Carrollian and Galilean limits of deformed symmetries in 3D gravity

Tomasz Trześniewski*

Institute of Theoretical Physics, University of Wrocław, Poland

July 13, 2023

*T. T., arXiv:2306.05409 [hep-th] Kowalski-Glikman, Lukierski & T. T., JHEP 09, 096 (2020)

Outline:

2 Kinematical algebras, *r*-matrices and quantum contractions
 • Classical Carrollian and Galilean symmetries
 • Deriving their coboundary deformations

Pictorial overview of (almost) all (coboundary) deformations
 Comparing with the classifications of *r*-matrices
 Carrollian and Californ pages

Carrollian and Galilean cases

Outline:

2 Kinematical algebras, *r*-matrices and quantum contractions
 • Classical Carrollian and Galilean symmetries
 • Deriving their coboundary deformations

Pictorial overview of (almost) all (coboundary) deformations
 Comparing with the classifications of *r*-matrices

Carrollian and Galilean cases

Outline:

Kinematical algebras, *r*-matrices and quantum contractions
 Classical Carrollian and Galilean symmetries
 Deriving their coboundary deformations

Pictorial overview of (almost) all (coboundary) deformations

- Comparing with the classifications of r-matrices
- Carrollian and Galilean cases

Context and motivation

Landscape of spacetime symmetries:

- Kinematical algebras, e.g. Poincaré, Carroll and Galilei; also their (central) extensions, e.g. Bargmann
- Asymptotic-symmetry algebras, e.g. BMS (and extensions); also their non-Lorentzian versions, e.g. Carroll-BMS and Galilei-BMS
- Quantum (Hopf-algebraic) deformations of both kinds of algebras, e.g. κ-Poincaré, as well as e.g. κ-BMS_{ext}
- Non-Lorentzian versions of the latter, e.g. κ-Carroll and κ-Galilei

In 2+1 dimensions, with the cosmological constant Λ :

- Recently completed classification of (quantum) deformations
- The cases of $\Lambda \neq 0$ and $\Lambda = 0$ related by quantum contractions^a
- Such deformations arise in the classical theory of (2+1)d gravity

^aKowalski-Glikman, Lukierski & T. T., JHEP 09, 096 (2020)

< (T) > <

Context and motivation – non-Lorentzian kinematics

Carrollian symmetries:

- Associated with the Carroll (or ultrarelativistic) limit c
 ightarrow 0
 - Ultralocality trivial dynamics of free particles
 - Two Carroll limits of GR: "electric" and "magnetic"
 - Strong-gravity expansion, BKL conjecture, asymptotic silence^a
- Symmetries of null hypersurfaces one dimension higher
 - Black-hole horizons, plane gravitational waves
 - BMS group \cong a conformal extension of Carroll group

^aMielczarek & T. T., PRD 96, 024012 (2017)

Galilean symmetries:

- Associated with the Galilei (or "nonrelativistic") limit $c
 ightarrow \infty$
 - Weak-gravity expansion, gravitational waves research
- Algebraic/geometric structures "dual" to the Carrollian ones

< ロ > < 同 > < 回 > < 回 > .

Lorentz, Carroll and Galilei in (2+1)d

The brackets of Poincaré and (anti-)de Sitter algebras in (2+1)d can be written in a unified fashion (with $\Lambda = 0$, $\Lambda < 0$ or $\Lambda > 0$):

$$\begin{bmatrix} J_0, K_a \end{bmatrix} = \epsilon_a^{\ b} K_b \,, \quad \begin{bmatrix} K_1, K_2 \end{bmatrix} = -J_0 \,, \quad \begin{bmatrix} J_0, P_a \end{bmatrix} = \epsilon_a^{\ b} P_b \,, \quad \begin{bmatrix} J_0, P_0 \end{bmatrix} = 0 \,, \\ \begin{bmatrix} K_a, P_b \end{bmatrix} = \delta_{ab} P_0 \,, \quad \begin{bmatrix} K_a, P_0 \end{bmatrix} = P_a \,, \quad \begin{bmatrix} P_1, P_2 \end{bmatrix} = \Lambda J_0 \,, \quad \begin{bmatrix} P_0, P_a \end{bmatrix} = -\Lambda K_a \,.$$
(1)

