### CosmoVerse:

Addressing observational tensions in cosmology with systematics and fundamental physics (CA21136)

Jackson Levi Said

Institute of Space Sciences and Astronomy, University of Malta







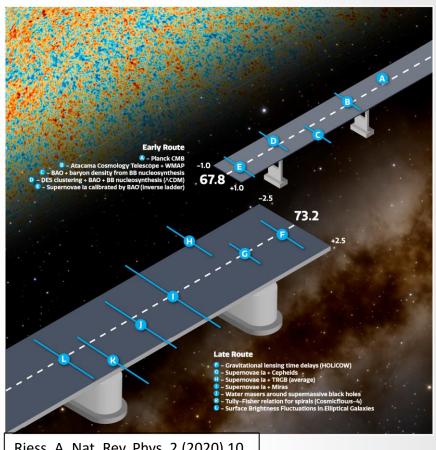


# Main take away message

### Why care about the Hubble constant?

Adam Riess (2019): " $H_0$  is the ultimate end-to-end test for  $\Lambda$ CDM"

- The  $H_0$  tension is more than just a **tension between CMB and** the SH0ES measurement
- Its also a tension between the inverse distance ladder and low-z measurements
- We are very far from a solution!



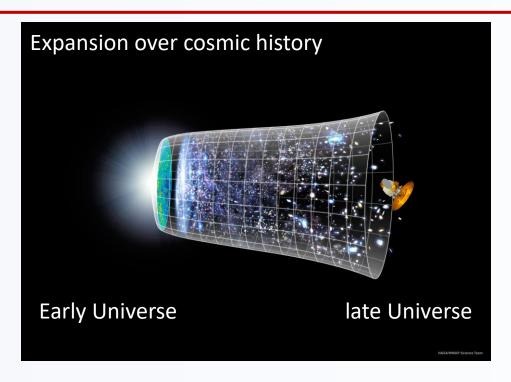
Riess, A. Nat. Rev. Phys. 2 (2020) 10

# Why do we need modifications to standard cosmology?

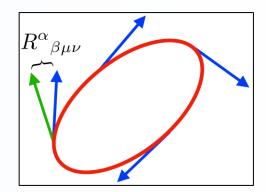
## General Relativity and Concordance Cosmology

#### Einstein-Hilbert action for GR:

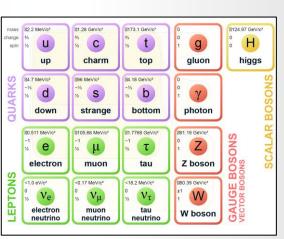
$$S = \frac{1}{16\pi G} \int d^4x \sqrt{-g} [\mathcal{R}] + \int d^4x \sqrt{-g} \mathcal{L}_m(g_{\mu\nu}, \psi)$$



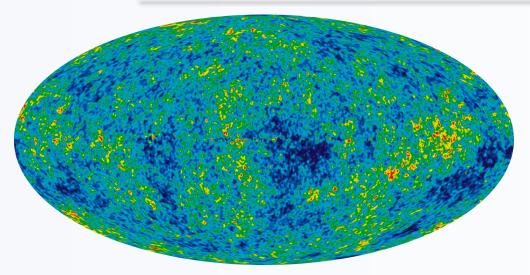
Einstein 1915: **General Relativity (GR) Energy-momentum** source of curvature **Levi-Civita connection**: Zero Torsion, Metricity

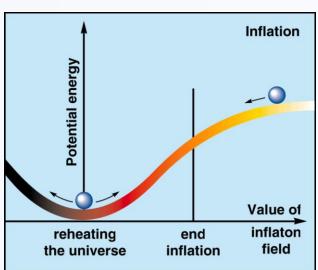


Standard model of particle physics: SU(3) × SU(2) × U(1)



# Early Universe Concordance Cosmology





#### **Cosmic inflation**

**Pros:** Horizon and flatness problems

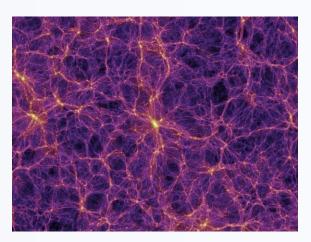
Cons: Fine-tuning

#### **Anomalies and problems:**

- The Lithium problem
- Hints of a closed Universe
- Large angular scale anomalies in the CMB
- Anomalously strong ISW effect
- Cosmic dipoles (cosmological principles)
- Lyman- $\alpha$  forest BAO anomalies
- Cosmic birefringence
- Discordance in dark matter abundance at smaller scales

## Late Universe Concordance Cosmology





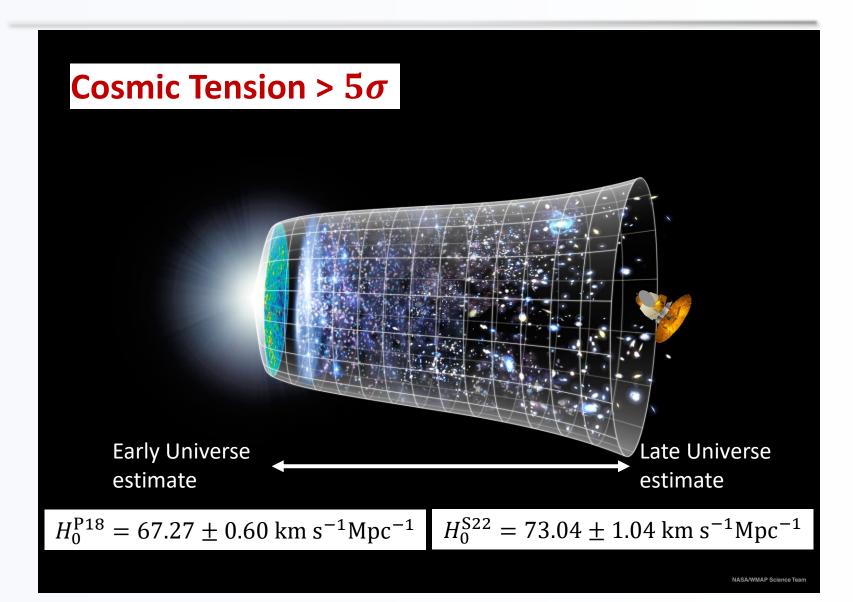
**Requirements:**Dark matter
Dark energy

