Spinors on λ -Minkowski noncommutative spacetime

Nikola Konjik (University of Belgrade) 13 July 2023

Done in colaboration with:

Marija Dimitrijevic Ciric, Faculty of Physics, Belgrade, Andjelo Samsarov, Institute Rudjer Boskovic, Zagreb,

Based on:

Propagation of spinors on a noncommutative spacetime: equivalence of the formal and the effective approach, Published in: Eur.Phys.J.C 83 (2023) 5, 387

Noncommutative scalar quasinormal modes of the Reissner-Nordström black hole, Published in:

Class.Quant.Grav. 35 (2018) 17, 175005

IP-2020-02-9614, Search for Quantum spacetime in Black Hole QNM spectrum and Gamma Ray Bursts".

[&]quot;This research has been partially supported by the Croatian Science Foundation Project No.

Content

- 1 Introduction
- 2 Noncommutative geometry
- **3** λ -Minkowski noncommutativity
- 4 Scalar U(1) gauge theory in RN background
- f 5 Fermionic U(1) gauge theory in RN background
- **6** Dual picture
- Outlook

Physics between LHC and Planck scale \rightarrow problem of modern theoretical physics

Physics between LHC and Planck scale \rightarrow problem of modern theoretical physics Possible solutions

String Theory

Physics between LHC and Planck scale \rightarrow problem of modern theoretical physics Possible solutions

- String Theory
 Quantum loop gravity

Physics between LHC and Planck scale \rightarrow problem of modern theoretical physics Possible solutions

- String Theory
 Quantum loop gravity
- Noncommutative geometry

Physics between LHC and Planck scale \rightarrow problem of modern theoretical physics
Possible solutions

- String Theory Quantum loop gravity
- Noncommutative geometry . . .

Physics between LHC and Planck scale \rightarrow problem of modern theoretical physics
Possible solutions

- String Theory Quantum loop gravity
- Noncommutative geometry ...

Detection of the gravitational waves can help better understanding of structure of space-time

Dominant stage of the perturbed BH are dumped oscillations of the geometry or matter fields (Quasinormal modes)

• Local coordinates x^{μ} are changed with hermitian operators $\hat{x^{\mu}}$

- Local coordinates x^{μ} are changed with hermitian operators $\hat{x^{\mu}}$
- Algebra of operators is $[\hat{x}^{\mu},\hat{x}^{
 u}]=i\theta^{\mu
 u}$

- Local coordinates x^μ are changed with hermitian operators $\hat{x^\mu}$
- Algebra of operators is $[\hat{x}^{\mu}, \hat{x}^{\nu}] = i\theta^{\mu\nu}$
- For $heta = const \Rightarrow \Delta \hat{x}^{\mu} \Delta \hat{x}^{\nu} \geq \frac{1}{2} |\theta^{\mu\nu}|$

- Local coordinates x^{μ} are changed with hermitian operators $\hat{x^{\mu}}$
- Algebra of operators is $[\hat{x}^{\mu}, \hat{x}^{\nu}] = i\theta^{\mu\nu}$
- For $heta=const\Rightarrow \Delta\hat{x}^{\mu}\Delta\hat{x}^{
 u}\geq rac{1}{2}| heta^{\mu
 u}|$
- The notion of a point loses its meaning ⇒ we describe NC space with algebra of functions (theorems of Gelfand and Naimark)

- Local coordinates x^{μ} are changed with hermitian operators $\hat{x^{\mu}}$
- Algebra of operators is $[\hat{x}^{\mu},\hat{x}^{\nu}]=i\theta^{\mu\nu}$
- For $heta=const\Rightarrow \Delta\hat{x}^{\mu}\Delta\hat{x}^{
 u}\geq rac{1}{2}| heta^{\mu
 u}|$
- The notion of a point loses its meaning ⇒ we describe NC space with algebra of functions (theorems of Gelfand and Naimark)

Approaches to NC geometry *-product, NC spectral triple, NC vierbein formalism, matrix models,...

NC space-time from the λ -Minkowski (angular) twist

Twist is used to deform a symmetry Hopf algebra Twist ${\mathcal F}$ is invertible bidifferential operator from the universal enveloping algebra of the symmetry algebra

We work in 4D and deform the space-time by the following twist

$$\begin{split} \mathcal{F} &= \mathrm{e}^{-\frac{i}{2}\theta_{ab}X^a} \bigotimes X^b \\ \left[X^a, X^b \right] &= 0, \quad \mathsf{a,b=1,2} \qquad X_1 = \partial_0 \text{ and } X_2 = x\partial_y - y\partial_x \\ \mathcal{F} &= \mathrm{e}^{\frac{-ia}{2}(\partial_0 \otimes (x\partial_y - y\partial_x) - (x\partial_y - y\partial_x) \otimes \partial_0)} \end{split}$$

Bilinear maps are deformed by twist! Bilinear map μ

$$\mu: X \times Y \to Z$$
$$\mu_{\star} = \mu \mathcal{F}^{-1}$$

Commutation relations between coordinates are:

$$[\hat{x}^0,\hat{x}]=ia\hat{y},$$
 All other commutation relations are zero $[\hat{x}^0,\hat{y}]=-ia\hat{x}$

Our approach: deform space-time by an Abelian twist to obtain commutation relations

Angular twist in curved coordinates $X_1=\partial_0$ and $X_2=\partial_{arphi}$

- -supose that metric tensor $g_{\mu\nu}$ does not depend on t and φ coordinates
- -Hodge dual becomes same as in commutative case