Denoting $J := J_0$, $T_a := P_a$ and rescaling $Q_a := c K_a$, $T_0 := c P_0$, we take the limit $c \to 0$ to obtain Carroll / (anti-)de Sitter-Carroll algebra:

$$[J, Q_a] = \epsilon_a^{\ b} Q_b, \quad [Q_1, Q_2] = 0, \quad [J, T_a] = \epsilon_a^{\ b} T_b, \quad [J, T_0] = 0, [Q_a, T_b] = \delta_{ab} T_0, \quad [Q_a, T_0] = 0, \quad [T_1, T_2] = \Lambda J, \quad [T_a, T_0] = \Lambda Q_a.$$
(2)

If we denote $J := J_0$, $T_0 := P_0$ and rescale $Q_a := c^{-1}K_a$, $T_a := c^{-1}P_a$, the limit $c \to \infty$ leads to Galilei / (anti-)de Sitter-Galilei algebra:

$$[J, Q_a] = \epsilon_a^{\ b} Q_b, \quad [Q_1, Q_2] = 0, \qquad [J, T_a] = \epsilon_a^{\ b} T_b, \qquad [J, T_0] = 0, [Q_a, T_b] = 0, \qquad [Q_a, T_0] = T_a, \quad [T_1, T_2] = 0, \qquad [T_a, T_0] = \Lambda Q_a.$$
(3)

These are examples of contractions, which relate various kinematical (Lie) algebras with each other.

Why para-Euclidean and para-Poincaré?

Let us also show the brackets of (inhomogeneous) Euclidean algebra:

$$\begin{bmatrix} J_3, K_a \end{bmatrix} = \epsilon_a^{\ b} K_b, \qquad \begin{bmatrix} K_1, K_2 \end{bmatrix} = J_3, \qquad \begin{bmatrix} J_3, P_a \end{bmatrix} = \epsilon_a^{\ b} P_b, \qquad \begin{bmatrix} J_3, P_3 \end{bmatrix} = 0, \begin{bmatrix} K_a, P_b \end{bmatrix} = -\delta_{ab} P_3, \qquad \begin{bmatrix} K_a, P_3 \end{bmatrix} = P_a, \qquad \begin{bmatrix} P_1, P_2 \end{bmatrix} = 0, \qquad \begin{bmatrix} P_3, P_a \end{bmatrix} = 0.$$
(4)

It describes different kinematics but is related by the isomorphism

$$K_a \mapsto \Lambda^{-1/2} T_a, \quad P_a \mapsto \Lambda^{1/2} Q_a, \quad J_3 \mapsto J, \quad P_3 \mapsto T_0$$
 (5)

with de Sitter-Carroll algebra, hence called the "para-Euclidean". Meanwhile, Poincaré algebra is mathematically related by the isomorphism

$$K_a \mapsto |\Lambda|^{-1/2} T_a, \quad P_a \mapsto -|\Lambda|^{1/2} Q_a, \quad J_0 \mapsto J, \quad P_0 \mapsto T_0$$
 (6)

with anti-de Sitter-Carroll algebra, hence called the "para-Poincaré".

Meanwhile, the name "expanding/oscillating Newton-Hooke" is sometimes used for dS-Galilei/adS-Galilei algebra.

Coboundary (quantum) deformations

A Lie bialgebra is a Lie algebra $(\mathfrak{g}, [,])$ equipped with a cobracket:

$$\delta: \mathfrak{g} \to \mathfrak{g} \otimes \mathfrak{g}, \qquad (\mathfrak{g}, \delta) \text{ is a Lie coalgebra}, \\ \forall_{x, y \in \mathfrak{g}}: \delta([x, y]) = [x \otimes 1 + 1 \otimes x, \delta(y)] + [\delta(x), y \otimes 1 + 1 \otimes y]. \quad (7)$$

The structure of a coboundary Lie bialgebra is determined by

$$r \in \mathfrak{g} \wedge \mathfrak{g}, \qquad \forall_{x \in \mathfrak{g}} : \delta(x) = [x \otimes 1 + 1 \otimes x, r].$$
 (8)

Such *r* is called a (antisymmetric) classical *r*-matrix and is actually an equivalence class with respect to automorphisms of \mathfrak{g} . Moreover, it is a solution of the classical Yang-Baxter equation

$$[[r,r]] = t \Omega, \qquad \Omega \in \mathfrak{g} \otimes \mathfrak{g} \otimes \mathfrak{g}, \ t \in \mathbb{C},$$
(9)

where Ω is g-invariant and [[,]] denotes Schouten bracket. *r*-matrix is quasitriangular if $t \neq 0$, or triangular if t = 0.

.