#### **Anomalies and problems:**

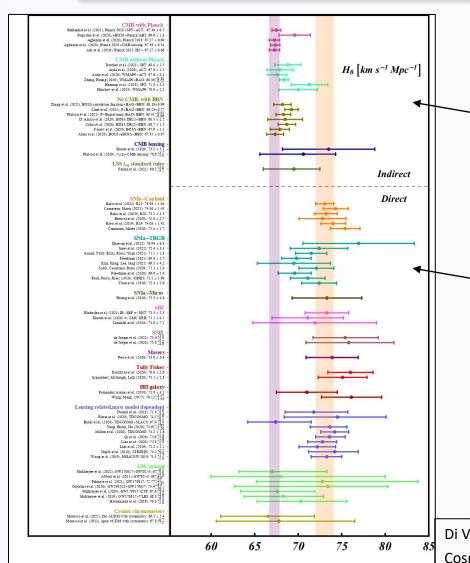
- Cold dark matter problems (core-cusp, missing satellites, satellite plane alignment)
- Dark energy in fundamental physics
- Oscillations of best-fit parameters across the sky
- Baryonic Tully-Fisher Relation

$$S = \frac{1}{16\pi G} \int d^4x \sqrt{-g} [\mathcal{R} - 2\Lambda]$$
$$+ \int d^4x \sqrt{-g} \mathcal{L}_m(g_{\mu\nu}, \psi)$$

## The Hubble Tension



### Cosmic Tensions



Indirect measures predict  $H_0$  using  $\Lambda$ CDM

$$r_{s} = \int_{z_{LS}}^{\infty} \frac{c_{s}(z', \rho_{b})}{H(z')} dz'$$

Direct measures estimate  $H_0$  using astrophysics

$$d_L(z) = (1+z) \int_0^z \frac{\mathrm{d}z'}{H(z')}$$

Di Valentino et al. CQG, 38 (2021) 15 Cosmology Intertwined, JHEAp. 2204 (2022) 002

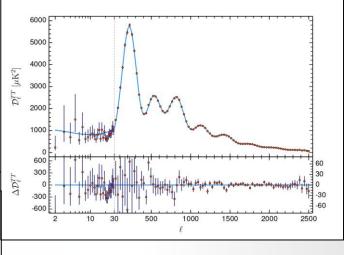
## Cosmic Tensions: CMB

| Parameter                                        | Plik best fit | Plik[1]               | CamSpec [2]                  | $([2] - [1])/\sigma_1$ | Combined              |  |
|--------------------------------------------------|---------------|-----------------------|------------------------------|------------------------|-----------------------|--|
| $\overline{\Omega_{\rm b}h^2\ldots\ldots\ldots}$ | 0.022383      | $0.02237 \pm 0.00015$ | $0.02229 \pm 0.00015$        | -0.5                   | $0.02233 \pm 0.00015$ |  |
| $\Omega_{\rm c}h^2$                              | 0.12011       | $0.1200 \pm 0.0012$   | $0.1197 \pm 0.0012$          | -0.3                   | $0.1198 \pm 0.0012$   |  |
| $100\theta_{\mathrm{MC}}$                        | 1.040909      | $1.04092 \pm 0.00031$ | $1.04087 \pm 0.00031$        | -0.2                   | $1.04089 \pm 0.00031$ |  |
| $\tau$                                           | 0.0543        | $0.0544 \pm 0.0073$   | $0.0536^{+0.0069}_{-0.0077}$ | -0.1                   | $0.0540 \pm 0.0074$   |  |
| $\ln(10^{10}A_{\rm s}) \ldots \ldots$            | 3.0448        | $3.044 \pm 0.014$     | $3.041 \pm 0.015$            | -0.3                   | $3.043 \pm 0.014$     |  |
| $n_{\rm s}$                                      | 0.96605       | $0.9649 \pm 0.0042$   | $0.9656 \pm 0.0042$          | +0.2                   | $0.9652 \pm 0.0042$   |  |
| $\Omega_{\rm m}h^2$                              | 0.14314       | $0.1430 \pm 0.0011$   | $0.1426 \pm 0.0011$          | -0.3                   | $0.1428 \pm 0.0011$   |  |
| $H_0$ [ km s <sup>-1</sup> Mpc <sup>-1</sup> ]   | 67.32         | $67.36 \pm 0.54$      | $67.39 \pm 0.54$             | +0.1                   | $67.37 \pm 0.54$      |  |
| $\Omega_{\mathrm{m}}$                            | 0.3158        | $0.3153 \pm 0.0073$   | $0.3142 \pm 0.0074$          | -0.2                   | $0.3147 \pm 0.0074$   |  |
| Age [Gyr]                                        | 13.7971       | $13.797 \pm 0.023$    | $13.805 \pm 0.023$           | +0.4                   | $13.801 \pm 0.024$    |  |
| $\sigma_8 \dots \dots$                           | 0.8120        | $0.8111 \pm 0.0060$   | $0.8091 \pm 0.0060$          | -0.3                   | $0.8101 \pm 0.0061$   |  |
| $S_8 \equiv \sigma_8 (\Omega_{\rm m}/0.3)^{0.5}$ | 0.8331        | $0.832 \pm 0.013$     | $0.828 \pm 0.013$            | -0.3                   | $0.830 \pm 0.013$     |  |
| Z <sub>re</sub>                                  | 7.68          | $7.67 \pm 0.73$       | $7.61 \pm 0.75$              | -0.1                   | $7.64 \pm 0.74$       |  |
| $100\theta_*$                                    | 1.041085      | $1.04110 \pm 0.00031$ | $1.04106 \pm 0.00031$        | -0.1                   | $1.04108 \pm 0.00031$ |  |
| $r_{\rm drag}$ [Mpc]                             | 147.049       | $147.09 \pm 0.26$     | $147.26 \pm 0.28$            | +0.6                   | $147.18 \pm 0.29$     |  |

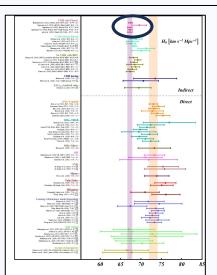
 $\Lambda$ CDM is a six parameter model:

- Baryon density  $(\Omega_{\rm m}h^2)$
- Cosmological dark matter density  $(\Omega_c h^2)$
- Acoustic scale angle  $(100\theta_{\rm MC})$
- Reionization optical depth  $(\tau)$
- Primordial power spectrum amplitude  $(\ln(10^{10}A_s))$
- Primordial spectral index  $(n_s)$

Spectrum of CMB temperature anisotropies from Planck



Planck Collaboration, A&A 641 (2020) A6



Planck CMB anisotropies

WMAP+ACT DR4 CMB aniso.

