Collaborations between collaborations in astroparticle physics

The example of the Pierre Auger Observatory and Telescope Array

Armando di Matteo

armando.dimatteo@to.infn.it

Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Torino, Turin, Italy

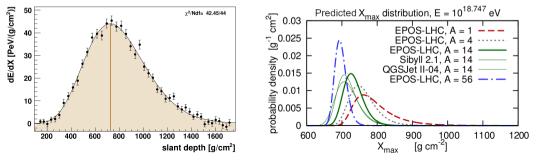
Fourth Annual Conference of COST Action CA18108 "Quantum gravity phenomenology in the multi-messenger approach" 11–14 July 2023, Rijeka, Croatia

Outline

Introduction

- Ultra-high-energy cosmic rays and extensive air showers
- The current generation of UHECR observatories: Auger and TA

2 The Auger–TA joint working groups


- Energy spectrum
- Mass composition
- Arrival directions

3 Future prospects

- Ultra-high-energy cosmic rays (UHECRs): atomic nuclei (mainly protons) from outer space with energies $E \ge 1$ EeV = 10^{18} eV ≈ 0.16 J
 - Observed since the 1960s, with *E* up to a few hundred EeV per nucleus
 - \sim 300 nuclei/(km² yr sr), steeply decreasing with energy
- Extensive air shower (EAS): a hadronic cascade initiated by a UHECR nucleus in the atmosphere, spread over an area $\gg 1 \text{ km}^2$
 - UV **fluorescence light** emitted by N₂ molecules excited by charged EAS particles: detected by fluorescence detector (FD) telescopes during clear moonless nights
 - EAS particles **reaching ground level** (electrons, photons, muons): detected by surface detector (SD) arrays (e.g. water Cherenkov, plastic scintillators)
- Modern UHECR observatories: combining both FD telescopes and SD arrays
- EAS events simultaneously detected by both (hybrid events): used for calibrating SD reconstructions (with much larger statistics) to FD ones (better systematics)

EAS reconstruction from FD measurements

- By dividing fluorescence light measurements by the fluorescence yield of air, we get the shower profile dE/dX (energy deposit per unit atmospheric depth).
- Calorimetric energy: $E_{cal} = \int \frac{dE}{dX} dX$, from which we can find the total energy *E* by adding an estimate of the invisible energy E_{inv} taken underground by v, μ
- Shower maximum depth: $X_{max} = \arg \max_X \frac{dE}{dX}$, whose distribution is sensitive to the UHECR mass composition (but also to properties of hadronic interactions)

Outline

Introduction

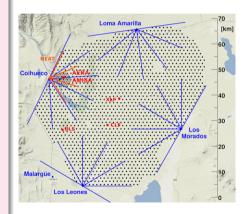
- Ultra-high-energy cosmic rays and extensive air showers
- The current generation of UHECR observatories: Auger and TA

2 The Auger–TA joint working groups

- Energy spectrum
- Mass composition
- Arrival directions

3 Future prospects

The Pierre Auger Observatory (Auger) (2004–)

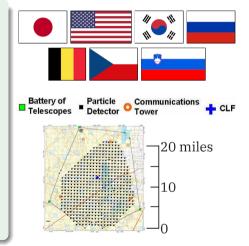


The largest CR detector array in the world

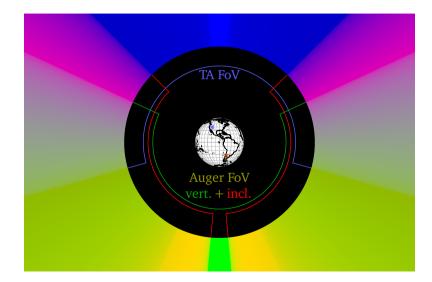
373 collaborators from 91 institutions in 18 countries

Location Mendoza Province, Argentina 35.2° S, 69.2° W, 1400 m a.s.l. ($\approx 880 \text{ g/cm}^2$) Main array for UHE operating since 01 Jan 2004: SD 1600 water Cherenkov detectors spread over a 3000 km^2 triangular grid (1.5 km spacing) FD 24 telescopes on 4 sites on edge of SD array Aperture $\theta_{\text{zenith}} < 80^{\circ}$ (declination $\delta < +44.8^{\circ}$) Systematic uncertainty on energy scale $\pm 14\%$ Low-energy extension (HEAT and AMIGA):

- 3 extra FD telescopes at higher elevation
- 73 extra SDs with 750 m and 433 m spacing


The Telescope Array (TA) (2008-)