Classical non-Lorentzian Reaching the quantum

Quantum contractions and deformation parameters

To perform a (quantum) contraction of a quantum-deformed algebra, one not only needs to rescale the appropriate generators but also each deformation parameter q is rescaled to:

$$\hat{\boldsymbol{q}}:=\boldsymbol{q}/\omega^2$$
 or $\tilde{\boldsymbol{q}}:=\boldsymbol{q}/\omega$ or $\boldsymbol{q}=\boldsymbol{q}$; (10)

with $\omega = |\Lambda|$ for $\Lambda \to 0$, and $\omega = c$ for $c \to 0$, and $\omega = c^{-1}$ for $c \to \infty$.

Obtaining the most general contraction limit may require a redefinition of parameters before their rescaling, e.g. γ , ς are replaced by $\tilde{\gamma}$, $\hat{\gamma}$, where $\varsigma = (\varsigma - \gamma) + \gamma =: c^2 \hat{\gamma} + c \tilde{\gamma}$ (see the next slide).

On the other hand, after the contraction, some parameters can be eliminated by an automorphism (see the next slide).

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Classical non-Lorentzian Reaching the quantum

Quantum contractions and automorphisms

If we transform a deformed algebra by a suitable automorphism, this may lead to a separate contraction limit, e.g. two representatives of the *r*-matrix class r_{IV} for anti-de Sitter algebra

$$r_{IV}(\gamma,\varsigma) = \gamma \left(J_0 \wedge K_2 - P'_0 \wedge P'_1 - K_1 \wedge P'_2 \right) - \frac{\varsigma}{2} \left(J_0 - P'_1 \right) \wedge \left(K_2 + P'_0 \right),$$

$$r_{IV}^a(\gamma,\varsigma) = -\gamma \left(J_0 \wedge P'_1 + K_2 \wedge P'_0 + K_1 \wedge P'_2 \right) + \frac{\varsigma}{2} \left(J_0 - K_2 \right) \wedge \left(P'_0 + P'_1 \right)$$
(11)

 $(P'_{\mu} \equiv |\Lambda|^{-1/2} P_{\mu})$ are equivalent but their Carrollian contraction limits

$$\begin{aligned} r_{CIV}(\tilde{\gamma},\tilde{\varsigma}) &= \tilde{\gamma} \left(J \wedge Q_2 - T'_0 \wedge T'_1 - Q_1 \wedge T'_2 \right) - \frac{\tilde{\varsigma}}{2} \left(J - T'_1 \right) \wedge \left(Q_2 + T'_0 \right), \\ r_{CIVa}(\tilde{\gamma},\hat{\gamma}) &= -\tilde{\gamma} \left(J \wedge T'_0 + Q_1 \wedge T'_2 - Q_2 \wedge T'_1 \right) - \hat{\gamma} Q_2 \wedge T'_0 \\ &\cong -\tilde{\gamma} \left(J \wedge T'_0 + Q_1 \wedge T'_2 - Q_2 \wedge T'_1 \right) = r_{CIVa}(\tilde{\gamma}) \end{aligned}$$
(12)

 $(T'_{\mu} \equiv |\Lambda|^{-1/2}T_{\mu})$, describing deformations of adSC algebra, are not. The corresponding automorphism of adS is not inherited by adSC. Automorphisms yield additional contraction limits also for dSG.

Classical non-Lorentzian Reaching the quantum

Trivialized/reduced deformations – examples

A classical *r*-matrix is determined up to an antisymmetric split-Casimir, i.e. such $C_s \in \mathfrak{g} \land \mathfrak{g}$ that $\forall_{x \in \mathfrak{g}} : [x \otimes 1 + 1 \otimes x, C_s] = 0$. We find that Galilei algebra has an antisymmetric split-Casimir

$$\mathcal{C}_{s1} := \mathbf{Q}_1 \wedge \mathbf{T}_1 + \mathbf{Q}_2 \wedge \mathbf{T}_2, \qquad (13)$$

while (anti-)de Sitter-Galilei algebra has both (13) and

$$\mathcal{C}_{s2} := Q_1 \wedge Q_2 - \Lambda^{-1} T_1 \wedge T_2.$$
(14)

The quantum contraction limits are simplified by dropping such terms. Incidentally, *r*-matrix of the form (13) describes timelike κ -deformation.