SPT-3G CMB anisotropies

ACT lensing + BAO + BBN

ACT+Planck lensing + BAO + BBN

Planck lensing + SNe + BBN (no r<sub>s</sub>)

ACT lensing + SNe + BBN (no r<sub>s</sub>)

ACT+Planck lensing + SNe + BBN (no r<sub>s</sub>)

Direct: SNe Cepheid-calibrated

Direct: SNe TRGB-calibrated

Direct: TDCOSMO Strong Lensing

Direct: TDCOSMO Strong Lensing Alt.

$$H_0^{\rm P18} = 67.4 \pm 0.5 \, \rm km \, s^{-1} Mpc^{-1}$$

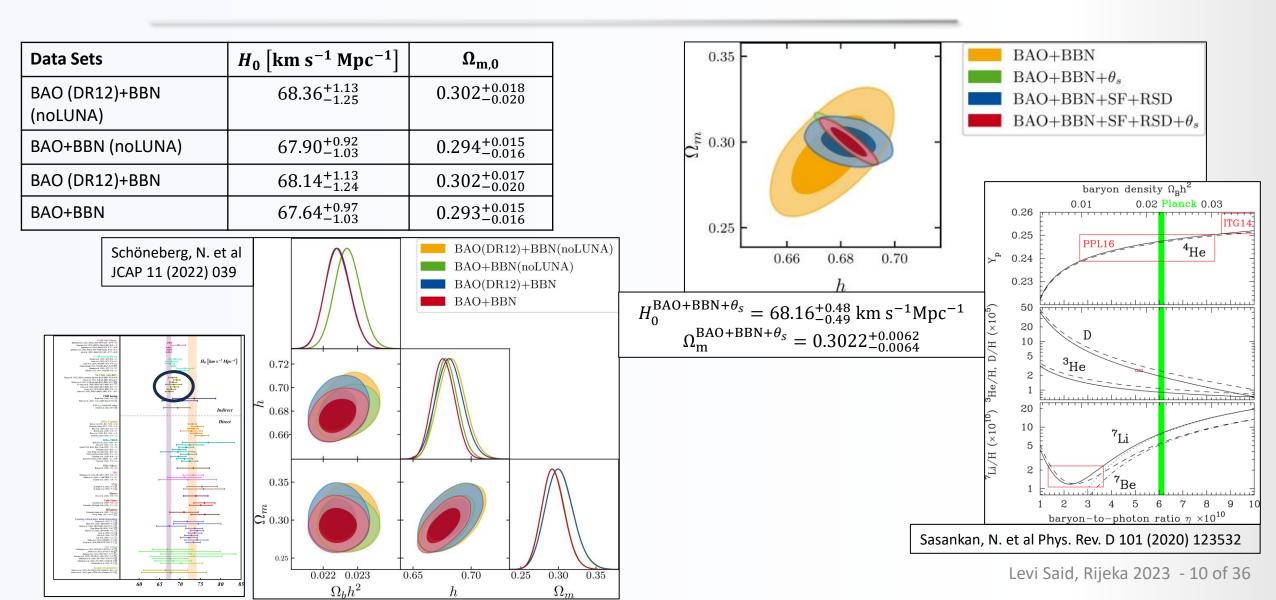
$$H_0^{\rm ACT+BAO+BBN} = 68.3 \pm 1.1 \, \rm km \, s^{-1} Mpc^{-1}$$

$$H_0^{\text{ACT+P18+BAO+BBN}} = 68.1 \pm 1.0 \text{ km s}^{-1} \text{Mpc}^{-1}$$

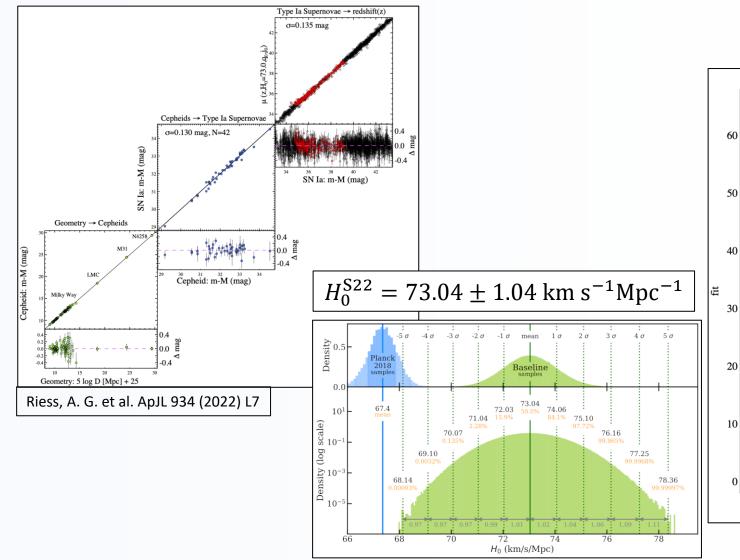
ACT DR6 (2023)

Levi Said, Rijeka 2023 - 9 of 36

## Cosmic Tensions: BBN

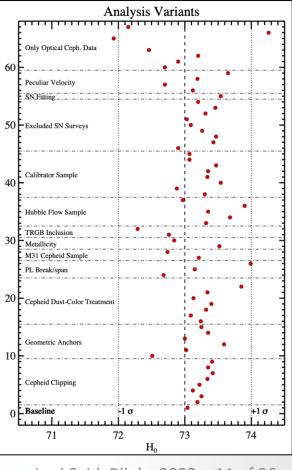


## Cosmic Tensions: SH0ES Result



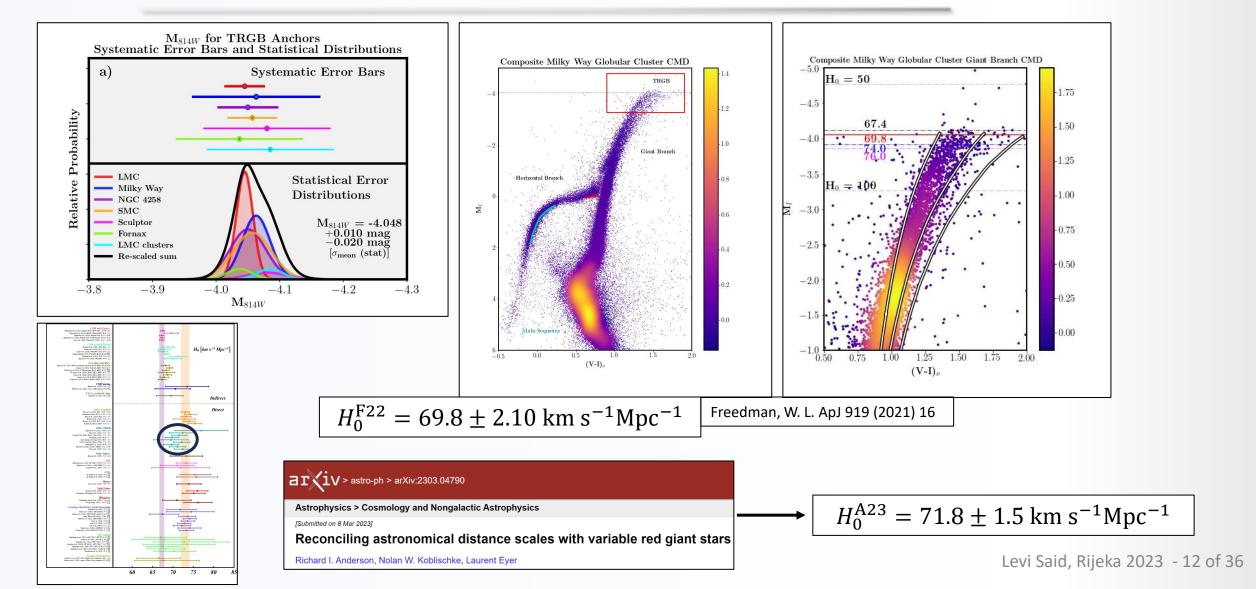
 $H_0$  [km s<sup>-1</sup> Mpc<sup>-1</sup>]