Scalar $U(1)_{\star}$ gauge theory

If a one-form gauge field $\hat{A} = \hat{A}_{\mu} \star dx^{\mu}$ is introduced to the model through a minimal coupling, the relevant action becomes

$$S[\hat{\phi}, \hat{A}] = \int \left(d\hat{\phi} - i\hat{A} \star \hat{\phi} \right)^{+} \wedge_{\star} *_{H} \left(d\hat{\phi} - i\hat{A} \star \hat{\phi} \right)$$
$$- \int \frac{\mu^{2}}{4!} \hat{\phi}^{+} \star \hat{\phi} \epsilon_{abcd} e^{a} \wedge_{\star} e^{b} \wedge_{\star} e^{c} \wedge_{\star} e^{d}$$
$$= \int d^{4}x \sqrt{-g} \star \left(g^{\mu\nu} \star D_{\mu} \hat{\phi}^{+} \star D_{\nu} \hat{\phi} - \mu^{2} \hat{\phi}^{+} \star \hat{\phi} \right)$$

After expanding action and varying with respect to Φ^+ EOM is

$$g^{\mu\nu} \left(D_{\mu} D_{\nu} \phi - \Gamma^{\lambda}_{\mu\nu} D_{\lambda} \phi \right) - \frac{1}{4} \theta^{\alpha\beta} g^{\mu\nu} \left(D_{\mu} (F_{\alpha\beta} D_{\nu} \phi) - \Gamma^{\lambda}_{\mu\nu} F_{\alpha\beta} D_{\lambda} \phi \right) - 2D_{\mu} (F_{\alpha\nu} D_{\beta} \phi) + 2\Gamma^{\lambda}_{\mu\nu} F_{\alpha\lambda} D_{\beta} \phi - 2D_{\beta} (F_{\alpha\mu} D_{\nu} \phi) = 0$$

Scalar field in the Reissner–Nordström background

RN metric tensor is

$$g_{\mu
u} = egin{bmatrix} f & 0 & 0 & 0 & 0 \ 0 & -rac{1}{f} & 0 & 0 & 0 \ 0 & 0 & -r^2 & 0 \ 0 & 0 & 0 & -r^2\sin^2 heta \end{bmatrix}$$

with $f=1-\frac{2MG}{r}+\frac{Q^2G}{r^2}$ which gives two horizons $(r_+$ and $r_-)$ Q-charge of RN BH

Non-zero components of gauge fields are $A_0 = -\frac{qQ}{r}$ i.e. $F_{r0} = \frac{qQ}{r^2}$ q-charge of scalar field

EOM for scalar field in RN space-time

$$\left(\frac{1}{f}\partial_t^2 - \Delta + (1 - f)\partial_r^2 + \frac{2MG}{r^2}\partial_r + 2iqQ\frac{1}{rf}\partial_t - \frac{q^2Q^2}{r^2f}\right)\phi
+ \frac{aqQ}{r^3}\left(\left(\frac{MG}{r} - \frac{GQ^2}{r^2}\right)\partial_\varphi + rf\partial_r\partial_\varphi\right)\phi = 0$$

where a is $\theta^{t\varphi}$.

Fermions

Fermionic action coupled to EM field and curved space is

$$S_{\star} = \int d^{4}x |e| \star \bar{\hat{\Psi}} \star \left(i \gamma^{\mu} \left(\partial_{\mu} \hat{\Psi} - i \omega_{\mu} \star \hat{\Psi} - i q \hat{A}_{\mu} \star \hat{\Psi} \right) - m \hat{\Psi} \right), \quad (1)$$

where

$$D_{\mu}\Psi = \partial_{\mu}\Psi - \frac{i}{2}\omega_{\mu}^{\ ab}\Sigma_{ab}\Psi - iqA_{\mu}\Psi. \tag{2}$$

After expanding the fields and *-product with SW map we get

$$S_{\star} = \int d^{4}x |e| \bar{\Psi} \Big(i \gamma^{\mu} D_{\mu} \Psi - m \Psi \Big)$$

$$+ \frac{1}{2} \theta^{\alpha \beta} \Big(-i F_{\mu \alpha} \bar{\Psi} \gamma^{\mu} D_{\beta}^{\mathrm{U}(1)} \Psi - \frac{i}{2} \bar{\Psi} \gamma^{\mu} \omega_{\mu} F_{\alpha \beta} \Psi - \frac{1}{2} F_{\alpha \beta} \bar{\Psi} \Big(i \gamma^{\mu} D_{\mu}^{\mathrm{U}(1)} \Big) \Big)$$

To get proper EOM, we have done the same procedure for fermions in RN metric (coupled to external EM field).

The result is

$$i\gamma^{\mu}\Big(\partial_{\mu}\Psi-i\omega_{\mu}\Psi-iA_{\mu}\Psi\Big)-m\Psi-\frac{ia}{2}\frac{qQ}{r^{2}}\sqrt{f}\gamma^{1}\partial_{\phi}\Psi=0.$$

Duality picture

We have another way to get the equation of motion for scalar and fermionic field: Using the effective metric in commutative space

$$g_{\mu\nu} = \begin{pmatrix} f & 0 & 0 & 0\\ 0 & -\frac{1}{f} & 0 & -\frac{aqQ}{2}\sin^2\theta\\ 0 & 0 & -r^2 & 0\\ 0 & -\frac{aqQ}{2}\sin^2\theta & 0 & -r^2\sin^2\theta \end{pmatrix}$$
(3)

Two ways

- Noncommutative space with pure RN metric
- Commutative space with modified RN metric

Outlook

- We constructed Angular twist which induces angular noncommutativity
- Angular NC scalar and vector gauge theory is constructed
- EOM is solved with QNM boundary conditions for scalar field coupled to RN geometry
- But this is toy model!
- Plan for future is to calculate fermionic and gravitational QNMs and to compare it with results from LIGO, VIRGO, LISA...
- We want to understand physics of the effective metric