Constant-roll inflation in Randall-Sundrum II cosmology

Goran S. Djordjević

epartment of Physics, University of Niš and SEENET-MTP Centre, Niš, Serbia IV Annual COST QG18108 Conference, Rijeka, July 11-14, 2023

In collaboration with: N. Bilić (pl.). Dr. D. Dimitrijević, M. Milošević and M. Stojanović

Instead of an Introduction

- A model of *constant-roll inflation* (CRI), where the second slow-roll parameter η remains constant, has been investigated.
- In this case the equation for the Hubble rate has an analytical solution, which describes four possible scenarios of inflation.
- The corresponding observational parameters n_s and r are determined, and their values are compared with observational data.
- The scenario when inflation is driven by a tachyon field in the framework of Randall-Sundrum II cosmology is considered and compared with the ``standard`` one.
- We reconstruct the potential which correspond to the model with constant η, and discuss an attractor behaviour in the model.
- A short, initial, excursion to the holographic RSII constant-roll inflation model was made and presented.

The brane world (and RSII) in cosmological inflation and relation to quantum gravity

• From the swampland conjectures which can be used as criteria to distinguish effective field theories (EFT) that can be UV-completed to a QG theory.

Inflation

• The *inflation theory* proposes a period of extremely rapid (exponential) expansion of the universe during the an early stage of evolution of the universe.

- The inflation theory predicts that during inflation (it takes about 10^{-34} s) radius of the universe increased, at least $e^{60} \approx 10^{26}$ times.
- Although inflationary cosmology has successfully complemented the Standard Model, the process of inflation, in particular its origin, is still largely unknown.
- Recent years brought us a *lot of evidence* from WMAP and Planck observations of the CMB
- The most important way to test inflationary cosmological models is to compare the computed and measured values of the observational parameters.

Braneworld cosmology

- Braneworld universe is based on the scenario
 in which matter is confined on a brane moving in the higher dimensional
 bulk with only gravity allowed to propagate in the bulk.
- One of the simplest models Randall-Sundrum (RS)
- RS model was originally proposed to solve the hierarchy problem (1999)
- Later it was realized that this model, as well as any similar braneworld model, may have interesting cosmological implications
- Two branes with opposite tensions are placed at some distance in 5 dimensional space
 - **RS model** observer reside on the brane with negative tension, distance to the 2nd brane corresponds to the Netwonian gravitational constant
 - RSII model observer is placed on the positive tension brane, the 2nd brane is pushed to infinity

N. Bilic, D.D. Dimitrijevic, G.S. Djordjevic, M. Milosevic, Tachyon inflation in an AdS braneworld with back-reaction, International Journal of Modern Physics A. 32 (2017) 1750039.

RSI Model

- Observers reside on the negative tension brane at y = l.
- The coordinate position y = l of the negative tension brane
- serves as a compactification radius so that the effective
- compactification scale is $\mu_c = 1/l$.

 $y \rightarrow \infty$

RSII Model

- Observers reside on the positive tension brane at
- y = 0 and the negative tension brane is pushed off to infinity in the fifth dimension.

Lagrangian of a scalar field - $\mathcal{L}(X, \phi)$

- In general case any function of a scalar field ϕ and kinetic energy $X \equiv \frac{1}{2} \partial_{\mu} \phi \partial_{\nu} \phi$.
 - Canonical field, potential $V(\phi)$

$$\mathcal{L}(X,\phi) = BX - V(\phi),$$

Non-canonical models

$$\mathcal{L}(X,\phi) = BX^n - V(\phi),$$

• Dirac-Born-Infeld (DBI) Lagrangian

$$\mathcal{L}(X,\phi) = -\frac{1}{f(\phi)}\sqrt{1-2f(\phi)X} - V(\phi),$$

• Special case – tachyonic $\mathcal{L}(X, \phi) = -V(\phi)\sqrt{1 - 2\lambda X}$