#### 12 variants of analyses

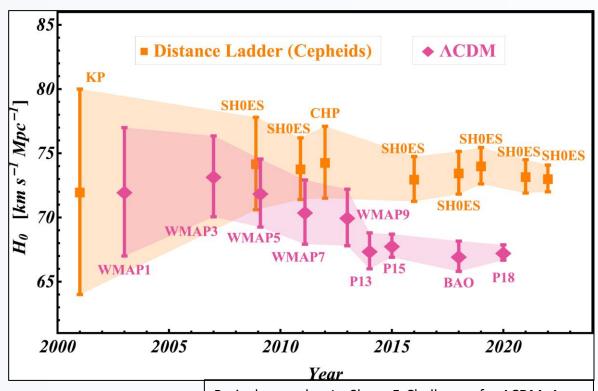


Levi Said, Rijeka 2023 - 11 of 36

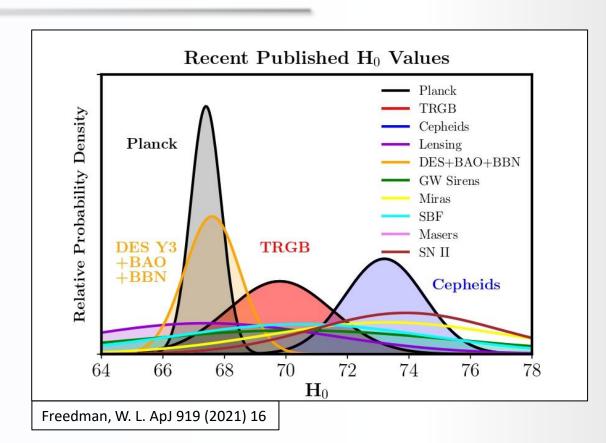
## Cosmic Tensions: Tip of the Red Giant Branch



## Cosmic Tensions in recent years



Perivolaropoulos, L.; Skara, F. Challenges for ΛCDM: An update. New Astron. Rev. 95 (2022) 101659.



# What are possible solutions?

## Attempts at a solution

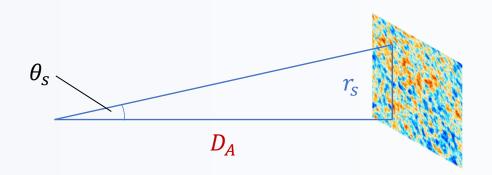
| Model                                        | $\Delta N_{ m param}$ | $M_B$                       | Gaussian<br>Tension | $Q_{\mathrm{DMAP}}$<br>Tension |          | $\Delta \chi^2$ | $\Delta { m AIC}$ | )            | Finalist |
|----------------------------------------------|-----------------------|-----------------------------|---------------------|--------------------------------|----------|-----------------|-------------------|--------------|----------|
| $\Lambda \mathrm{CDM}$                       | 0                     | $-19.416 \pm 0.012$         | $4.4\sigma$         | $4.5\sigma$                    | X        | 0.00            | 0.00              | X            | X        |
| $\Delta N_{ m ur}$                           | 1                     | $-19.395 \pm 0.019$         | $3.6\sigma$         | $3.8\sigma$                    | X        | -6.10           | -4.10             | X            | X        |
| SIDR                                         | 1                     | $-19.385 \pm 0.024$         | $3.2\sigma$         | $3.3\sigma$                    | X        | -9.57           | -7.57             | ~            | √ ③      |
| mixed DR                                     | 2                     | $-19.413 \pm 0.036$         | $3.3\sigma$         | $3.4\sigma$                    | X        | -8.83           | -4.83             | X            | X        |
| DR-DM                                        | 2                     | $-19.388 \pm 0.026$         | $3.2\sigma$         | $3.1\sigma$                    | X        | -8.92           | -4.92             | X            | X        |
| $SI\nu+DR$                                   | 3                     | $-19.440^{+0.037}_{-0.039}$ | $3.8\sigma$         | $3.9\sigma$                    | X        | -4.98           | 1.02              | X            | X        |
| Majoron                                      | 3                     | $-19.380^{+0.027}_{-0.021}$ | $3.0\sigma$         | $2.9\sigma$                    | V        | -15.49          | -9.49             | <b>V</b>     | √ ②      |
| primordial B                                 | 1                     | $-19.390^{+0.018}_{-0.024}$ | $3.5\sigma$         | $3.5\sigma$                    | X        | -11.42          | -9.42             | 1            | √ ③      |
| varying $m_e$                                | 1                     | $-19.391 \pm 0.034$         | $2.9\sigma$         | $2.9\sigma$                    | V        | -12.27          | -10.27            | <b>\</b>     | √ ⑩      |
| varying $m_e + \Omega_k$                     | 2                     | $-19.368 \pm 0.048$         | $2.0\sigma$         | $1.9\sigma$                    | 1        | -17.26          | -13.26            | ~            | √ ①      |
| EDE                                          | 3                     | $-19.390^{+0.016}_{-0.035}$ | $3.6\sigma$         | $1.6\sigma$                    | 1        | -21.98          | -15.98            | $\checkmark$ | ✓ ②      |
| NEDE                                         | 3                     | $-19.380^{+0.023}_{-0.040}$ | $3.1\sigma$         | $1.9\sigma$                    | V        | -18.93          | -12.93            | <b>\</b>     | ✓ ②      |
| EMG                                          | 3                     | $-19.397^{+0.017}_{-0.023}$ | $3.7\sigma$         | $2.3\sigma$                    | <b>V</b> | -18.56          | -12.56            | $\checkmark$ | ✓ ②      |
| CPL                                          | 2                     | $-19.400 \pm 0.020$         | $3.7\sigma$         | $4.1\sigma$                    | X        | -4.94           | -0.94             | X            | X        |
| PEDE                                         | 0                     | $-19.349 \pm 0.013$         | $2.7\sigma$         | $2.8\sigma$                    | 1        | 2.24            | 2.24              | X            | X        |
| GPEDE                                        | 1                     | $-19.400 \pm 0.022$         | $3.6\sigma$         | $4.6\sigma$                    | X        | -0.45           | 1.55              | X            | X        |
| $\mathrm{DM} \to \mathrm{DR} + \mathrm{WDM}$ | 2                     | $-19.420 \pm 0.012$         | $4.5\sigma$         | $4.5\sigma$                    | X        | -0.19           | 3.81              | X            | X        |
| $\mathrm{DM} \to \mathrm{DR}$                | 2                     | $-19.410 \pm 0.011$         | $4.3\sigma$         | $4.5\sigma$                    | X        | -0.53           | 3.47              | X            | X        |

#### The $H_0$ Olympics:

- 1. What tension does a model have with the SH0ES result using a baseline Planck 2018 + BAO + Pantheon best fit?
- 2. How does the inclusion of the SH0ES measurement impact this fit?
- 3. Does this inclusion make the best fit better than  $\Lambda$ CDM or worse?

