Qz+ TO,)7
rCIVa(’%ﬁ/) = -5 (J/\ T(;+Q1 A\ Tgl - QA 7-1,) *’,?Qz/\ To,
= *:}‘/ (J/\ T(; -+ Q1 N Tgl — Qz AN 7—1/) = rCIVa(;}'/) (12)

(T, = |A|="/2T,,), describing deformations of adSC algebra, are not.
The corresponding automorphism of adS is not inherited by adSC.
Automorphisms yield additional contraction limits also for dSG.
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(Deformed) kinematical algebras
Reaching the quantum

Trivialized/reduced deformations — examples

A classical r-matrix is determined up to an antisymmetric split-Casimir,
i.e. such Cs € gAgthat Vyeq : [X®1+1®x,C] = 0. We find that
Galilei algebra has an antisymmetric split-Casimir
Ca = ANTi+ AT, (13)
while (anti-)de Sitter-Galilei algebra has both (13) and
Cy = Oy /\C?z—/\_1 TTATs. (14)

The quantum contraction limits are simplified by dropping such terms.
Incidentally, r-matrix of the form (13) describes timelike x-deformation.

Spacelike x-deformation for Carroll and (a)dS-Carroll is reduced to:

r(v) =v(Jbo AP+ Ko A Po) 0 r() =9QATo. (15)

c—
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Classifying and contracting
Quantum contractions overview Carrollian and Galilean

Classifications of deformations vs their contractions

Semisimple or inhomogeneous-(pseudo)orthogonal algebras have only
coboundary deformations, which can be completely classified in terms
of r-matrices. This has been achieved for 2+1-dimensional algebras:

@ Poincaré (as well as Euclidean)?,
@ (anti-)de Sitter®,
@ (anti-)de Sitter-Carroll (isomorphisms with Poincaré/Euclidean)®.

Quantum contractions of (anti-)de Sitter r-matrices in the limit:
@ A — 0, leading to Poincaré?,
@ ¢ — 0, leading to (a)dS-Carroll®,

recover all r-matrix classes for a given target algebra, up to a few
missing terms in some classes.

aStachura, JPA 31, 4555 (1998)

bBorowiec, Lukierski & Tolstoy, JHEP 11, 187 (2017)

CT. T., arXiv:2306.05409 [hep-th]

dKowaIski—GIikman, Lukierski & T. T., JHEP 09, 096 (2020)
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Classifying and contracting
Quantum contractions overview Carrollian and Galilean

Deformations of Poincaré and (a)dS algebras

1 Trr rirr riv
de Sitter:{ /! \ i i
b a Q .a Q
7 T TIr Trrr Trv
A—=0 |
|
. , ,V P p =Y
Poincaré: 1 T's T4 T2 T3 T'e r7 '8
4 ¥
J
/
A—=0 K
a »b -Q .a
r7 ry Trr v
anti-dsS: \ /! i i
1 rv Trr rrrr rrr rrv rrrr Ty

Figure: Quantum A — 0 contractions relating all r-matrices for (anti-)de Sitter
and Poincaré algebras; double-headed arrows denote automorphisms; arrows
leading to rg are lightened for legibility; quasitriangular cases are red.
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Quantum contractions overview

Deformations of Carroll and Galilei algebras

We derived the Carroll/Galilei r-matrices by quantum ¢ — 0/ ¢ — oo
contractions of the Poincaré ones. Possibly, some deformations can
not be obtained in this way. There may also exist non-coboundary
deformations of these algebras?.

Carroll: 7c3 rc2 rC6 rcs
AN AN
c— OT T AN / AN T
I N ~ I N ~
Poincaré: 73 ) rs5 T4 6 r7 r1 T8
¢ % Ool l l l ) ) : l ’ ’ / l l
. Y s
Galilei: 7G3 rG2 G5 TG6 TGl rGs

Figure: Quantum ¢ — 0/ ¢ — oo contractions relating all r-matrices for
Poincaré with those obtained for Carroll/Galilei algebra; a dashed line means
that a given contraction leads to a subclass; quasitriangular cases are red.

2Ballesteros et al., PLB 805, 135461 (2020)
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Quantum contractions overview

Deformations of (a)dS, (a)dSC a

dsS:
c— Ol
dSC:
A— Ol
Carroll:
A— OT
adSC:

CHOT

adsS:

Figure: Quantum ¢ — 0 and A — 0 contractions relating all r-matrices for
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(anti-)de Sitter and (a)dS-Carroll, and those obtained for Carroll algebra; a
dashed line means that a given ¢ — 0 contraction leads to a subclass.
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ng and contracting

Quantum contractions overview Carrollian and Galilean

Deformations of (a)dS, (a)dSG and Galilei algebras

ds: TIIr v T rr
c— ool / \ \/‘ >l
pE “
dSG: TGilla  TGIII  TGIVa TGII TGI TGIb TGIa
A ol /
Galilei: 7G2 TG3 els TG8 el rG5
A— OT /
adSG: Tarrr o rgrir T'Gl\i 7‘GUI: rGI rGv
c— OOT N . R .
adS:  TrIr T rrv I TIrr Ty rI (A%

Figure: Quantum ¢ — oo and A — 0 contractions relating all r-matrices for
(anti-)de Sitter with those obtained for (a)dS-Galilei and Galilei algebras; a

dashed line means that a given ¢ — oo contraction leads to a subclass.