Spacelike κ -deformation for Carroll and (a)dS-Carroll is reduced to:

$$r(\gamma) = \gamma \left(J_0 \wedge P_1 + K_2 \wedge P_0 \right) \xrightarrow[c \to 0]{} r(\hat{\gamma}) = \hat{\gamma} Q_2 \wedge T_0.$$
(15)

< ロ > < 同 > < 回 > < 国

Classifications of deformations vs their contractions

Semisimple or inhomogeneous-(pseudo)orthogonal algebras have only coboundary deformations, which can be completely classified in terms of *r*-matrices. This has been achieved for 2+1-dimensional algebras:

- Poincaré (as well as Euclidean)^a,
- (anti-)de Sitter^b,
- (anti-)de Sitter-Carroll (isomorphisms with Poincaré/Euclidean)^c.

Quantum contractions of (anti-)de Sitter *r*-matrices in the limit:

- $\Lambda \rightarrow 0$, leading to Poincaré^d,
- $c \rightarrow 0$, leading to (a)dS-Carroll^c,

recover all *r*-matrix classes for a given target algebra, up to a few missing terms in some classes.

^aStachura, JPA **31**, 4555 (1998)

^bBorowiec, Lukierski & Tolstoy, JHEP **11**, 187 (2017)

^c**T. T.**, arXiv:2306.05409 [hep-th]

^dKowalski-Glikman, Lukierski & T. T., JHEP 09, 096 (2020)

Classifying and contracting Carrollian and Galilean

Deformations of Poincaré and (a)dS algebras

Figure: Quantum $\Lambda \rightarrow 0$ contractions relating all *r*-matrices for (anti-)de Sitter and Poincaré algebras; double-headed arrows denote automorphisms; arrows leading to r_8 are lightened for legibility; quasitriangular cases are red.

Classifying and contracting Carrollian and Galilean

Deformations of Carroll and Galilei algebras

We derived the Carroll/Galilei *r*-matrices by quantum $c \rightarrow 0 / c \rightarrow \infty$ contractions of the Poincaré ones. Possibly, some deformations can not be obtained in this way. There may also exist non-coboundary deformations of these algebras^a.

Figure: Quantum $c \rightarrow 0 / c \rightarrow \infty$ contractions relating all *r*-matrices for Poincaré with those obtained for Carroll/Galilei algebra; a dashed line means that a given contraction leads to a subclass; quasitriangular cases are red.

T. Trześniewski	Carrollian and Galilean 3D deformed symmetries	12/15
^a Ballesteros et al., PLB 805 , 135461 (2020)	< □ > < 圖 > < 喜 > < 喜 >	- E

Classifying and contracting Carrollian and Galilean

Deformations of (a)dS, (a)dSC and Carroll algebras

Figure: Quantum $c \rightarrow 0$ and $\Lambda \rightarrow 0$ contractions relating all *r*-matrices for (anti-)de Sitter and (a)dS-Carroll, and those obtained for Carroll algebra; a dashed line means that a given $c \rightarrow 0$ contraction leads to a subclass.

Classifying and contracting Carrollian and Galilean

Deformations of (a)dS, (a)dSG and Galilei algebras

Figure: Quantum $c \to \infty$ and $\Lambda \to 0$ contractions relating all *r*-matrices for (anti-)de Sitter with those obtained for (a)dS-Galilei and Galilei algebras; a dashed line means that a given $c \to \infty$ contraction leads to a subclass.

Possibly, not all deformations of (a)dSG can be obtained by contractions and there may also exist non-coboundary ones.

Classifying and contracting Carrollian and Galilean

Summary – special cases of deformations

The cases of particular interest are time- and spacelike κ -deformations, and the Lorentz double. They also survive under (almost) all quantum contractions ($\Lambda \rightarrow 0$, $c \rightarrow 0$, or $c \rightarrow \infty$) for both $\Lambda > 0$ and $\Lambda < 0$.