Schöneberg, N. et al. Phys. Rept., 984 (2022) 1

# Early vs local measurement approaches



$$\theta_{s} = \frac{r_{s}(z_{LS})}{D_{A}(z_{LS})} = \frac{\int_{z_{LS}}^{\infty} c_{s}(z, \rho_{b}) H^{-1}(z') dz'}{\int_{0}^{z_{LS}} H^{-1}(z') dz'}$$

#### Early-Universe new physics $(r_s)$

- Considering the angular size of the sound horizon

$$\theta_{\rm s} \sim \frac{r_{\rm s}}{1/H(z_{\rm late})} \sim r_{\rm s} H_0$$

By decreasing  $r_s$ , we can increase  $H_0$ , or so one would expect

#### Late-Universe new physics $(D_A)$

- Keep early Hubble evolution unchanged and modify latetime evolution of H(z)

This is very difficult to do provided BAO, SnIa and CC data

## Late-Universe new physics

Possible late-Universe solutions with new physics (that give high  $H_0$  values with CMB):

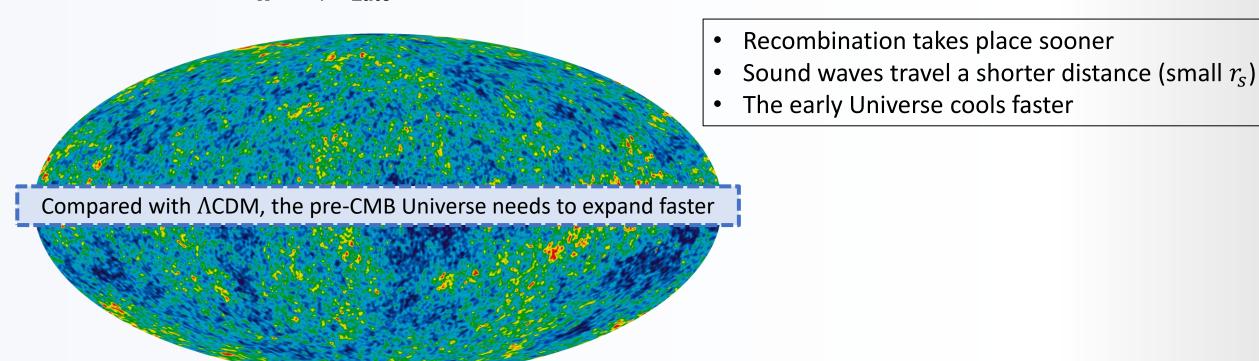
- Graduated Dark Energy Akarsu, Ö., Barrow, J. D., Escamilla, L. A., and Vazquez, J. A. 2020
- Late-time interacting dark sector Gariazzo, S., Di Valentino, E., Mena, O., and Nunes, R. C. 2022
- Decaying dark matter Vattis, K., Koushiappas, S. M., Loeb, A 2020
- Decaying dark energy Li, X., Shafieloo, A., Sahni, V., and Starobinsky, A. A. 2019
- Negative dark energy density Poulin V., Boddy, K. K., Bird, S., and Kamionkowski, M 2018
- Phenomenologically Emergent Dark Energy Li, X., and Shafieloo, A. 2020
- Running vacuum models Sola J., Gomez-Valent, A., and de Cruz Perez, J. 2017

BAO constrain  $\theta_s \sim r_s H_0$ , anchoring  $r_s$  (early Universe) leaves few options for inferring  $H_0$ 

## Early-Universe new physics

#### **Early-Universe physics concept:**

- Fix  $\theta_s$  (CMB peaks unchanged) so that  $r_s \sim 1/H_0$
- Lower  $r_s$  which will increase pre-CMB expansion rate
- Do not change  $D_A \propto 1/H_{\rm Late}(z)$ , so modifications in the late Universe are not needed



# Early Universe Dark Energy (EDE)

- Motivation: Decrease the sound horizon by an early Universe dark component that is active up to roughly matter-radiation equality
- EDE continuity equation implies energy evolution

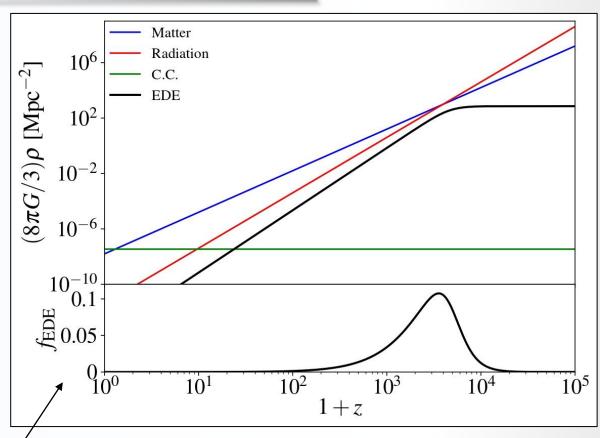
$$\rho_{\rm EDE}(a)=\rho_{\rm EDE,0}~e^{3\int_a^1[1+w_{\rm EDE}(a)]da/a}$$
 This defines the **EDE density parameter**  $f_{\rm EDE}=\rho_{\rm EDE}/\rho_{\rm Crit}$ 

This can be parametrized through the EoS

$$w_{\text{EDE}}(a) = \frac{1 + w_f}{1 + (a_c/a)^{3(1+w_f)}} - 1$$

• The **critical scale factor** sets the scale for EDE:

$$a \ll a_c \rightarrow \text{cosmic expansion with } w_{\text{EDE}} \rightarrow -1$$
  $a \gg a_c \rightarrow \text{Dilutes as } a^{-3\left(1+w_f\right)}$  Example:  $V(\phi) = \phi^{2n} \Rightarrow w_f = (n-1)/(n+1)$ 



Representative example:  $f_{\rm EDE,max}=0.1$  at  $z_c\simeq 3500$  ( $w_{\rm EDE}\to 1/2$  afterwards)

Poulin, V., Smith, T. L., and Karwal, T. arXiv:2302.09032

## **EDE Models**

Axion-like EDE (axEDE):

$$V = m^2 f^2 \left[ 1 - \cos\left(\frac{\phi}{f}\right) \right]^n$$

Rock 'n Roll EDE (RnR EDE):

$$V = V_0 \left(\frac{\phi}{M_{\rm Pl}}\right)^{2n} + V_{\Lambda}$$

Acoustic EDE (ADE):

$$1 + w_{ADE} = \frac{1 + w_f}{\left[1 + (a_c/a)^{3(1+w_f)/p}\right]^p}$$

New EDE (NEDE):

