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Abstract

We study inflation in a model with constant second slow-roll parameter η. In this case, the Hubble
expansion rate equation has analytical solutions describing four possible, nontrivial inflation scenarios.
The evolution of the inflaton governed by a tachyon field is studied in the framework of the standard
and Randall-Sundrum II cosmology. The attractor behavior of the solution is briefly demonstrated.
Finally, the calculated values of the parameters ns and r are compared with observational data.

1 Introduction

The theory of cosmological inflation is the leading theory in describing the early universe. Inflation solves
the flatness, horizon, and other problems in standard cosmology.1 Besides, the quantum fluctuations of
the field which govern inflation seed the large-scale structure of the universe.

The physical mechanism that drives inflation is not entirely known and subject to speculation. How-
ever, it is widely accepted that at least one scalar field (inflaton) can describe the inflation mechanism.
One of the candidates for inflaton is a tachyon field, whose origin is related to the instability of the
perturbative vacuum of string theory.2

This paper aims to analyze the constant-roll inflation with the slow-roll parameter η being constant.
The tachyon field describes the dynamics of inflation in the framework of the braneworld cosmology,
based on the second Randall-Sundrum model (RSII).3 This work is motivated by the model introduced
in Ref. 4, where the idea of the constant-roll was introduced for the canonical scalar field in the framework
of RSII cosmology. As a novelty, we apply this approach to the RSII cosmology with a tachyon field.
It is known that a tachyon field and the corresponding inflatory expansion can be studied within RSII
cosmology.5,6 Therefore, as a logical step, we extend the study to include constant-roll inflation. In this
setup, the second slow-roll parameter η is chosen to be constant as it is usually done in the literature.7–9

However, this choice is applicable only to a canonical scalar field.
In contrast, if applied to the tachyon field inflation, the same choice does not lead to a correct analytical

solution because the inflation stage never ends. Instead, we propose a model-independent definition of
η in terms of the Hubble expansion rate and its derivatives. With this choice, the Hubble expansion
rate can be found analytically. In the following, we calculate the inflation parameters and compare the
predictions of the model with Planck results.10

This paper is organized as follows. In Section 2, we introduce the slow-roll parameters. In Section 3,
we calculate the parameters ns and r for different solutions of the equation for the Hubble rate. Section
4 is devoted to the constant-roll tachyon inflation in standard and RSII cosmology. Finally, the paper is
concluded in Section 5.
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2 Slow-roll parameters

The slow-roll approximation is a common way to analyze the inflation models. In order to carry out this
procedure, the slow-roll parameters have been introduced.11 The Hubble slow-roll parameters are defined
as

ϵ = − Ḣ

H2
, (1)

η = − Ḧ

2HḢ
. (2)

In the slow-roll regime, the inflaton field is changing according to the slow-roll assumption

ϵ ≪ 1 and η ≪ 1. (3)

The parameter η in the model with canonical scalar field ϕ takes the form7

η = − ϕ̈

Hϕ̇
. (4)

It is helpful to define the slow-roll parameter hierarchically12

ε0 ≡ H∗/H, (5)

εi+1 ≡ d ln |εi|
dN

, i ≥ 0. (6)

These parameters satisfy the recurrence relation

ε̇i = Hεiεi+1. (7)

Here H∗ is the Hubble parameter in some chosen time, and N is the number of e-folds in the exponential
expansion of the universe, defined as

N =

∫ tf

ti

Hdt. (8)

Here ti and tf denote the times of the beginning and the end of inflation, respectively. The slow-roll
parameters defined by (5) and (6) are independent of the field driving inflation. Hence, we will express
the parameter η through εi. Combining the definitions of the first two slow-roll parameters

ε1 = − Ḣ

H2
, (9)

ε2 =
ε̇1
ε1H

, (10)

with (1) and (2), one finds13

ϵ ≡ ε1, (11)

η = ε1 −
1

2
ε2. (12)

The expression (12) is model-independent and allows us to analyze and compare various inflation models.