algebra	timelike κ -deformation	spacelike κ -deformation	Lorentz double
dSC	$r_{CIII}(\tilde{\gamma}_+) \cong r_{1'}(\gamma)$	$r_{CIIIa}(\hat{\gamma}_{-}) \cong r_{1'}(\theta_{12})$	$r_{CIV}(\tilde{\gamma}) \cong r_{2'}(\gamma)$
Carroll	$r_{C3}(ilde{\gamma})$	$r_{C2}(\hat{\gamma})$	$r_{C6}(ilde{\gamma})$
adSC	$r_{CIII'}(\tilde{\gamma}_+) \cong r_{3'}(\gamma)$	$r_{CIII}(\hat{\gamma}_+) \cong r_{2'}(\theta_{20})$	$r_{CIVa}(\tilde{\gamma}) \cong r_{7'}(\gamma)$
dS	$r_{III}(\gamma_+)$	$r^{a}_{III}(\gamma_{-}) \cong r_{III}(\gamma_{-})$	$r_{IV}(2\gamma = \varsigma)$
Poincaré	$r_3(\gamma)$	$r_2(\gamma)$	$r_7(\gamma)$
adS	$r_{III'}(\gamma_+) \cong r_{III'}(\gamma)$	$r_{III}(\gamma_+)\cong r_{III}(\gamma)$	$r_{IV}(2\gamma = -\varsigma)$
dSG	0	$r_{GIIIa}(ilde{\gamma}_{-})$	$r_{GIVa}(2\hat{\gamma}=-\hat{arsigma})$
Galilei	0	$r_{G2}(\tilde{\gamma})$	$r_{G6}(\hat{\gamma} = \hat{\varsigma})$
adSG	0	$r_{GIII}(\tilde{\gamma}_+) \cong r_{GIII}(\tilde{\gamma})$	$r_{GIV}(2\hat{\gamma}=-\hat{\varsigma})$

Table: *r*-matrices (only \neq 0 deformation parameters) that characterize special cases of deformations, depending on a kinematical algebra; quasitriangular ones are red.

Classifying and contracting Carrollian and Galilean

Abridged definition of the Hopf algebra

A Hopf algebra *A* is the vector space over a field *K*, equipped with a product (e.g. a Lie bracket) $\nabla : A \otimes A \rightarrow A$, satisfying the associativity

$$\nabla \circ (\nabla \otimes \mathrm{id}) = \nabla \circ (\mathrm{id} \otimes \nabla); \tag{16}$$

a coproduct $\Delta : A \rightarrow A \otimes A$, satisfying the coassociativity

$$(\Delta \otimes \mathrm{id}) \circ \Delta = (\mathrm{id} \otimes \Delta) \circ \Delta;$$
 (17)

and an antipode $S : A \rightarrow A$, satisfying the relation

$$\nabla \circ (\boldsymbol{S} \otimes \mathrm{id}) \circ \Delta = \nabla \circ (\mathrm{id} \otimes \boldsymbol{S}) \circ \Delta = \mathbb{1}.$$
(18)

The tensor product of a pair of algebra representations $(\rho_1, V_1), (\rho_2, V_2)$ (where $\rho_{1,2} : A \to GL(V_{1,2})$) is given by $(\rho, V_1 \otimes V_2)$, such that

$$\rho(\mathbf{a})(\mathbf{v}_1 \otimes \mathbf{v}_2) = (\rho_1 \otimes \rho_2)(\Delta(\mathbf{a}))(\mathbf{v}_1 \otimes \mathbf{v}_2), \qquad (19)$$

where $a \in A$, $v_{1,2} \in V_{1,2}$.

Classifying and contracting Carrollian and Galilean

Example – the Hopf algebra corresponding to r_{III}

Denoting $H_0 \equiv H$, $H_1 \equiv \overline{H}$, $E_{0\pm} \equiv E_{\pm}$, $E_{1\pm} \equiv \overline{E}_{\pm}$ and $q_0 \equiv e^{\gamma/2}$, $q_1 \equiv e^{\overline{\gamma}/2}$, $\theta \equiv e^{\eta/4}$, we write down the deformed brackets

$$[H_k, E_{k\pm}] = E_{k\pm}, \qquad [E_{k+}, E_{k-}] = \frac{q_k^{2H_k} - q_k^{-2H_k}}{q_k - q_k^{-1}}, \qquad (20)$$

where k = 0, 1. In the limit $q_k \rightarrow 1$ it reduces to $[E_{k+}, E_{k-}] = 2H_k$. Meanwhile, the coproducts have the form

$$\Delta(H_k) = H_k \otimes 1 + 1 \otimes H_k ,$$

$$\Delta(E_{k\pm}) = E_{k\pm} \otimes q_k^{H_k} \theta^{\mp (-1)^k H_{k+1}} + \theta^{\pm (-1)^k H_{k+1}} q_k^{-H_k} \otimes E_{k\pm}$$
(21)

and antipodes

$$S(H_k) = -H_k$$
, $S(E_{k\pm}) = -q_k^{\pm 1} E_{k\pm}$. (22)

The dual of the subalgebra of translations are spacetime coordinates

$$[X_0, X_a] = 2\gamma X_a, \qquad [X_a, X_b] = 0, \quad a, b = 1, 2.$$
 (23)