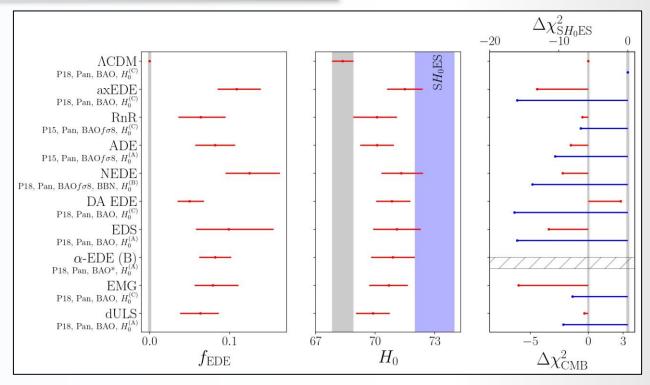
$$V(\psi,\phi) = \frac{\lambda}{4}\psi^4 + \frac{1}{2}\beta M^2\psi^2 - \frac{1}{3}\alpha M\psi^3 + \frac{1}{2}m^2\phi^2 + \frac{1}{2}\gamma\phi^2\psi^2$$

EDE coupled to DM (EDS):

$$V(\phi, a) = V(\phi) + \rho_{\rm DM}(a)$$

•  $\alpha$  -attractors EDE ( $\alpha$  -EDE):

$$V = \Lambda + V_0 \frac{(1+\beta)^{2n} \tanh(\phi/\sqrt{6\alpha}M_{\rm Pl})^{2p}}{\left[1 + \beta \tanh(\phi/\sqrt{6\alpha}M_{\rm Pl})\right]^{2n}}$$



Klein-Gordon equation of motion:

$$\ddot{\phi} + 3H\dot{\phi} + \frac{dV(\phi)}{d\phi} = 0$$



## Evolution of EDE

On subhorizon scales, the fluid equation takes the form

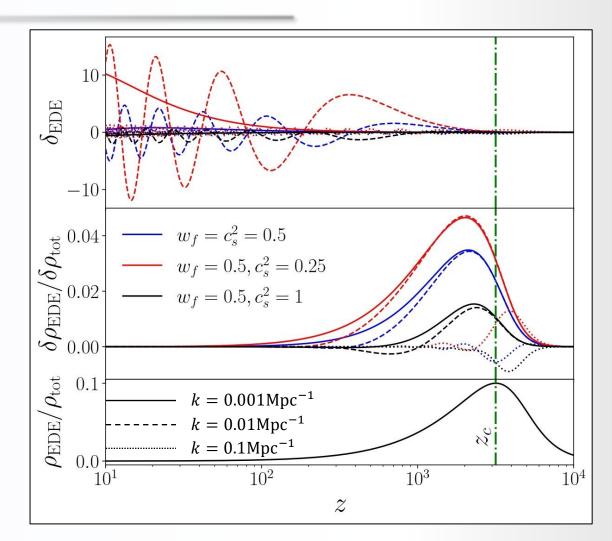
$$\frac{d^2}{d\eta^2} \left( \frac{\delta_{\text{EDE}}}{1 + w_{\text{EDE}}} \right)$$

$$= -k^2 \left( c_s^2 \frac{\delta_{\text{EDE}}}{1 + w_{\text{EDE}}} + \psi_{\text{N}} \right) - \left( 1 - 3c_a^2 \right) \frac{a'}{a} \frac{d}{d\eta} \left( \frac{\delta_{\text{EDE}}}{1 + w_{\text{EDE}}} \right)$$

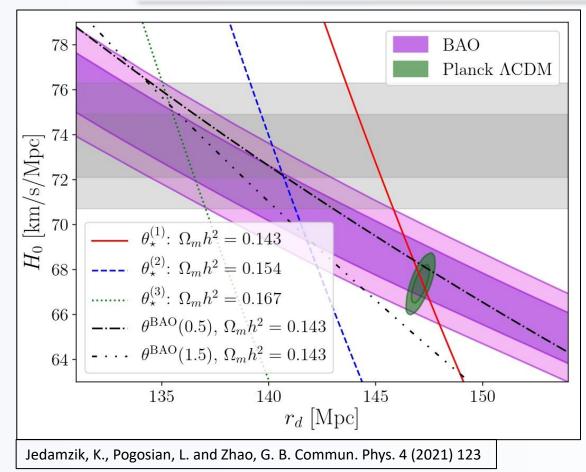
for the fractional EDE perturbation ( $\delta_{\rm EDE}$ ), effective EDE sound speed ( $c_s^2$ ), Newtonian potential ( $\psi_{\rm N}$ ) and adiabatic EDE sound speed ( $c_a^2$ )

#### **General features:**

- Larger  $c_s^2$  translates to more resistance in EDE collapse, while smaller  $c_s^2$  give larger overall density perturbations. This sets the frequency of the oscillations
- The sign of  $(1-3c_a^2)$  controls where the amplitude increases (+) or decreases (-)
- EDE modes are counteracted by pressure within the horizon, with stable modes only entering the horizon at  $w_{\rm EDE} \simeq -1$



## The problem with EDE



CMB angular size at recombination:

$$\theta_* = \frac{r_{\rm s}(z_{\rm LS})}{D(z_{\rm LS})}$$

Transverse BAO angular scale:

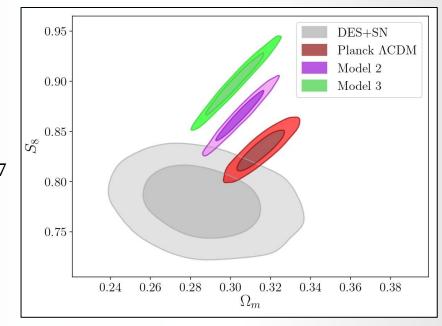
$$\theta^{\rm BAO}(z_{\rm Obs}) = \frac{r_{\rm d}}{D(z_{\rm Obs})}$$

#### Model 2:

Fits BAO and CMB peaks at  $\Omega_{\rm m}h^2=0.155$ 

#### Model 3:

Fits BAO, CMB peaks and SH0ES result at  $\Omega_m h^2 = 0.167$ 



## Modified Gravity through Lovelock's Theorem

Adding more than second-order derivatives of the metric

Adding new fields (scalar, vector, tensor)

#### Lovelock's Theorem

For **second order** vacuum field equations  $E_{\mu\nu}=0$ , if  $E_{\mu\nu}$  is a function of the metric  $g_{\mu\nu}$ , then

$$E_{\mu\nu} \coloneqq G_{\mu\nu} + \Lambda g_{\mu\nu} = \mathcal{R}_{\mu\nu} - \frac{1}{2}\mathcal{R}g_{\mu\nu} + \Lambda g_{\mu\nu}$$