3 Constant-roll inflation

Equations for inflationary dynamics are simplified in the slow-roll approximation, and in some cases can
be solved analytically. However, there are cases when this approach cannot be applied. When a potential
posses an extremely flat region, or an inflection point, the conditions for slow-roll have been violated,
and inflation passes through the ultra-slow-roll regime.14 In this case, the second slow-roll parameter
η = −ϕ̈/(Hϕ̇) = 3 becomes constant. The assumption that the parameter η can have arbitrary constant
value corresponds to constant-roll inflation.15,16 The idea of constant parameter η during inflation has
been generalized to other slow-roll parameters being constant.17

This paper aims to study inflation with the constant parameter η. Using expression (7) one finds

ε2i = 2ε1 − 2η, ε2i+1 = 2ε1, i ≥ 1, (13)
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which can be proved by induction. From expression (2) one finds a differential equation

Ḧ + 2ηHḢ = 0. (14)

It is interesting to note that (14) is invariant under scaling

H → ℓH, t → t/ℓ, (15)

where ℓ has the dimension of length. From now on it is understood that the dimensionful quantities are
measured in units of ℓ to some power. For example, H is measured in units of ℓ−1 and t in units of ℓ.

A straightforward solution to (14) is provided by

Ḣ = −ηH2, (16)

yielding

H =
1

ηt+ c
. (17)

Here c is an integration constant. It follows from (16) that ϵ1 = η = const and ε2 = 0, so this solution is
trivial.

In addition, one finds four nontrivial solutions to (14)18

H1(t) = −β

η
tan(βt+ γ), (18)

H2(t) =
β

η
cot(βt+ γ), (19)

H3(t) =
β

η
tanh(βt+ γ), (20)

H4(t) =
β

η
coth(βt+ γ), (21)

where β and γ are integration constants.
Using H1 solution, a straightforward integration of (8) gives

N(t) =
1

η
log cos(βt+ γ) + C, (22)

where C is another integration constant. Using (9) and (10), from (18) we find

ε1(t) =
η

sin2(βt+ γ)
, (23)

ε2(t) = 2η cot2(βt+ γ). (24)

Then, combining (22) with (23) and (24) we obtain

ε1(N) =
η

1− e2η(N−C)
, (25)

ε2(N) =
2ηe2η(N−C)

1− e2η(N−C)
. (26)

From expressions (25) and (26), it is clear that the parameter η must be positive. Inflation ends approx-
imately at the end of the slow-role regime, i.e., when the first few horizon-flow parameters εi are close to
1. It is natural to assume that inflation ends at the point tf where ε1(tf) = 1 and N = Nf . To fix the
initial values ε1i and ε2i, we assume N = 0 at the begining of inflation (ti = 0). From this condition, the
constant C can be calculated using (25)

C = Nf −
1

2η
(1− η), (27)

and expressions for ε1(N) and ε2(N) become

ε1(N) =
η

1− (1− η)e2η(N−Nf )
, (28)
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Figure 1: The slow-roll parameters ε1 (solid blue line) and ε2 (dashed red line) as a function of the e-fold
number N , for η = −0.013 and Nf = 70.

ε2(N) =
2η(1− η)e2η(N−Nf )

1− (1− η)e2η(N−Nf )
. (29)

In Fig. 1, we plot1 the evolution of the slow-roll parameters.
Note that H2 solution is obtained from H1 by replacing γ → γ + π. Then, we find

ε1(t) =
η

cos2(βt+ γ)
, (30)

ε2(t) = 2η tan2(βt+ γ), (31)

N(t) =
1

η
log sin(βt+ γ) + C, (32)

which leads to the same expressions for parameters ε1(N) and ε2(N) as in the previous case, for H1.
Applying the same procedure for H3 we obtain

ε1(t) = − η

sinh2(βt+ γ)
, (33)

ε2(t) = −2η coth2(βt+ γ), (34)

N(t) =
1

η
log cosh(βt+ γ) + C. (35)

In this case, we find the same expressions for ε1(N) and ε2(N) as in equations (28) and (29).
The solution H4 can not provide a valid model for inflation because the parameters

ε1(t) =
η

cosh2(βt+ γ)
, (36)

ε2(t) = −2η tanh2(βt+ γ), (37)

cannot be simultaneously positive.
In order to compare the prediction of our inflationary model with observational data, we need to

calculate the observational parameters, such as the scalar spectral index ns and the tensor-to-scalar ratio
r. At the lowest order in the slow-roll parameters, these parameters are given by12

ns ≃ 1− 2ε1i − ε2i, (38)

r ≃ 16ε1i, (39)
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Figure 2: r versus ns diagram with observational constraints from Planck mission.10 Dashed line -
prediction for models with η > 0 (the solutions H1 and H2), 0 < η < 0.01, solid line - prediction for
model with η < 0 (the solution H3), −0.03 < η < 0, for Nf = 60 (blue line) and Nf = 70 (red line).

where ε1i = ε1(ti) and ε2i = ε2(ti). In Fig. 2, we depict the results in ns-r plane. Clearly, a better
agreement with observations is obtained with the solutions in which the values of η are negative. The
dependence of the parameters ns and r on η is shown in Fig. 3, from which one can conclude that the
agreement with observations is better for negative and small η.
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Figure 3: ns (left panel) and r (right panel) versus η.