Largest CR detector array in the Northern Hemisphere 140 collaborators, 32 institutions, 7 countries


Location Millard County, Utah, USA 39.3° N, 112.9°W, 1400 m a.s.l. (≈ 880 g/cm²) Main array for UHE operating since 11 May 2008: SD 507 plastic scintillator detectors spread over a 700 km^2 square grid (1.2 km spacing) FD 38 telescopes on 3 sites on edge of SD array Aperture $\theta_{\text{zenith}} < 55^{\circ}$ (declination $\delta > -15.7^{\circ}$) Systematic uncertainty on energy scale $\pm 21\%$ Low-energy extension (TALE):

- 10 extra FD telescopes at higher elevation
- 80 extra SDs with 400 m and 600 m spacing

Fields of view of Auger and TA

- Neither TA alone nor Auger alone covers the full sky.
- Together they do:
 TA full northern hemisphere plus part of southern one
 Auger vice versa
- Overlap in a band surrounding the celestial equator

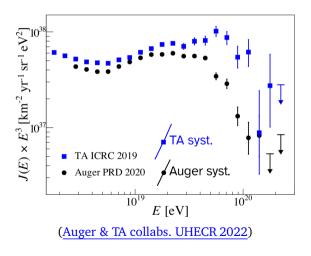
Auger-TA joint working groups (WGs)

- Several Auger–TA joint WGs have been established since the early 2010s to perform full-sky UHECR studies:
 - Energy spectrum Mass composition Arrival directions Auger@TA
- Data in the common band allow us to know whether any disagreements can be due to different fields of view or must be due to systematic errors.
- A few WGs also include other collaborations:
 - Hadronic interactions and shower physics (with EAS-MSU, IceCube, KASCADE-Grande, NEVOD-DECOR, SUGAR and Yakutsk)
 Neutrinos (with ANTARES and IceCube)
- The WGs usually present their results (list at <u>http://tiny.cc/Auger-TA</u>) at the International Symposium on Ultra-High-Energy Cosmic Rays (UHECR) and sometimes at the International Cosmic Ray Conference (ICRC).
- I am an Auger Collaboration member, a former TA Collaboration member, and a member of the joint WG on arrival directions (but not here on behalf of either).

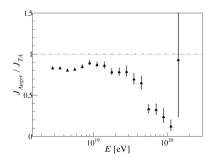
Outline

Introduction

- Ultra-high-energy cosmic rays and extensive air showers
- The current generation of UHECR observatories: Auger and TA

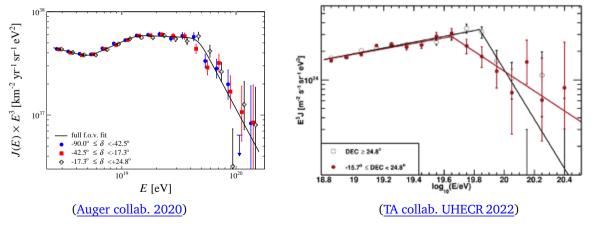

2 The Auger-TA joint working groups

- Energy spectrum
- Mass composition
- Arrival directions

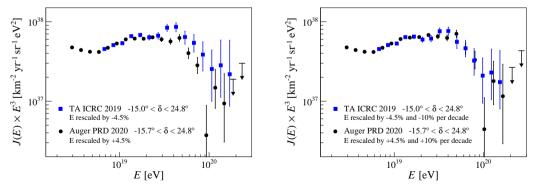

3 Future prospects

Full-sky energy spectrum

Auger: declinations $-90^{\circ} \le \delta < +24.8^{\circ}$; TA: declinations $-15.7^{\circ} < \delta \le +90^{\circ}$


- At low energies: Auger and TA data in agreement within systematics :
- At the highest energies: considerable discrepancy — Auger measurements lower than TA ones

Might part of this be astrophysical? (Yes.)


"southern" = $[-90^{\circ}, -15.7^{\circ}]$, "equatorial" = $(-15.7^{\circ}, +24.8^{\circ})$, "northern" = $[+24.8^{\circ}, +90^{\circ}]$

TA data: spectrum cutoff higher at "northern" than at "equatorial" declinations Auger data: spectrum at "southern" and "equatorial" declinations in good agreement

But what about the common declination band?

- Some of the difference even looking at declinations $-15.7^{\circ} < \delta < +24.8^{\circ}$ only (Auger & TA collabs. UHECR 2022), hence not all of it astrophysical
- Energies must be underestimated by Auger &/or overestimated by TA $(9\% + \frac{20\%}{dex})$
 - Note: spectrum approximately $\propto E^{-3}$, so overestimating event energies by *X*% results in an overestimate $\sim 2X$ % of the spectrum at a given energy

What might be causing this?