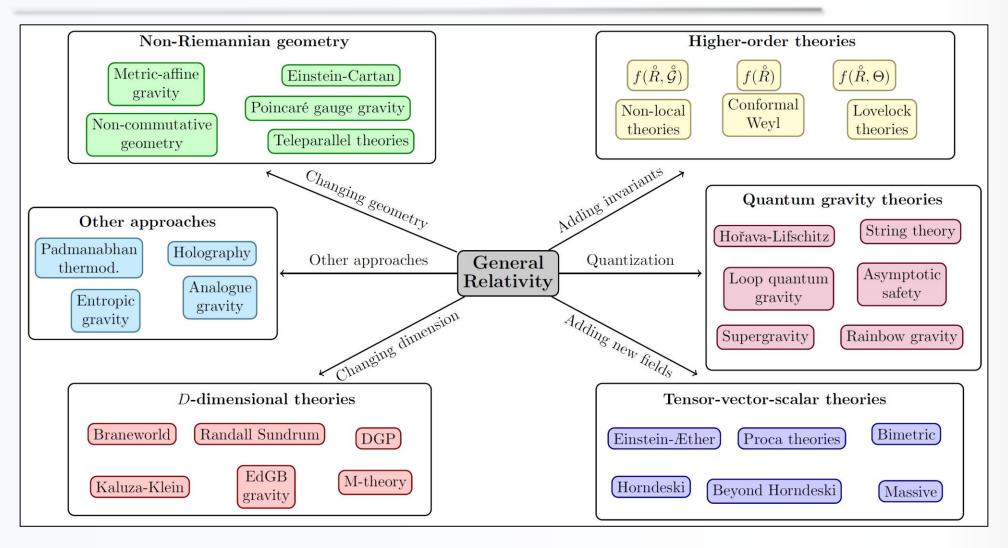
Consider non-local terms

Changing the gravitational connection

Use more/less than four dimensions of spacetime

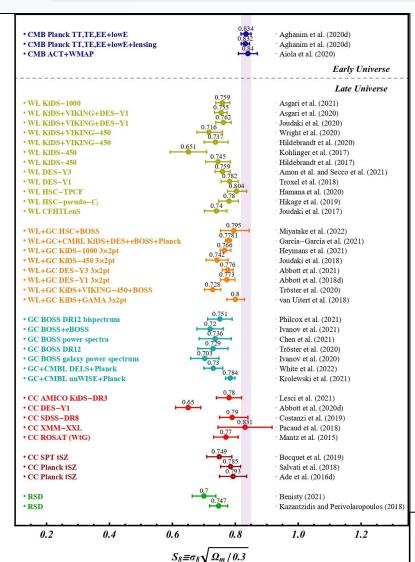
Take an emergent form of gravity

# The Modified Gravity Landscape



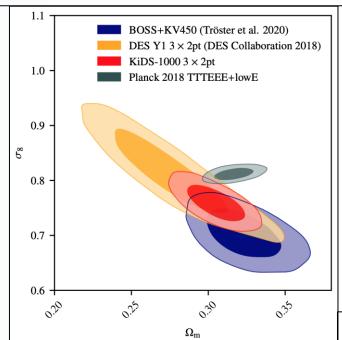
# What about other tensions on the rise?

# $S_8$ Tension



Large scale structure is nicely represented by  $S_8$  which combines the matter density and matter density fluctuations on the scale of  $8\ h^{-1}{\rm Mpc}$ 

$$S_{8,0} = \sigma_{8,0} \sqrt{\frac{\Omega_{\rm m,0}}{0.3}}$$



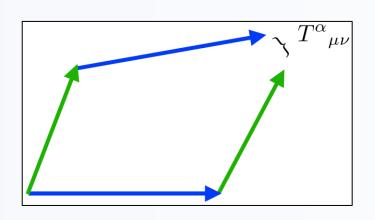
Haymans, C. et al. A&A 646 (2021) A140

Di Valentino et al. CQG, 38 (2021) 15 Cosmology Intertwined, JHEAp. 2204 (2022) 002

# How can machine learning help?

# f(T) Teleparallel Gravity

- Tetrad  $(e^a_{\ \mu})$ : Relate the tangent space  $(g_{\mu\nu}=\eta_{ab}e^a_{\ \mu}e^b_{\ \nu})$
- Use the **teleparallel connection**  $(\Gamma^{\sigma}_{\mu\nu} = e_a{}^{\sigma}\partial_{\nu}e^a{}_{\mu} + e_a{}^{\sigma}\omega^a{}_{\nu\mu})$  instead of the **Levi-Civita connection gives**  $\mathcal{R} = -T + B$
- f(T) Gravity:  $S = \frac{1}{16\pi G} \int d^4x \ e[-T + f(T)] + S_{\text{mat}}$
- Taking a flat (FLRW) cosmology:  $g_{\mu\nu} = \text{diag}(-1, a(t)^2, a(t)^2, a(t)^2)$
- Friedmann equations:



$$\dot{H}^{2} = \frac{8\pi G}{3} \rho_{m} - \frac{f(T)}{6} + \frac{T}{3} f_{T}$$

$$\dot{H} = -\frac{4\pi G(\rho_{m} + p_{m})}{1 - f_{T} - 2T f_{TT}}$$

$$T = 6H^2 = 6\left(\frac{\dot{a}}{a}\right)^2$$

Bahamonde et al. RoPP 86 (2023) 026901

# Propagating f(T(z))

- The Friedmann equation contains  $f_T$  which need to be eliminated finite difference methods
- Using a **central differencing** approach (error  $\sim \mathcal{O}(\Delta z^2)$ ), we can assume

$$f'(z_i) \simeq \frac{f(z_{i+1}) - f(z_{i-1})}{z_{i+1} - z_{i-1}}$$

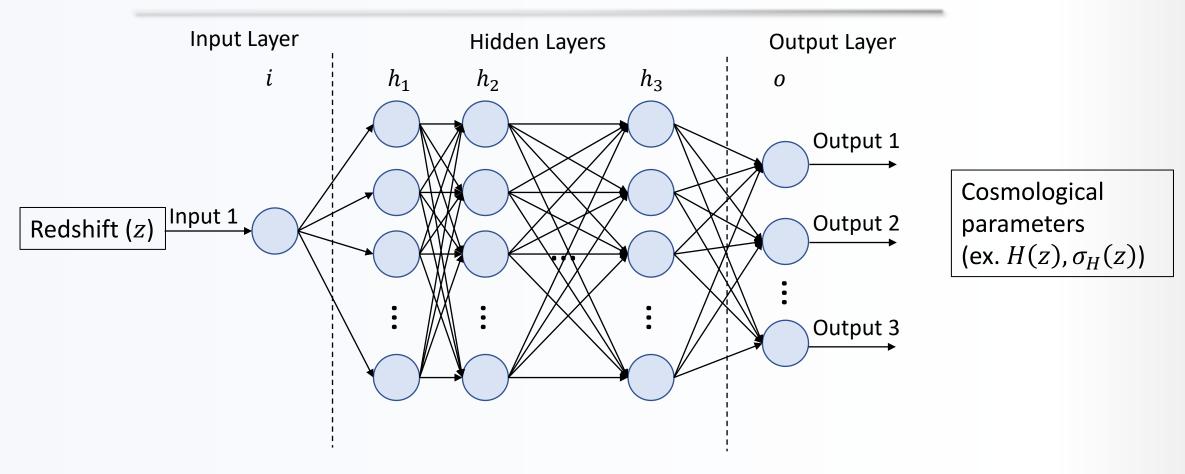
• Therefore, we can remove the  $f_T(T) = f'(z)/T'(z)$ 

$$H^2 = \frac{8\pi G}{3} \rho_m - \frac{f(T)}{6} + \frac{T}{3} f_T$$

This then gives a propagation equation

$$f(z_{i+1}) = f(z_{i-1}) + 2(z_{i+1} - z_{i-1}) \frac{H'(z_i)}{H(z_i)} \left( 3H(z_i)^2 + \frac{f(z_i)}{2} - 3H_0^2 \Omega_{m_0} (1 + z_i)^3 \right)$$