Tachyons

- Traditionally, the word tachyon was used to describe a hypothetical particle which propagates faster than light (Sommerfeld 1904 ?).
- In modern physics this meaning has been changed
 - The effective tachyonic field theory was **proposed** by A. Sen
 - String theory: states of quantum fields with imaginary mass (i.e. negative mass squared)
 - It was believed: such fields permitted propagation faster than light
 - However it was realized that the imaginary mass creates an instability and tachyons spontaneously decay through the process known as tachyon condensation

Tachyion Fields

- No classical interpretation of the "imaginary mass"
 - The instability: The potential of the tachyonic field is initially at a local maximum rather than a local minimum (like a ball at the top of a hill)
 - A small perturbation forces the field to roll down towards the local minimum.

• Quanta are not tachyon any more, but rather an "ordinary" particle with a positive mass.

Slow-roll parameters

• Friedmann equations in standard cosmology

$$H^{2} = \frac{8\pi}{3M_{4}^{2}}\rho \qquad \qquad \dot{H} = -\frac{4\pi}{M_{4}^{2}}(\rho + p)$$

• The Hubble slow-roll parameters

$$\epsilon = -\frac{\dot{H}}{H^2}$$
 $\eta = -\frac{\ddot{H}}{2H\dot{H}}$ $\eta = -\frac{\ddot{\phi}}{H\dot{\phi}}$

• The horizon-flow parameters

$$\varepsilon_0 \equiv H_*/H \quad \varepsilon_{i+1} \equiv \frac{d \ln |\varepsilon_i|}{dN}, \quad i \ge 0 \qquad \dot{\varepsilon}_i = H \varepsilon_i \varepsilon_{i+1} \qquad \varepsilon_2$$

- The parameter η can be expressed trough ε_i $\eta = \varepsilon_1 - \frac{1}{2} \varepsilon_2$

$$(t) = \frac{\dot{a}(t)}{a(t)}$$
 The Hubble expansion rate

$$N = \int_{t_i}^{t_f} H \, dt \qquad \text{e-folds numbe}$$

$$\varepsilon_2 = \frac{\dot{\varepsilon}_1}{\varepsilon_1 H}$$
$$\varepsilon_1 = -\frac{\dot{H}}{H^2}$$

H

The constant-roll inflation

$$\eta = \varepsilon_1 - \frac{1}{2}\varepsilon_2 \implies \ddot{H} + 2\eta H\dot{H} = 0, \quad \eta = \text{const}$$

• Nontrivial solutions

$$\begin{aligned} H_1(t) &= -\frac{\beta}{\eta} \tan(\beta t + \gamma) & H_2(t) = \frac{\beta}{\eta} \cot(\beta t + \gamma) & H_3(t) = \frac{\beta}{\eta} \tanh(\beta t + \gamma) & H_4(t) = \frac{\beta}{\eta} \coth(\beta t + \gamma) \\ \varepsilon_1(t) &= \frac{\eta}{\sin^2(\beta t + \gamma)} & \varepsilon_1(t) = \frac{\eta}{\cos^2(\beta t + \gamma)} & \varepsilon_1(t) = -\frac{\eta}{\sinh^2(\beta t + \gamma)} & \varepsilon_1(t) = \frac{\eta}{\cosh^2(\beta t + \gamma)} \\ \varepsilon_2(t) &= 2\eta \cot^2(\beta t + \gamma) & \varepsilon_2(t) = 2\eta \tan^2(\beta t + \gamma) & \varepsilon_2(t) = -2\eta \coth^2(\beta t + \gamma) & \varepsilon_2(t) = -2\eta \tanh^2(\beta t + \gamma) \\ N(t) &= \frac{1}{\eta} \log \cos(\beta t + \gamma) + C & N(t) = \frac{1}{\eta} \log \sin(\beta t + \gamma) + C_4 & N(t) = \frac{1}{\eta} \log \cosh(\beta t + \gamma) + C_4 \\ \eta > 0 & \eta < 0 & \eta < 0 & t \end{aligned}$$
The parameters ε_i cannot be simultaneously positive, the inflation stage never ends!

