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Corrections to the Bekenstein entropy

logarithmic corrections have been obtained in 
a number of different approaches to quantum gravity 

(string theory, AdS/CFT, loop quantum gravity, GUP, …)
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The case of loop quantum gravity

3

Is it true in general that a theory of QG will predict both 
log-corrections to the entropy and a cosmological bounce?

In LQG one finds a modified entropy with log corrections 
[Kaul Majumdar; Meissner; Engle, Noui, Perez, Pranzetti; …]

In the cosmological (symmetry reduced) sector, LQC predicts 
the resolution of the initial singularity with a bounce

At the bounce  and  locallyH = 0 ·H > 0
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Modified gravity from modified entropy
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For  one gets the trace-free Einstein equations (unimodular gravity)α → 0

As in unimodular gravity, energy-momentum conservation  
does not follow from the field equations. It is a separate assumption.

∇μTμν = 0

Also, as in unimodular gravity: the cosmological constant  is 
just an integration constant

Λ

Gravitational dynamics is reconstructed from local equilibrium conditions, 
generalising Jacobson’s approach on the thermodynamics of spacetime

The idea is to modify the thermodynamics of spacetime 
to include leading order QG effects, in order to derive an emergent gravitational dynamics that 

is able to capture general features of low-energy QG.

 in the entropy formulaα ∼ C

[Alonso-Serrano, Liška] 
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Cosmological background
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Assume a perfect fluid as matter
Tμν = (ρ + p)uμuν + p gμνds2 = − dt2 + a(t)2δijdxidxj

Spatially flat FLRW geometry

From the field equations we obtain just one independent equation

If we also assume energy-momentum conservation, then we have

·H(1 − α κ ·H) = −
κ
2

(ρ + p)

·ρ + 3H(ρ + p) = 0

equation of state: p = w ρ

Cosmological dynamics can be studied as a 2D dynamical system. 

Care is needed to distinguish between the two cases  and .α > 0 α < 0
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Dynamical system analysis: case α > 0
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The idea is to regard   as a constraint on . 

This way, we can better deal with multiple solution branches.

·H(1 − α κ ·H) = −
κ
2

(ρ + p) ·H, ρ

Dynamical system techniques represent a powerful tool in cosmology, 
with several applications to general relativity and modified gravity 

[Coley; Wainwright, Ellis; etc]

This motivates introducing a new variable  such thatφ

·H =
1

2ακ (1 ± cosh φ) , ρ =
1

2ακ2(1 + w)
(sinh φ)2

All we have to do now is study the dynamical system for  and H φ

·φ = −
3
2

(1 + w)H tanh φ
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Dynamical system analysis: case α > 0
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First consequences

·H =
1

2ακ (1 ± cosh φ)

There are two branches: 

• one with  at all times  not viable 

• one with  (as in standard cosmology), which we focus on.

·H > 0 ⟹
·H ≤ 0

·φ = −
3
2

(1 + w)H tanh φ

Note: in the latter branch there is no bounce, 
since this would require that  has a zero, around which H ·H > 0

Nonetheless, is it still possible to obtain viable cosmological solutions in this model?
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Phase portrait ( )α > 0
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Orbits fall in three classes: 
• ever-collapsing 
• re-collapsing 
• ever-expanding, with a late-time de Sitter era
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U = tanh φ ,

V = tanh( κH)

Compactify the “phase space”:

·H =
1

2ακ (1 ± cosh φ) , ·φ = −
3
2

(1 + w)H tanh φ

At early times, potentially viable orbits approach a 
past attractor corresponding to power-law inflation 

 , with  

However, the slow-roll condition  and  
can only be satisfied with fine-tuning: 

 and  

 (def. )

a(t) ∼ tq q = 4/(3(1 + w))

ϵ ≪ 1 Ne−folds ≈ 60

w + 1 ≪ 1 α /(1 + w) ≈ 3
32π

ϵ ≡ − ·H/H2 = 1/q
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Dynamical system analysis: case α < 0

In this case we use a different parametrisation
·H =

1
2 |α |κ (cos φ − 1) , ρ =

1
2 |α |κ2(1 + w)

(sin φ)2

·φ = −
3
2

(1 + w)H tan φ

The continuity equation then gives

In this case there is only one branch, where  identically·H ≤ 0

Again,  implies that there is no bounce.·H ≤ 0
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Phase portrait ( )α < 0
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Compactify the “phase space”: 
W = tanh ( κH)

·H =
1

2 |α |κ (cos φ − 1) ,

ρ =
1

2 |α |κ2(1 + w)
(sin φ)2
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Again, orbits fall in 
three classes: 

• ever-collapsing 
• re-collapsing 
• ever-expanding, with 

a late-time de Sitter 
era

Also in this case, potentially viable solutions approach an 
inflationary attractor in the past
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Past attractor ( )α < 0

11

In the far past, the Hubble rate has the asymptotics 
(the singularity is at )t = t0
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i

−
3
2

(1 + w) + 𝒪(t − t0)1/2 .