3

Classifying and contracting Carrollian and Galilean

Poisson structure via the Fock-Rosly construction

 \mathfrak{g} equipped with *r* becomes the Lie algebra of a Poisson-Lie group of spacetime symmetries, dual to the particle phase space. At the same time, *r* determines the Hopf-algebraic deformation of \mathfrak{g} , providing the quantization of the theory. The consistency with 3D gravity requires

$$r = r_{A} + r_{S}, \quad r_{S} = \alpha \left(P_{\mu} \otimes J^{\mu} + J^{\mu} \otimes P^{\mu} \right) + \beta \left(\Lambda J^{\mu} \otimes J_{\mu} - P^{\mu} \otimes P_{\mu} \right), \quad \alpha, \beta \in \mathbb{R},$$
(24)

where r_S corresponds to the generalized form of the inner product in Chern-Simons action ($\beta = 0$ in the standard case), while *r* satisfies the homogeneous Yang-Baxter equation, hence r_A :

$$\begin{split} \left[\left[r_{A}, r_{A} \right] \right] &= -\left[\left[r_{S}, r_{S} \right] \right] \\ &= -\left(\alpha^{2} - \Lambda \beta^{2} \right) \left(\Lambda J_{0} \wedge J_{1} \wedge J_{2} + \frac{1}{2} \epsilon^{\mu \nu \sigma} J_{\mu} \wedge P_{\nu} \wedge P_{\sigma} \right) \\ &- 2\alpha \beta \left(\frac{1}{2} \Lambda \epsilon^{\mu \nu \sigma} J_{\mu} \wedge J_{\nu} \wedge P_{\sigma} + P_{0} \wedge P_{1} \wedge P_{2} \right) . \end{split}$$
(25)

We call such a r_A to be FR-compatible and classify all of them in J. Kowalski-Glikman, J. Lukierski & T. T., JHEP 09, 096 (2020).

r-matrices of 3D (A)dS algebra relevant for gravity

Calculating the Schouten bracket $[[r_A, r_A]]$, we find that *r*-matrices are:

	FR-compatible $\forall \alpha, \beta$	FR-compatible for $\beta = 0$	FR-compatible for $\alpha, \beta \neq 0$
o(3, 1)	r_{III}, r_{III}^{a}	r_{IV}, r_{IV}^a	
i(2,2)	r _{III}	r_{IV}, r_{IV}^a	r _V
₀′(2, 2)			r ₁₁₁

Example – FR-compatible *r*-matrices of dS algebra:

$$\begin{split} r_{III}(\gamma - \bar{\gamma}, \gamma + \bar{\gamma}, \eta; \Lambda) &= \frac{1}{2}(\gamma - \bar{\gamma}) \left(J_1 \wedge J_2 - \Lambda^{-1} P_1 \wedge P_2 \right) \\ &+ \Lambda^{-1/2} \frac{1}{2} (\gamma + \bar{\gamma}) (J_1 \wedge P_2 - J_2 \wedge P_1) + \Lambda^{-1/2} \frac{\eta}{2} J_0 \wedge P_0 , \\ r_{III}^a(\gamma - \bar{\gamma}, \gamma + \bar{\gamma}, \eta; \Lambda) &= \Lambda^{-1/2} \frac{1}{2} (\gamma - \bar{\gamma}) (J_0 \wedge P_2 - J_2 \wedge P_0) \\ &+ \frac{1}{2} (\gamma + \bar{\gamma}) \left(J_0 \wedge J_2 - \Lambda^{-1} P_0 \wedge P_2 \right) + \Lambda^{-1/2} \frac{\eta}{2} J_1 \wedge P_1 , \\ r_{IV}(\gamma, \varsigma; \Lambda) &= \gamma \left(J_1 \wedge J_2 - \Lambda^{-1/2} J_0 \wedge P_0 - \Lambda^{-1} P_1 \wedge P_2 \right) \\ &+ \frac{\varsigma}{2} \left(J_1 - \Lambda^{-1/2} P_2 \right) \wedge \left(J_2 + \Lambda^{-1/2} P_1 \right) , \\ r_{IV}^a(\gamma, \varsigma; \Lambda) &= \Lambda^{-1/2} \gamma (J_0 \wedge P_1 - J_1 \wedge P_0 - J_2 \wedge P_2) \\ &+ \Lambda^{-1/2} \frac{\varsigma}{2} \left(J_0 - J_1 \right) \wedge (P_0 - P_1) . \end{split}$$
(26)

To be compared with P. K. Osei & B. J. Schroers, CQG 35, 075006 (2018).