The solutions which provide a consistent inflationary model.

The constant-roll inflation

• All solutions H(θ) lead to the same function $\varepsilon_1(N)$ and $\varepsilon_2(N)$.

$$\varepsilon_1(N) = \frac{\eta}{1 - (1 - \eta)e^{2\eta(N - N_f)}}$$

$$\varepsilon_2(N) = \frac{2\eta(1-\eta)e^{2\eta(N-N_{\rm f})}}{1-(1-\eta)e^{2\eta(N-N_{\rm f})}}$$

• The observational parameters

$$n_{\rm s}\simeq 1-2\varepsilon_{\rm 1i}-\varepsilon_{\rm 2i}$$

 $r \simeq 16 \varepsilon_{1i}$

• The observational constraints from Planck 2018

 $n_{\rm s} = 0.9649 \pm 0.0042$

r < 0.056

• A better agreement is achieved for negative and small values of the parameter η

-0.03

The standard and the RSII cosmology with tachyon matter

- Assuming the geometry of the universe to be described by a five-dimensional FLRW metric $ds_5^2 = -dt^2 + a(t)\delta_{ij}dx^i dx^j + dx_5^2$
- RSII cosmology

L =

$$H^{2} = \frac{8\pi}{3M_{4}^{2}}\rho(1+\frac{\rho}{2\lambda})$$
$$\dot{H} = -\frac{4\pi}{M_{4}^{2}}(1+\frac{\rho}{\lambda})(\rho+p)$$

 $\rho \gg \lambda$ The energy density is larger than the tension of the brane

$$H^{2} \simeq \frac{4\pi}{3M_{4}^{2}} \frac{\rho^{2}}{\lambda}$$
$$\dot{H} \simeq -\frac{4\pi}{M_{4}^{2}} \frac{\rho}{\lambda} (\rho + p)$$

• DBI Lagrangian (homogenius and isotropic case)

$$= -V(\theta)\sqrt{1-\dot{\theta}^2}$$

$$p = -V\sqrt{1-\dot{\theta}^2}$$

$$\rho = \frac{V}{\sqrt{1-\dot{\theta}^2}}$$

Hamilton-Jacobi formalism

$$\dot{H} = H_{,\theta}\dot{\theta}$$

 $\dot{\theta} = -\frac{n}{3}\frac{H_{,\theta}}{H^2}$ $n=1$ RSII cosmology
 $n=2$ Standard cosmology

The constant-roll inflation with a tachyon field

$$+ 2\eta H \dot{H} = 0 \implies H_{,\theta\theta} H - H_{,\theta}^2 - 3\frac{\eta}{n} H^4 = 0$$

$$H(\theta) = \frac{2nC_1 e^{\sqrt{C_1}(\theta + C_2)}}{e^{2\sqrt{C_1}(\theta + C_2)} - 3\bar{\eta}C_1} \qquad \eta = \bar{\eta} / n$$

$$C_1 = 1 \quad C_2 = 0$$

$$H = \frac{2ne^{\theta}}{e^{2\theta} - 3\bar{\eta}}$$

Ĥ

$$\begin{split} H(t) &= -\frac{1}{\sqrt{3\bar{\eta}}} \tan(\sqrt{\bar{\eta}/3}t + 2C_3), \quad \bar{\eta} > 0\\ H(t) &= -\frac{1}{\sqrt{3|\bar{\eta}|}} \tanh(\sqrt{|\bar{\eta}|/3}t + 2C_3), \quad \bar{\eta} < 0 \end{split}$$

$$a(t) \propto \left[\cos\left(\sqrt{\bar{\eta}/3}t + 2C_3\right) \right]^{\frac{1}{\bar{\eta}}}, \quad \bar{\eta} > 0$$
$$a(t) \propto \left[\cosh\left(\sqrt{|\bar{\eta}|/3}t + 2C_3\right) \right]^{-\frac{1}{\bar{\eta}}}, \quad \bar{\eta} < 0$$