The slow-roll parameters read:

Therefore, the slow-roll conditions  cannot be satisfied simultaneously 

(unless we fine-tune , which however amounts to assuming inflation)

ϵ, |η | ≪ 1
w + 1 ≪ 1
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Theoretical constraints from the background dynamics
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So far, we have identified potentially viable background solutions that: 
• are dominated by a cosmological constant at late times 
• approach an inflationary attractor at early times. However, they cannot satisfy slow-roll 

conditions or predict the correct number of e-folds unless we fine-tune w ≈ − 1

✓
×

Therefore, the model is incomplete in the early universe.

In order to be cosmologically viable we require that departures from 
general relativity be strongly suppressed after reheating.

·H(1−α κ ·H) = −
κ
2

(ρ̄ + p̄)

|α κ ·H | ≪ 1 ⟹ |α | ≪
1

2κH2
reh

=
M2

Pl

2H2
reh
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Scalar perturbations
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ds2 = a(η)2( − (1 + 2ϕ(η, x))dη2 + (1 − 2ψ(η, x))δijdxidxj)

(1 +
ακ
a2

(1 + c2
s )(ℋ2 − ℋ′ ))ϕ′ ′ + (3(1 + c2

s )ℋ +
ακ
a2

(1 + c2
s )(ℋ3 + ℋℋ′ − ℋ′ ′ ))ϕ′ +

((1 + 3c2
s )ℋ2 + 2ℋ′ −

ακ
a2

(1 + c2
s )(ℋ4 − 5ℋ2ℋ′ + 2(ℋ′ )2 + ℋℋ′ ′ ))ϕ − c2

s Δϕ =
κ
2

a2(δp)nad .

We work in the longitudinal gauge

Assume matter with no anisotropic stress for simplicity. 
As in GR this implies ψ = ϕ

Perturbing the field equations, we obtain the dynamics of the gravitational potential:

Depending on the signs of the (time-dependent) coefficients, 
there may be instabilities 
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Scalar perturbations: early-time instabilities
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Let us focus on radiation domination (  )a ∼ η , ℋ = 1/η

(1 +
8ακ

3A2η4 ) ϕ′ ′ + ( 4
η

−
8ακ

3A2η5 ) ϕ′ + ( k2

3
−

40ακ
3A2η6 ) ϕ = 0 A ≡ a(ηi)/ηi

α < 0 α > 0

The coefficient of  becomes negative atϕ′ ′ 

η < η⋆ ≡ ( 8 |α |κ
3A2 )

1/4

This can be avoided if  ,  

which is ensured by  

η⋆ ≪ ηreh

|α | ≪
1

2κH2
reh

For , both the coefficients of  and  
may become negative

α > 0 ϕ ϕ′ 

Requiring that the  coefficient be positive 
gives once again

ϕ′ 

|α | ≪ 1/(2κH2
reh)

The most stringent constraint is obtained by 
requiring that the  coefficient be positive 

for all  modes
ϕ

k
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Scalar perturbations: early-time instabilities

15

(1 +
8ακ

3A2η4 ) ϕ′ ′ + ( 4
η

−
8ακ

3A2η5 ) ϕ′ +( k2

3
−

40ακ
3A2η6 )ϕ = 0

A ≡ a(ηi)/ηi> 0

}
α ≪

M2
Pl

40H2
reh

k̄2η2
reh =

M2
PlH2

o

40H4
reh

e2N

It is sufficient to impose this requirement on the largest observable modes, with k̄ ≃ aoHo

With  ,    ,    ,  N = log(ao/areh) Hreh ≃ (g1/2
s π/9.5)T2

reh /MPl gs ≃ 102 N ≃ 60

α ≪ 10−72 ( MPl

Treh )
8

⟹ if  we have  Treh = 𝒪(1015GeV) α ≪ 10−45

The constraint on  becomes much looser for  or lowerα Treh = 𝒪(109GeV)
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Tensor perturbations
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Effectively, this kind of modification to the propagation of tensor perturbations 
amounts to a modified coupling to anisotropic stress.

ds2 = a(η)2( − dη2 + (δij + hij(η, x))dxidxj)

(1 +
ακ
a2 (ℋ′ − ℋ2))(h′ ′ ij + 2ℋh′ ij − Δhij) = 2κa2πij

 transverse and traceless:  , hij hi
i = 0 ∂ihij = 0
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Summary
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Logarithmic corrections to the Bekenstein entropy are expected in several different 
approaches to quantum gravity. The proposal in [Alonso-Serrano, Liška] is to use this as a 
starting point to build a modified gravity theory that is able to capture this general feature.

The field equations represent a generalization of unimodular gravity.

Self-accelerating solutions: late de Sitter era and early-time inflationary attractor. 
However, standard requirements of the inflationary scenario (e-folds, slow-roll) are not satisfied. 

Constraints on  can be derived if we require that: (i) deviations from GR are small during 
radiation domination, (ii) scalar perturbations are well-behaved.

α

Conclusion: cosmologically viable solutions exist in the post-reheating stages. 
However, in its present form the model does not realise an alternative early universe scenario.

The early-time behaviour of solutions could be improved by including higher-order quantum 
gravity corrections. 
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Thanks for your attention!
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