Classifying and contracting Carrollian and Galilean

r-matrices of (A)dS algebra in the $\Lambda \rightarrow 0$ limit

Quantum IW contractions of *r*-matrices of (A)dS algebra lead to the following *r*-matrices of 3D Poincaré algebra:

<i>r</i> -matrix automorphism class ^a	o(3, 1)↓	ċ(2,2)↓	ở′(2,2)↓
$r_1 = \chi \left(J_0 + J_1 \right) \wedge J_2$	r _l ^b	rla	
$\hat{r}_2 = \hat{\gamma} \left(J_0 \wedge \mathcal{P}_2 - J_2 \wedge \mathcal{P}_0 ight) + rac{1}{2} \hat{\eta} J_1 \wedge \mathcal{P}_1$	\hat{r}^a_{III}	Ŷ _Ⅲ	
$\hat{r}_3 = \hat{\gamma} \left(J_1 \wedge \mathcal{P}_2 - J_2 \wedge \mathcal{P}_1 ight) + rac{1}{2} \hat{\eta} J_0 \wedge \mathcal{P}_0$	r _{III}		r _{III}
$\hat{r}_4 = rac{1}{\sqrt{2}}\hat{\chi}\left(J_+ \wedge \mathcal{P}_1 - J_1 \wedge \mathcal{P}_+ ight) - \hat{arsigma} J_+ \wedge \mathcal{P}_+$	î _{ll}	î _{ll}	
$\hat{i}_5 = \frac{1}{2}\hat{\chi}J_1 \wedge (\mathcal{P}_0 + \mathcal{P}_2)$	r _l a	\hat{r}_V	
$\hat{f}_6 = \hat{\gamma} \left(J_0 \wedge \mathcal{P}_2 - J_2 \wedge \mathcal{P}_0 - J_1 \wedge \mathcal{P}_1 ight) - \hat{\varsigma} J_+ \wedge \mathcal{P}_+$	\hat{r}^a_{IV}	\hat{r}^a_{IV}	
$\hat{r}_7 = \hat{\gamma} \left(J_0 \wedge \mathcal{P}_0 - J_1 \wedge \mathcal{P}_1 - J_2 \wedge \mathcal{P}_2 ight)$	r _{IV}	\hat{r}_{IV}	

(as well as the irrelevant cases $\sim P_{\mu} \wedge P_{\nu}$), where $J_{+} \equiv \frac{1}{\sqrt{2}}(J_{0} + J_{2})$, $P_{+} \equiv \frac{1}{\sqrt{2}}(P_{0} + P_{2})$. Only \hat{r}_{2} , \hat{r}_{6} and \hat{r}_{7} are relevant for 3D gravity, i.e.

$$\begin{split} [[r_1, r_1]] &= [[\hat{r}_4, \hat{r}_4]] = [[\hat{r}_5, \hat{r}_5]] = 0, \\ & [[\hat{r}_3, \hat{r}_3]] = \hat{\gamma}^2 \epsilon^{\mu\nu\sigma} J_\mu \wedge \mathcal{P}_\nu \wedge \mathcal{P}_\sigma, \\ [[\hat{r}_2, \hat{r}_2]] &= [[\hat{r}_6, \hat{r}_6]] = [[\hat{r}_7, \hat{r}_7]] = -\hat{\gamma}^2 \epsilon^{\mu\nu\sigma} J_\mu \wedge \mathcal{P}_\nu \wedge \mathcal{P}_\sigma. \end{split}$$
(27)

^aP. Stachura, J. Phys. A: Math. Gen. **31**, 4555 (1998)

20/15

Chern-Simons action of 3D gravity (with Λ)

Instead of the metric $g_{\alpha\beta}$, gravity can be described in terms of the vielbein $e_{\alpha}^{\ \mu}$ and spin connection $\omega_{\alpha}^{\ \mu\nu}$, defined as

$$\boldsymbol{e}_{\alpha}^{\ \mu}\boldsymbol{e}_{\beta}^{\ \nu}\eta_{\mu\nu} = \boldsymbol{g}_{\alpha\beta}\,,\qquad \omega_{\alpha}^{\ \mu\nu} = \boldsymbol{e}_{\beta}^{\ \mu}\partial_{\alpha}\boldsymbol{e}^{\beta\nu} + \boldsymbol{e}_{\beta}^{\ \mu}\Gamma_{\ \alpha\gamma}^{\beta}\boldsymbol{e}^{\gamma\nu}\,. \tag{28}$$