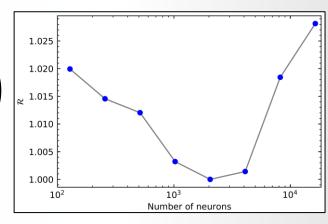
## Artificial Neural Networks (ANNs)



# Designing the ANN

• Risk – Optimizes the number of hidden layers and neurons in an ANN

$$risk = \sum_{i=1}^{N} (Bias_i^2 + Variance_i) = \sum_{i=1}^{N} \left( \left[ H_{Obs}(z_i) - H_{pred}(z_i) \right]^2 + \sigma_H^2(z_i) \right)$$

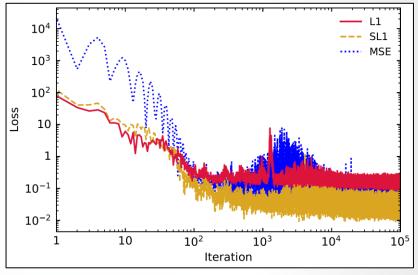


- Loss Balances the number of iterations a system needs to predict the observational data
  - 1. L1 (Least absolute deviation)

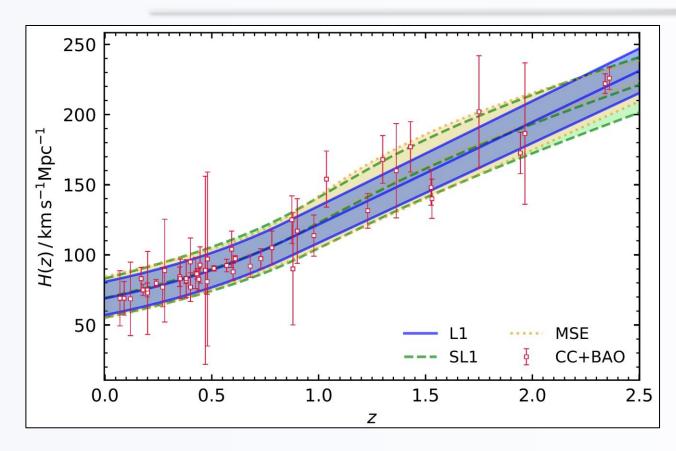
$$L1 = \sum_{i=1}^{N} \left| H_{Obs}(z_i) - H_{pred}(z_i) \right|$$

- 2. Smoothed L1 (SL1)
- 3. Mean Square Error (MSE)

$$MSE = \frac{1}{N} \sum_{i=1}^{N} \left( H_{Obs}(z_i) - H_{pred}(z_i) \right)^2$$



## Using the ANN



250 200 150 100 50 — 1 layer 3 layers — 2 layers I CC+BAO 0.0 0.5 1.0 1.5 2.0 2.5

One layer is preferred

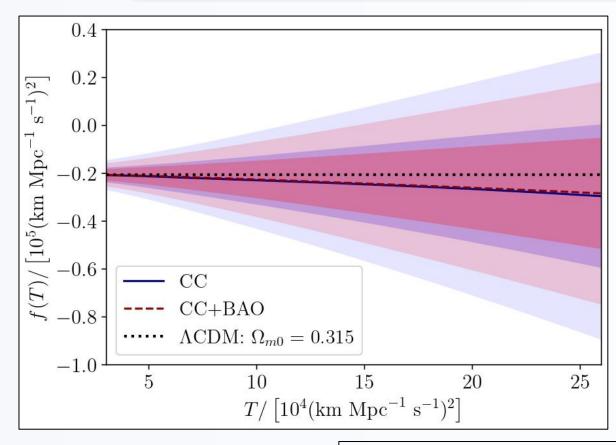
**MSE:**  $H_0 = 69.76 \pm 14.82 \text{ km s}^{-1} \text{Mpc}^{-1}$ 

**L1:**  $H_0 = 68.93 \pm 11.90 \,\mathrm{km \, s^{-1} Mpc^{-1}}$ 

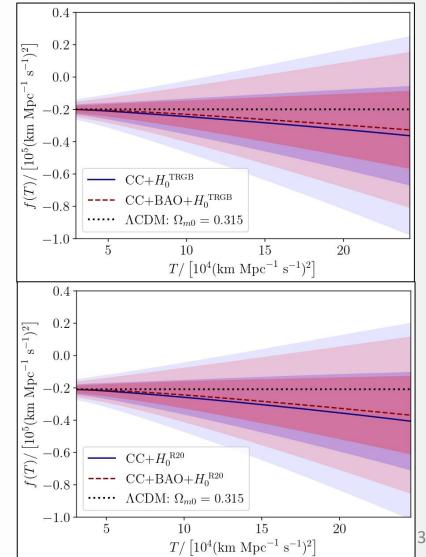
**SL1:**  $H_0 = 69.18 \pm 13.92 \text{ km s}^{-1} \text{Mpc}^{-1}$ 

Dialektopoulos, K. et al. JCAP 02 (2022) 023

## Propagating f(T)CDM



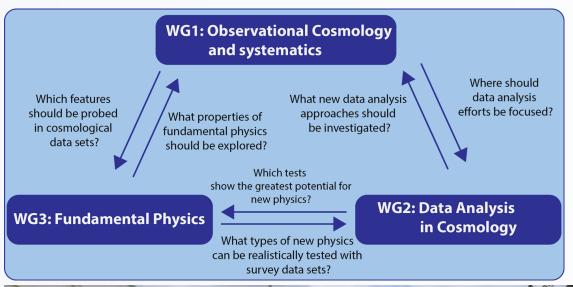
$$H^2 = \frac{8\pi G}{3} \rho_m - \frac{f(T)}{6} + \frac{T}{3} f_T$$



33 of 36

# What are we doing in CosmoVerse?

## CA21136 CosmoVerse



Main Challenge: Understand the nature of cosmic tensions and probe possible solutions using novel statistical approaches and fundamental physics



CosmoVerse@Lisbon 2023



## Thank You







