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Bootstraping of Fierz-Pauli: Historical account

@ Problem: is GR the only consistent nonlinear extensions
of Fierz-Pauli?

@ Lots of works: Gupta (1954) and Feynman (1962);
Kraichnan (1955) and Huggins (1962); Deser (1970).

@ Renewed interest after Padmanabhan (2004) critic to old
works: Deser (2009), Butcher et al (2009).

@ Do higher derivative theories theories can also be
reconstructed from their linear versions? (Ortin 2017,
Deser 2017)



The objectives of our paper:

o Clarify the construction for Fierz-Pauli and the uniqueness
of the construction.

e Clarify the results for higher derivative theories of gravity.

@ Extend the analysis to metric affine theories of gravity
(try to constrain them by consistency arguments).



Linear gravity: Fierz-Pauli

@ Let us begin to analyze gravity as a field theory.

@ The starting point is to consider gravity as a massless
spin-2 theory:

1 1
L = _Eaahwaahw + 0 ,h" 0, h* — 0,0, h + Eauha“h.

Fierz-Pauli Proc.Roy.Soc.Lond.A 173 (1939) 211-232.

@ Gauge invariance under linearly realized diffeomorphisms:

huw — hy + 0,8, + 0,8,

@ Ensures that only the two degrees of freedom propagate.



Another theory describing linear gravity: WTDiff

@ There is another theory which describes the propagation
of massless spin-2 particles, the so called WTDiff theory:

1 1 3
E — _§ (aahlll/)z + a,uhuuaahay - Eaﬂhuyal’h + égﬂha#h

Alvarez et al Nucl.Phys.B 756 (2006) 148-170

@ Its gauge symmetries are Weyl and TDiff transformations:

1
m,»%;ww+@$+@g+§mm
o] =0.



Another theory describing linear gravity: WTDiff

@ Spoiler: The result of the self-coupling is Unimodular
Gravity.



Another theory describing linear gravity: WTDiff

@ Spoiler: The result of the self-coupling is Unimodular
Gravity.

e But that is a story for another day...

@ For a review and systematic comparison with GR, see:
Class.Quant.Grav. 39 (2022) 24, 243001



Consistent non-linear extensions?

@ Problem: including interactions into the picture without
spoiling the propagation of only 2 degrees of freedom.

@ The starting point are the Fierz-Pauli eoms:

af o __
D _h" = 0.

@ The equations are divergenceless (Bianchi identities,
gauge invariance):

0o (D*,h*7) = 0.



Consistent non-linear extensions?

@ Any non-linear term that we add to the Fierz-Pauli action

L = 0hdh + AhOhdh + O(X?),

@ Leads to equations of motion of the form

DW W7 = A+ O(N).
¥ ~ 0hdh + hd*h

@ Needs to be consistent with the symmetric and
divergenceless structure of the eoms:

0o (D* 7)) =0 — 0,t*7 = 0.

@ At least on-shell to leading order (D*? h* = 0)



Candidate for t#¥?

@ It has to be symmetric and divergenceless on-shell. A
natural candidate would be the energy-momentum tensor.

@ Problem: a Lorentz invariant, conserved and gauge
invariant energy-momentum tensor does not exist for the
gravitational field.

@ Solution: work with a gauge-dependent
energy-momentum tensor.

@ Another problem: it is ambiguous. We can always add
identically conserved terms to a conserved current.



Canonical energy-momentum tensor

@ The standard computation from Noether theorem gives

_oc
© 00,94

£

0,0% — Ly,

@ We can always add an identically conserved term of the
form:

AW — apx[pu]v’

@ To get another current that is identically conserved.



Example: Real scalar field

@ The standard computation from Noether theorem gives

1
o =~ D + I,

@ We can always add an identically conserved term of the
form:

At = o (990 — 1" 920),

@ Arising from a superpotential

Y = 2a8[p¢n“]”,



Hilbert's prescription

@ Take flat spacetime action and replace the flat metric
with an arbitrary curved metric and partial derivatives
with covariant derivatives:

Nuv — Buv» au — vu

e We get an action S(®; g,,,) and define the energy
momentum tensor as

. -25s
l“’_\/__g(sg;w

Buv="Nuv



Ambiguities in Hilbert's prescription

@ We can always add non-minimal couplings in the
generalization to a curved metric.

@ Their variation does not need to be zero after
particularizing for flat spacetime.

@ They correspond to identically conserved terms.

Somlg, 9] £

dSamlg, P]

ogrv 70

Buv="Nuv



Example: Free real scalar field

@ Take real free scalar field ¢

1
S= —E/d”X\/—nn’“’@#d)d,(D
/d”x\/—gg"”ﬁufbayd)

1

— S5 = 5

@ Compute the energy momentum tensor to find again

1
= "0 D + 9P,



Example:Free real scalar field

@ Consider adding a non-minimal coupling of the form:

Sunlg. 81 = ~5 [ d'xv/=goR(g),

@ It again leads to the identically conserved current:

At = a (94" ® — " Po)



|dea of the procedure

o 1. Take as starting point S (n, h).