The observational parameters

• The inflation parameters in the second order in the slow-roll parameters

$$n_{\rm s} = 1 - 2\varepsilon_{1\rm i} - \varepsilon_{2\rm i} - \left(2\varepsilon_{1\rm i}^2 + (2C' + 3 - 2\alpha)\varepsilon_{1\rm i}\varepsilon_{2\rm i} + C'\varepsilon_{2\rm i}\varepsilon_{3\rm i}\right)$$
$$r = 16\varepsilon_{1\rm i}(1 + C'\varepsilon_{2\rm i} - 2\alpha\varepsilon_{1\rm i})$$

$$\alpha = 1/6$$
 Standard cosmology

$$lpha=1/12$$
 RSII cosmology

$$C' = -0.72$$

$$\varepsilon_{3i} = 2\varepsilon_{1i}$$

- A better agreement of analytical and observational results is evident for higher values of *N*
- The influence of the second order in the slow-roll parameters is insignificant

The attractor behavior

• The reconstructed potentials

$$V = \frac{3M_5^3}{4\pi}H_{\sqrt{1 - \frac{1}{9}\frac{H_{,\theta}^2}{H^4}}} = \frac{3M_5^3}{4\pi}\sqrt{\frac{4e^{2\theta}}{(e^{2\theta} - 3\bar{\eta})^2} - \frac{1}{9}}$$

 The results displayed in phase space show that there is a curve which attract most trajectories obtained for several initial conditions

 $0.2 \le \theta_i \le 0.5$ $0.2 \le \dot{\theta}_i \le 0.5$

which provide that the inflationary trajectories are **attractors**.

Considering the brane world (and RSII) in cosmological inflation and relation to quantum gravity (Motivation)

• From the swampland conjectures which can be used as criteria to distinguish effective field theories (EFT) that can be UV-completed to a QG theory.

a) The first criterion requires the field range traversed by the fields to be bounded from above by a value of order one, whereas

b) the second criterion imposes a lower bound on the gradient of the potential.

The latter bound is in direct tension with inflation where the first slow-roll parameter

 $\epsilon_1 = M_p^2 |V'/V|^2$ must be smaller than one.

Thus, some inflationary models are not compatible with these criteria, and hence can not be embedded into a consistent theory of quantum gravity. However, inflationary models in the brane-world scenario have the potential to evade the swampland constraints.

• In the brane world scenario, the Friedmann equation will contain both quadratic and linear terms, which in the high energy regime (i.e. $\rho \gg \lambda$) the linear term can be ignored. In this case, unlike the standard four-dimensional cosmology, the Hubble parameter behaves as $H \propto \rho$ rather than $H \propto \rho^{1/2}$, a novel aspect of the CRI scenario in this context.

CRI in ``holography``

- The scenario in which the brane (with an effective tachyon field) is located at the boundary of the AdS₅ space is referred as the holographic braneworld.
- The effective four-dimensional Einstein equations on the holographic boundary of AdS5 yields a modified Friedmann equations

$$h^{2} - \frac{1}{4}h^{4} = \frac{\kappa^{2}}{3}\ell^{4}\rho \qquad \qquad \dot{h}\left(1 - \frac{1}{2}h^{2}\right) = -\frac{\kappa^{2}}{2}\ell^{3}(p + \rho)$$

where *h* is a dimensionless Hubble expansion rate and the fundamental coupling is related to the AdS₅ curvature radius

$$0 \le h^2 \le 2 \qquad \kappa^2 = \frac{8\pi G_{\rm N}}{\ell^2}$$

• From the general condition for constant-roll inflation $\ddot{\theta} = \eta \frac{h}{\ell} \dot{\theta}$ using the Hamilton-Jacobi formalism $\dot{h} = h_{,\theta} \dot{\theta}$

• The expressions obtained in the CRI in holography differ from those in CRI in the standard cosmology!