As the solutions in this section are model-independent, they could provide a feasible inflationary
scenario in any model that satisfies the condition (12) with constant η. We demonstrate this in the
following section.

4 Constant-roll inflation with tachyon matter

Here we analyze the constant-roll inflation with constant η, with dynamics described by the tachyon field,
in the framework of the RSII cosmology and standard cosmology. Our model is based on a braneworld

1In order to display the results graphically, it is necessary to fix the value of the parameter η, which should be small
(and negative, see Section 4), e.g., η = −0.013.
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scenario in which our universe can be considered as a brane, i.e., a four-dimensional hypersurface embed-
ded in a higher-dimensional spacetime. The RSII model3,19 describes a universe containing two branes
with opposite tensions, separated in the fifth dimension, where only gravity can propagate. Observers
reside on the positive tension brane, and the negative tension brane is pushed off to infinity.

4.1 The standard and the RSII cosmology with tachyon matter

In a flat FLRW universe in standard cosmology, the Friedmann equations are of the form12

H2 =
8π

3M2
4

ρ, (40)

Ḣ = − 4π

M2
4

(ρ+ p). (41)

On the other hand, the Universe expansion in RSII cosmology3 is described by modified Friedmann
equations4,20

H2 =
8π

3M2
4

ρ(1 +
ρ

2λ
), (42)

Ḣ = − 4π

M2
4

(1 +
ρ

λ
)(ρ+ p), (43)

which apparently differ from the standard Friedmann equations. The parameter λ denotes the brane
tension, which is related to the five-dimensional and four-dimensional Planck masses, M5 and M4, re-
spectively:

λ =
3

4π

(
M3

5

M4

)2

. (44)

Following Ref. 4, we consider the case when the energy density is much larger than the tension of the
brane, i.e., ρ ≫ λ. As a consequence, equations (42) i (43) are simplified:

H2 ≃ 4π

3M2
4

ρ2

λ
, (45)

Ḣ ≃ − 4π

M2
4

ρ

λ
(ρ+ p). (46)

The dynamics of a tachyon field θ is described by a Lagrangian of the Dirac-Born-Infeld (DBI) form.21

In a homogeneous and isotropic background, the Lagrangian can be put in the form

L = −V (θ)

√
1− θ̇2. (47)

The energy density and pressure of the tachyon field are given by12

ρ =
V√
1− θ̇2

, (48)

p = −V

√
1− θ̇2. (49)

Using the Hamilton-Jacobi formalism, we express the Hubble expansion rate as a function of the tachyon
field H = H(θ), and the time derivative of H via Ḣ = H,θ θ̇, where H,θ denotes a derivative of H respect
to θ. Then, combining Friedmann’s equations, (40) and (41), or (45) and (46), with (48) and (49) one
obtains

θ̇ = −n

3

H,θ

H2
. (50)

Here, the integer n can take two values: n = 1 for RSII cosmology and n = 2 for standard cosmology. As
expected, the expression for θ̇ differs from the expression in a model with a canonical scalar field4 ϕ

ϕ̇ = −M3
5

4π

H,ϕ

H
, (51)

suggesting that the model with a tachyon field may give a different prediction for the observational
parameters.
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4.2 The constant-roll inflation with a tachyon field

Next, we calculate the observational parameters ns and r. Equation (14), using (50), can be transformed
to a differential equation with respect to the tachyon field θ

H,θθH −H2
,θ − 3

η

n
H4 = 0, (52)

with the solution of the form

H(θ) =
2nC1e

√
C1(θ+C2)

e2
√
C1(θ+C2) − 3η̄C1

, (53)

where η̄ = nη. The integration constants C1 i C2, in the expression (53), can be absorbed by rescaling
H, θ and η̄. It is easy to check that, without loss of generality, we can set C1 = 1 and C2 = 0, yielding