@ 2. Compute t*” with all possible ambiguities by any
procedure.

s®  4+...=S
DY W+ ... =0



|dea of the procedure

o 1. Take as starting point S (n, h).

@ 2. Compute t*” with all possible ambiguities by any
procedure.

s@ +...=5
DY b+t =0



|dea of the procedure

o 1. Take as starting point S (n, h).

@ 2. Compute t*” with all possible ambiguities by any
procedure.

s@ 4+ () +...=5
D 7 + 120 =0



|dea of the procedure

@ 3. Demand that the tensor is derived from a term S®) in
the action (this fixes part of the ambiguities):

55B3)
o hw

— t(2)MV

s® +AS® 4 ... =5
af o 2)ap _
D ko + B =0

@ 4. This leads to a constraint between S and S®.



|dea of the procedure

e 5. Now S would give a contribution to the
energy-momentum tensor:

S+ As® +...=S
DO 7 + 200 B =0



|dea of the procedure

@ 6. We want to derive it from an action S®
5@ +ASG) 4 N2sW 4 =5
Daﬁ hPo t(2)(xﬂ + t(3)(,\c;"3 +...=0
po

@ 7. Doing this recursively, we generate constraints
between S(" and S("+1).



All orders analysis

@ In general, doing this procedure is impossible in practice.

@ Approach by Butcher et al (2009): do a reverse engineer
exercise.

@ Consider GR, expand on an arbitrary background to
obtain all orders g — gH* + h*":

Serlgl = S A7S™ [z, A
n=2

@ Notice that S(" contains terms that vanish when we
impose g =1 (e.g. R, h*h).



All order analysis

@ They showed that:

05 Dn, h}
dhrv
) §5S(n)

24 ~ 5é—uu

 (n)
i

Buv="Nuv

Butcher et al Phys.Rev.D 80 084014, (2009)



All order analysis

@ They showed that:

05 Dn, h}
dhrv
) §5S(n)
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 (n)
i

Buv="Nuv
Butcher et al Phys.Rev.D 80 084014, (2009)

@ This precisely shows that GR bootstraps since we have:

S@ 4 AS® s =5
DO 7+ t30F e =0



All order analysis

@ They showed that:

05 Dn, h}
dhrv
) §5S(n)

™ 5g—ull

 (n)
i

Buv="Nuv
Butcher et al Phys.Rev.D 80 084014, (2009)

@ This precisely shows that GR bootstraps since we have:

S@ 4 AS® s =5
Daﬁpahpa + t(3)aﬁ + t(4)a;3 +...=0



Repeating the analysis for arbitrary metric theories:

@ We were able to prove the same identities for an arbitrary
metric theory of gravity:

Slel = > A"S[g. f]

S D, h
Shrv
(n)
i 93
[2id 5gu1/

~ t(n
v

Buv="Nuv



This means that any metric theory bootstraps

@ This means that any metric theory bootstraps from its
linearization.

@ This also illustrates the non-uniqueness of the
construction from bottom up.

@ Fierz-Pauli is the linearizations of both: Lovelock and GR.

o Different choices of the energy-momentum tensor lead to
different theories at the end.

@ The ambiguities are present and they are crucial! This
was somehow overlooked in the literature.



The metric-affine framework

(M, 940) ~~ (M,g9u,T /W Metrlc Affine

framework
induces i \/ /

L
V v,,

independent
Curvature

prA = auFVpA - &/Fup/\ + Fw/\ vag - Fw)\ Fupa

Torsion

., p p
T, =T." -T',,

Nonmetricity

Quup = =Vyugup

Credit: Alejandro Jiménez-Cano



Summary of the other things we did

@ 1. Do the analysis in terms of the vielbein, instead of the
metric (required to include fermions in the picture).

@ 2. Do the analysis for an arbitrary metric-affine theory
including torsion and non-metricity (general connection).

@ 3. Include arbitrary matter content coupled to the metric
and the general connection.



Results for metric affine theories

@ Associated with Lorentz transformations we have the spin
density current.

@ We showed that any theory with a metric/vielbein couples
to the energy-momentum tensor and dynamical torsion
couples to the spin-density current order by order.

@ Nonmetricity is tricky because the dilation-shear tensor to
which it couples does not have a canonical counterpart.



Clarifying bootstrap of higher derivative theories

@ Deser worked in Palatini formalism (metric and
connection independent).

@ Higher derivative gravities cannot be bootstrapped unless
one imposes a constraint: connection = Levi-Civita.



Clarifying bootstrap of higher derivative theories

@ Deser worked in Palatini formalism (metric and
connection independent).

@ Higher derivative gravities cannot be bootstrapped unless
one imposes a constraint: connection = Levi-Civita.

@ In higher derivative gravities, the Palatini formulation is
not equivalent to metric formulation.

o Either one gives dynamics to the connection and
bootstraps it or one needs to impose the constraint to
propagate the same degrees of freedom.



Messages to take home

@ The bootstrapping procedure is not unique in general due
to the ambiguities. (Lovelock and GR)

@ The connection also needs to be bootstrapped if it is
dynamical.

@ Torsion couples to the spin density current and metric
perturbations to the energy-momentum tensor order by
order.



Thanks for the attention!