CRI in ``holography``

Conclusion

- We have studied the constant-roll inflation with tachyon field in RSII Cosmology, with constant slow-roll parameter η, and for fixed η.
- Its definition leads to differential equation for the Hubble expansion rate, which have the exact (4+1) solutions.
- We found Hubble slow-roll parameters (ε_1 , ε_2) as a function of parameter η for all (4 nontrivial) solutions H(θ).
- It was shown show that three of four solutions $H(\theta)$ provide a consistent inflationary model. Furthermore, and as very important, all solutions lead to the **same** function $\varepsilon_1(N)$ and $\varepsilon_2(N)$.
- We calculated the values of n_s and r and compared it with the latest Planck results.
- By comparing those values with constraints from observation data we estimate the parameter η. The better agreement is achieved for negative and small value of the parameter η.
- In addition, for standard and RSII cosmology we have calculated inflation parameters in the second order in the slow-roll parameters. No significant difference was obtained for the parameters in these two cases.
- A correct attractor behaviour was found.
- The model of CRI in holographic cosmology gives a lower value for number of e-fold and closer to typical value N=60 then the tachyon CRI in standard cosmology
- The recently proposed swampland criteria is a measure for separating the consistent EFT from the inconsistent EFT. As (it is believed) Inflation occurred at the energy scale below the Planck energy and hence could be described by a low-energy effective field theory of string(brane) theory.
- Therefore, it is a natural desire, and the next step, to construct an inflationary model based on a consistent EFT, and to apply the swampland conjectures.

Acknowledgement

This research has been, basically, supported by

- the COST Action CA18108 "Quantum gravity phenomenology in the multi-messenger approach``,
- the Serbian Ministry for Education, Science and Technological Development under the contract 451-03-47/2023-01/2000124 and ICTP-SEENET NT03 program.
- Kind hospitality and a partial support provided by CERN TH, where apart of this study was done, have been, also, kindly acknowledged.

(Some) References

- 1. M. Stojanovic, N. Bilic, D. D. Dimitrijevic, G. Djordjevic, M. Milosevic, Tachyon constant-roll inflation in Randall-Sundrum II cosmology, [arXiv:2306.02423v2 [gr-qc]] (accepted for publication in IJMPA).
- 2. D. A. Steer and F. Vernizzi, Phys. Rev. D 70, 043527 (2004) [arXiv:hep-th/0310139 [hep-th]].
- 3. H. Motohashi, A. A. Starobinsky and J. Yokoyama, JCAP 09, 018 (2015) [arXiv:1411.5021 [astro-ph.CO]].
- 4. L. Anguelova, P. Suranyi and L. C. R. Wijewardhana, JCAP 02, 004 (2018) [arXiv:1710.06989 [hep-th]].
- 5. Q. Gao, Y. Gong and Q. Fei, JCAP 05, 005 (2018) [arXiv:1801.09208 [gr-qc]].
- 6. N. Bilic, S. Domazet and G. Djordjevic, Class. Quant. Grav. 34 (2017) no.16, 165006 [arXiv:1704.01072 [gr-qc]].
- 7. A. Mohammadi, K. Saaidi and T. Golanbari, Phys. Rev. D 97 (2018) no.8, 083006 [arXiv:1801.03487 [hep-ph]].
- 8. L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 4690-4693 (1999) [arXiv:hepth/9906064 [hep-th]].
- 9. N. Bilic, D. Dimitrijevic, G. Djordjevic and M. Milosevic, Int. J. Mod. Phys. A 32, no.05, 1750039 (2017) [arXiv:1607.04524 [gr-qc]].
- 10. A. Mohammadi, T. Golanbari, S. Nasri and K. Saaidi, Phys. Rev. D 101, no.12, 123537(2020) [arXiv:2004.12137 [gr-qc]].
- 11. Y. Akrami et al. [Planck], Astron. Astrophys. 641, A10 (2020) [arXiv:1807.06211 [astro-ph.CO]].
- 12. M. Stojanovic, N. Bilic, D. D. Dimitrijevic, G. Djordjevic, M. Milosevic, Constant-roll inflation with tachyon field in the holographic cosmology (in progress)

Hvala na organizaciji i gostoprimstvu !!!