In (2+1)D, they neatly combine into a gauge field – with values in the local isometry algebra ${\mathfrak g}$ (3D Poincaré or (Anti-)de Sitter) – which is the Cartan connection

$$\boldsymbol{A} = -\frac{1}{2} \epsilon^{\mu}_{\ \nu\sigma} \omega_{\alpha}^{\ \nu\sigma} \boldsymbol{J}_{\mu} \boldsymbol{d} \boldsymbol{x}^{\alpha} + \boldsymbol{e}_{\alpha}^{\ \mu} \boldsymbol{P}_{\mu} \boldsymbol{d} \boldsymbol{x}^{\alpha} , \qquad (29)$$

where J_{μ} , P_{μ} are generators of \mathfrak{g} . Then, the Einstein-Hilbert action can be written as the Chern-Simons theory action

$$S = \frac{1}{16\pi G} \int \left(\langle dA \wedge A \rangle + \frac{1}{3} \langle A \wedge [A, A] \rangle \right)$$
(30)

if the scalar product on \mathfrak{g} is given by

$$\langle J_{\mu}, P_{\nu} \rangle = \eta_{\mu\nu} , \qquad \langle J_{\mu}, J_{\nu} \rangle = \langle P_{\mu}, P_{\nu} \rangle = 0 .$$
 (31)

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

How to couple a conical defect

The massive point-particle spacetime interval looks as in vacuum:

$$ds^{2} = (1 - \Lambda r^{2}) dt^{2} - (1 - \Lambda r^{2})^{-1} dr^{2} - r^{2} d\tilde{\phi}^{2}, \qquad (32)$$

when the polar angle is rescaled to $\tilde{\phi} := (1 - 4Gm) \phi$ (a conical defect). Similarly, spin $\neq 0$ introduces a jump in the time coordinate.

If spacetime has the topology $\mathbb{R} \times S$, the field *A* may be expressed as $A = A_t dt + A_s$ and the action of gravity with a particle is

$$S = \int dt \ L = \frac{1}{16\pi G} \int dt \int_{S} \left\langle \dot{A}_{S} \wedge A_{S} \right\rangle - \int dt \left\langle c_{0} h^{-1} \dot{h} \right\rangle + \int dt \int_{S} \left\langle A_{t} \left(\frac{1}{8\pi G} F_{S} - hc_{0} h^{-1} \delta^{2} (\vec{x} - \vec{x}_{*}) dx^{1} \wedge dx^{2} \right) \right\rangle.$$
(33)

Mass $\neq 0$ and spin of a particle are encoded by $\mathfrak{g} \ni c_0 = m J_0 + s P_0$, while a gauge group element *h* acting via $hc_0 h^{-1} = \mathbf{p} + \mathbf{j}$ determines its momentum $\mathbf{p} = p^{\mu} J_{\mu}$ and (generalized) angular momentum $\mathbf{j} = j^{\mu} P_{\mu}$.

Classifying and contracting Carrollian and Galilean

Relating the gravitational and particle DOFs

 A_t acts as a Lagrange multiplier imposing a constraint on the curvature of spatial connection $F_S = dA_S + [A_S, A_S]$:

$$F_{S} = 8\pi G h c_0 h^{-1} \delta^2 (\vec{x} - \vec{x}_*) dx^1 \wedge dx^2.$$
 (34)

From $F_S = R_S + T_S + C_S$ (C_S is the cosmological-constant term), it follows that the spatial Riemann curvature and torsion are given by

$$\begin{aligned} \mathcal{R}_{\mathcal{S}} &= -\mathcal{C}_{\mathcal{S}} + 8\pi G \,\mathbf{p} \,\delta^2(\vec{x} - \vec{x}_*) \,dx^1 \wedge dx^2 \,, \\ \mathcal{T}_{\mathcal{S}} &= 8\pi G \,\mathbf{j} \,\delta^2(\vec{x} - \vec{x}_*) \,dx^1 \wedge dx^2 \,, \end{aligned} \tag{35}$$

i.e. they vanish (on the constant background $R_S = -C_S$) everywhere except a singularity at the particle's worldline. Alternatively, g can be equipped with the scalar product

$$\langle J_{\mu}, P_{\nu} \rangle = 0, \qquad \langle J_{\mu}, J_{\nu} \rangle = -\Lambda^{-1} \langle P_{\mu}, P_{\nu} \rangle = \eta_{\mu\nu}.$$
 (36)

If our action is defined using it, **j** generates R_S and **p** generates T_S .

3