H =
2neθ

e2θ − 3η̄
. (54)

One can combine (50) and (54) to find the time dependence of θ and H. First, one finds a simple
expression

θ̇ =
1

6
(eθ + 3η̄e−θ). (55)

This may easily be integrated, yielding

eθ =
√
3η̄ tan

(√
η̄/12 t+ C3

)
, η̄ > 0, (56)

eθ = −
√
3|η̄| tanh

(√
|η̄|/12 t+ C3

)
, η̄ < 0. (57)

Plugging (56) and (57) in (54) one finds

H(t) = − n√
3η̄

tan(
√

η̄/3 t+ 2C3), η̄ > 0, (58)

H(t) = − n√
3|η̄|

tanh(
√
|η̄|/3 t+ 2C3), η̄ < 0. (59)

Using these expressions for H, the slow-roll parameters become

ε1(t) =
η̄

n sin2
(√

η̄/3 t+ 2C3

) , η̄ > 0, (60)

ε1(t) =
|η̄|

n sinh2
(√

|η̄|/3 t+ 2C3

) , η̄ < 0. (61)

Integration constant C3 is fixed by the initial value of ε1i. According to (28) ε1i depends on values of η̄ and
Nf . Obviously, equations (58) and (59) agree with the more general solutions, (18) and (20) respectively,
with β =

√
|η̄|/3 (and γ = 2C3). This confirms that the results (58) and (61) are independent of the

chosen values of constants C1 and C2.
Integrating H(t), we obtain the time evolution of the scale factor

a(t) ∝
[
cos

(√
η̄/3 t+ 2C3

)]n
η̄

, η > 0, (62)

a(t) ∝
[
cosh

(√
|η̄|/3 t+ 2C3

)]− n
|η̄|

, η < 0, (63)

which is consistent with the results of Ref. 18.
Plugging (54) in (9) and (10) and utilizing (50) we obtain the expressions for the slow-roll parameters

ε1(θ) = − Ḣ

H2
=

1

3

(
H,θ

H2

)2

=
1

12
e−2θ

(
e2θ + 3η̄

)2
, (64)

ε2(θ) =
1

6
e−2θ

(
e2θ − 3η̄

)2
. (65)

In Fig. 4 we plot ε1 and ε2 as functions of θ.
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Figure 4: The slow-roll parameters ε1 (solid blue line) and ε2 (dashed red line) versus θ during inflation
in RSII cosmology for η̄ = −0.013.

The parameter η̄ can be positive or negative. It is obvious from equation (54) that H > 0 when η̄ < 0.
To prove that H > 0 when η̄ > 0 too, note that ε1 > η̄. Solving (64) as a quadratic equation for eθ

we obtain two solutions, f1 and f2, as functions of η̄. The solution f1 (f1 > f2) satisfies the inequality
e2θ > 3η̄, so H > 0. The other solution (f2) leads to an unphysical Hubble expansion rate.

Let us consider our model in RSII cosmology for H > 0 for Nf = 70 and η̄ = −0.013. We prove
that H > 0 for any value of θ. From (28) we obtain ε1i = 0.0025. Then, solving (64) as a quadratic
equation for θ we find the initial value θi = −1.2. Using (54), we find the corresponding value of the
Hubble expansion rate Hi = 4.64. Apparently, the field is negative at the beginning of inflation while the
Hubble expansion rate is always greater than zero (see Fig. 5). The end-value of the field θf is obtained
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Figure 5: The Hubble parameter versus the tachyon field (left panel) and the behavior of the slow-roll
parameters ε1 (solid blue line) and ε2 (dashed red line) during the inflationary times versus tachyon field
(right panel), for η̄ = −0.013.

from the condition for the end of inflation ε1(tf) = 1. By making use of (64) we find

θf = ln

(√
3

√
2 + 2

√
1− η − η

)
. (66)

For the model with η̄ = −0.013, inflation ends at tf = 22.07 (see Fig. 5) with Hf = 0.57, when the field
reaches the value θf = 1.24.