Possibly, not all deformations of (a)dSG can be obtained by contrac-
tions and there may also exist non-coboundary ones.
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Quantum contractions overview

Summary — special cases of deformations

The cases of particular interest are time- and spacelike x-deformations,
and the Lorentz double. They also survive under (almost) all quantum
contractions (A — 0, ¢ — 0, or ¢ — o) for both A > 0 and A < 0.

Lorentz double

|

[ algebra | timelike -deformation | spacelike «-deformation |

dSC rom(5+) = ry7 () roma(§—) = rys(012) rov(§) = ry ()
Carroll rcs(3) re2(%) ree (%)
adSC rem (+) = rar () rem(§+) = ror (020) rona(¥) = 171 ()
ds iy (=) = rm(y-) ny(2y =)
Poincaré r3(7y) () r7()
ads i () = e (=) () = rm(y-) rv(2y = —<)
dsSG 0 raima(y—) ranva(2y = —<)
Galilei 0 ree(¥) ree(3 = <)
adSG 0 rem(3+) = rem(7-) rav (23 = =3)

Table: r-matrices (only # 0 deformation parameters) that characterize special
cases of deformations, depending on a kinematical algebra; quasitriangular

ones are red.
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sifyir acting
Quantum contractions overview Carrollian and Galilean

Abridged definition of the Hopf algebra

A Hopf algebra A is the vector space over a field K, equipped with a
product (e.g. a Lie bracket) V : A® A — A, satisfying the associativity

Vo(V®id)=Vo(id® V); (16)
a coproduct A : A — A® A, satisfying the coassociativity
(A®id)o A= (i[d® A)oA; (17)
and an antipode S : A — A, satisfying the relation
Vo(S®id)oA=Vo(id@S)oA=1. (18)

The tensor product of a pair of algebra representations (p1, V1), (p2, Vo)
(where p1 : A— GL(V;2)) is given by (p, V4 ® V2), such that

p(a@)(vi ® vo) = (p1 @ p2)(A(a))(vi ® v2), (19)

where ac A, vy € V.
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Quantum contractions overview Carrollian and Gall\ean

Example — the Hopf algebra corresponding to ry;

Denoting Hy = H, Hy = H, Eox = E4, Eix = E; and qo = /2,
g1 = €7/2, 0 = e"/*, we write down the deformed brackets

2H,
el

[Hk, Ex+] = Ek+ , [Ek+, Exk—] = (20)

where k = 0,1. In the limit gx — 1 it reduces to [Ex., Ex—_] = 2Hk.
Meanwhile, the coproducts have the form
A(Hk) = Hc®1+1® H,
A(Exs) = Ex @ qproT N o 4 g0 Hegithog £y (21)
and antipodes
S(H) = —Hx,  S(Eks) = —q;" Eix - (22)
The dual of the subalgebra of translations are spacetime coordinates

[Xo0, Xa] = 2v Xa, [Xa, Xp] =0, ab=1,2. (23)
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Cl fying and contracting
Quantum contractions overview Carrollian and Galilean

Poisson structure via the Fock-Rosly construction

g equipped with r becomes the Lie algebra of a Poisson-Lie group of
spacetime symmetries, dual to the particle phase space. At the same
time, r determines the Hopf-algebraic deformation of g, providing the
quantization of the theory. The consistency with 3D gravity requires

r=ra+rs, rs=a(P,@J"+J"®P")
+8ANSF®J,-PFRP,), afeR, (24)
where rs corresponds to the generalized form of the inner product in

Chern-Simons action (5 = 0 in the standard case), while r satisfies
the homogeneous Yang-Baxter equation, hence ra:

[[ra, rall = —[[rs, rsl]
= —(® = AB) (N A Ado+ 5 € J, AP, AP,)
—2aB (AN Iy NIy APy + Py APy AP2) . (25)

We call such a ra to be FR-compatible and classify all of them in
J. Kowalski-Glikman, J. Lukierski & T. T., JHEP 09, 096 (2020).
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g and contracting
Quantum contractions overview Carrollian and Galilean

r-matrices of 3D (A)dS algebra relevant for gravity

Calculating the Schouten bracket [[ra, ra]], we find that r-matrices are:

FR-compatible Vo, 8 FR-compatible for 5 = 0 FR-compatible for «, 8 # 0
0(3,1) T, Ty nv, iy
0(2,2) T v, Iy ry
0’(2,2) m

Example — FR-compatible r-matrices of dS algebra:

iy =37+ 7, A) = $(v = 7) (h Ade = AP AR,)
FATVR Ly +9) (4 /\ngJgAP1)+/\_1/2gJo/\Po,
My =37+ 3, mA) = A2y = 7) (o A Pa — do A Po)
+3(0+9) (b Ak —ATPAP) +A‘1/Zg J APy
(A =7 (b Ak = APl AP — AT P AP
+% (J1 - /\_1/2P2) A (Jz +/\_1/2P1> )

(v, siN) = N2y (o APy — i APy — da A Py)
A2 (o — ) A (P P). (26)

To be compared with P K. Osei & B. J. Schroers, CQG 35, 075006 (2018).
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Quantum contractions overview

r-matrices of (A)dS algebra in the /\ — 0 limit

Quantum IW contractions of r-matrices of (A)dS algebra lead to the
following r-matrices of 3D Poincaré algebra:

[ r-matrix automorphism class® [o@B, NI (221 [ ¢(2,2)] |

f1:X(J0+J1)/\J2 f,b I’,a
?’2:’3/(‘/0/\7327«/2/\730)4»*77‘/1/\731 /A’ﬁ, T

T3 =4 (Ji AN P2 —do AP1)+ 35do A Po Fiy T
= SR AP —h APL) =3 AP, 7z 72
s = Ixh A (Po + P2) i [
o= AP2—do APy —J1 AP1) —SJdy APy v T
7 =% APo—Jd AP1 — o AP2) Ty Ty

(as well as the irrelevant cases ~ P, A P,), where J; = %(Jo + Jo),
P, = %(Po + P5). Only 7, 75 and 7, are relevant for 3D gravity, i.e.

[[r1, 1]l = [[Fa, Ta]] = [[7s, 75]] = O,
[[73, Ta]] = %€ dy APy APy,
([P, 1] = [[%6, T6]] = [[F7, 7] = =5%€""Ju AP, APy  (27)

4P, Stachura, J. Phys. A: Math. Gen. 31, 4555 (1998)
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C C acting
Quantum contractions overview and Galilean

Chern-Simons action of 3D gravity (with A)

Instead of the metric g.3, gravity can be described in terms of the
vielbein e/ and spin connection w *, defined as

el e =0ap,  wi =ef0.e" +elT) .  (28)

In (2+1)D, they neatly combine into a gauge field — with values in the
local isometry algebra g (3D Poincaré or (Anti-)de Sitter) — which is the
Cartan connection

A=—Je wl7J,dx* + el P,dx", (29)

voTTo

where J,,, P, are generators of g. Then, the Einstein-Hilbert action
can be written as the Chern-Simons theory action

S= ﬁ/ ((dAAA) + % (AN [A,A]>> (30)

if the scalar product on g is given by

(s Po) = s (s o) = (P P) = 0. (31)
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Quantum contractions overview Carrollian and Gall\ean

How to couple a conical defect

The massive point-particle spacetime interval looks as in vacuum:
ds? = (1 —Ar?)dt? — (1 — Ar?)~'dr? — r2d¢?, (32)

when the polar angle is rescaled to ¢ := (1—4Gm) ¢ (a conical defect).
Similarly, spin # 0 introduces a jump in the time coordinate.

If spacetime has the topology R x S, the field A may be expressed as
A = A;dt + As and the action of gravity with a particle is

S:/dtL:ﬁ/dt/ <A3/\A3>—/dt<coh_1h>+
/dt/< (8 GFS—hcoh 162(X — X,) dx' /\dx)>. (33)

Mass # 0 and spin of a particle are encoded by g > ¢ = mdJy + s Py,
while a gauge group element h acting via hcoh~! = p+j determines its
momentum p = p*J,, and (generalized) angular momentum j = j#P,,.
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Cl fying and contracting
Quantum contractions overview Carrollian and Galilean

Relating the gravitational and particle DOFs

A; acts as a Lagrange multiplier imposing a constraint on the curvature
of spatial connection Fg = dAs + [As, As]:

Fs =8nGhcyh™162(X — X,) dx' A dx?. (34)

From Fs = Rs + Ts + Cs (Cs is the cosmological-constant term), it
follows that the spatial Riemann curvature and torsion are given by

Rs = —Cs +87TGp(52()?— )?*)dX1 /\dXZ,
Ts = 8nGjo?(X — X,) dx' A dx?, (35)

i.e. they vanish (on the constant background Rs = —Cs) everywhere
except a singularity at the particle’s worldline.
Alternatively, g can be equipped with the scalar product

(s Py =0,  (Jyyd)=-N"(P,,P) =1, . (36)
If our action is defined using it, j generates Rs and p generates Ts.
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