The observational parameters for the inflation model, driven by the tachyon field, have already been
calculated in standard cosmology12 and RSII cosmology.22 The expressions for the scalar spectral index
and the tensor-to-scalar ratio, at second order in the slow-roll parameters, read

ns = 1− 2ε1i − ε2i −
(
2ε21i + (2C ′ + 3− 2α)ε1iε2i + C ′ε2iε3i

)
, (67)

r = 16ε1i (1 + C ′ε2i − 2αε1i) . (68)

The value of the parameter α differs in standard (α = 1/6) and RSII cosmology (α = 1/12), while
C ′ = −0.72. The distinction of the constant-roll inflation is also reflected in the value of the third slow-
roll parameter ε3. According to (13), ε3i = 2ε1i, that holds only for the constant-roll inflation, i.e., for
the model with η constant.
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As in the standard cosmology, the RSII inflationary model with a tachyon field is fully analytical. In
Fig. 6, we present the results for ns and r parameters, superimposed on the observational constraints.
A better agreement of analytical and observational results is evident for a bit higher values of N , e.g.,
Nf = 70. It may be noted that the influence of the second order in the slow-roll parameters is insignificant.
Finally, note that the difference between results in the standard tachyon inflationary model and the RSII
inflationary model in the constant-roll inflation approach is small.
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0.94 0.96 0.98 1.00
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Figure 6: r versus ns diagram with observational constraints from Planck mission.10 The analytical
results are depicted for fixed Nf = 60 (blue lines) and Nf = 70 (red lines). The solid and dashed lines are
obtained from the expressions for ns and r up to the first and the second order in the slow-role parameters
in RSII cosmology, respectively. The parameter η varies along the lines in the interval −0.03 < η < 0.03.

The attractor behavior of the solution is a necessary condition for a successful inflation model. Our
model possesses a good attractor behavior, as presented in Fig. 7. Details will be presented elsewhere.
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Figure 7: The phase space trajectories (right panel) obtained for some initial values in range 0.2 ≤ θi ≤ 0.5
and 0.2 ≤ θ̇i ≤ 0.5, for the model with η̄ = −0.013 in units where 3M3

5 /(4π) = 1.
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5 Summary and conclusions

We have studied the constant-roll inflation in the framework of the RSII cosmology with a tachyon field.
The slow-roll parameter η with a fixed constant value leads to a differential equation for the Hubble
expansion rate. This equation has exact analytical solutions. We have calculated the Hubble slow-roll
parameters εi as a function of η for all four nontrivial solutions H(θ). It has been shown that three of
four solutions for H(θ) provide a consistent inflationary model. Futhermore, all solutions lead to the
same functions ε1(N) and ε2(N).

We have calculated the values of the scalar spectral index ns and the tensor-to-scalar ratio r. Besides,
we have compared these values with the observation data. Using this comparison, we have estimated the
values of parameter η. A better agreement is achieved for negative and small values of the η. In addition,
we have calculated the observational parameters for standard and RSII cosmology at second order in
the slow-roll parameters. No significant difference is obtained in these two cases. As a straightforward
extension of this work, it would be of interest to apply the formalism of the constant-roll inflation to the
holographic RSII model with a tachyon field.23

Acknowledgments

This work has been supported by the ICTP-SEENET-MTP project NT-03 Cosmology-Classical and
Quantum Challenges and the COST Action CA18108 ”Quantum gravity phenomenology in the multi-
messenger approach”. M. Stojanovic acknowledges the support provided by the Serbian Ministry for
Education, Science, and Technological Development under contract 451-03-47/2023-01/2000113. D. D.
Dimitrijevic, G. S. Djordjevic, and M. Milosevic acknowledge the support provided by the Serbian Min-
istry for Education, Science, and Technological Development under contract 451-03-47/2023-01/2000124.
In addition, G. S. Djordjevic acknowledges the support of the CEEPUS Program RS-1514-03-2223 ”Grav-
itation and Cosmology” and the hospitality of the colleagues at the University of Banja Luka.

References

[1] A. H. Guth, Phys. Rev. D 23 (1981), 347-356 doi:10.1103/PhysRevD.23.347

[2] A. Feinstein, Phys. Rev. D 66 (2002), 063511 doi:10.1103/PhysRevD.66.063511 [arXiv:hep-
th/0204140 [hep-th]].

[3] L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 4690-4693 (1999) doi:10.1103/PhysRevLett.83.4690
[arXiv:hep-th/9906064 [hep-th]].

[4] A. Mohammadi, T. Golanbari, S. Nasri and K. Saaidi, Phys. Rev. D 101, no.12, 123537 (2020)
doi:10.1103/PhysRevD.101.123537 [arXiv:2004.12137 [gr-qc]].
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