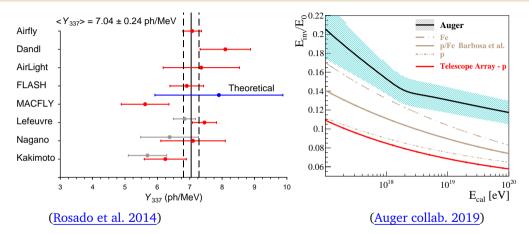
• 9% mismatch in energies at 10 EeV well within known systematics

TA	Auger			
11%	3.6%			
11%	3.4%-6.2%			
10%	9.9%			
9%	6.5%-5.6%			
5%	3%-1.5%			
	5%			
21%	14%			
	TA 11% 10% 9% 5%			

Systematic uncertainties in the energy scale

(Auger & TA collabs. UHECR 2022)

 Possible causes of the 20%/decade increase with energy under investigation (known systematics so far: ±3%/dex in Auger, ±9%/dex in TA)


The fluorescence yield

- Auger uses AIRFLY measurements (<u>AIRFLY collab. 2007</u>, <u>AIRFLY collab. 2013</u>) $\approx 7.1 \frac{\text{ph}}{\text{MeV}}$.
- TA uses the FLASH wavelength spectrum (Abbasi et al. 2008) normalized to the Kakimoto absolute yield (Kakimoto et al. 1996) $\approx 6.2 \frac{\text{ph}}{\text{MeV}}$.
- Using the TA model in Auger would increase Auger energies by 12%.
- Using the Auger model in TA would decrease TA energies by 14%
 (Auger & TA collabs. UHECR 2014).
 Which one is closer to the truth?
- A WG had been tasked to devise a common model, with a series of workshops from 2002 to 2011 (see <u>Keilhauer et al. UHECR 2012</u>, <u>Tsunesada et al. ICRC 2013</u>, and references therein), but it apparently has not been active for over a decade, and each collaboration has persisted in sticking to its own model.
- "The convergence toward the use of the same models in both experiments would have obvious benefits for both the Collaborations and the community." (Auger & TA collabs. UHECR 2022)

The invisible energy

- Auger estimates the invisible energy based on SD measurements of muons in EASs (Auger collab. 2019) ~ 0.13E.
 - Neutrinos and muons: both produced by the decay of charged pions hence **presumably proportional to each other**
- TA estimates the invisible energy based on QGSJET II-03 simulations of proton-initiated EASs (<u>TA collab. ICRC 2017</u>) ~ 0.07*E*.
 - Hadronic interaction models, including QGSJET II-03: now known to severely underestimate the muons in EASs (eight collabs. UHECR 2022 and references therein).
 - UHECRs: now known to include a sizeable fraction of nuclei heavier than protons, whose EASs contain more muons
- Using the TA invisible energy in Auger would decrease Auger energies by 6%.
- Using the Auger invisible energy in TA would increase TA energies by 7%.

Fluorescence yield and invisible energy

- Using both the same FY and the same E_{inv} would bring the Auger and TA spectra almost on top of each other (within a few per cent) up to several tens of EeV!
- This has been known since 2014 (<u>Auger & TA collabs. UHECR 2014</u>)!

Outline

Introduction

- Ultra-high-energy cosmic rays and extensive air showers
- The current generation of UHECR observatories: Auger and TA

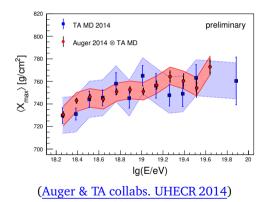
2 The Auger–TA joint working groups

- Energy spectrum
- Mass composition
- Arrival directions

3 Future prospects

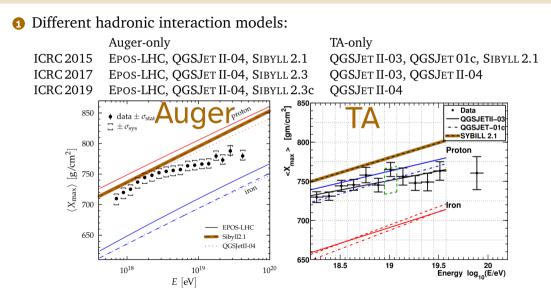
Mass composition

- Folk lore has it that TA measurements in the north indicate UHECRs are protons, and Auger measurements in the south indicate a heavier composition.
 Why?
- Mass composition of UHECRs estimated from X_{max} distributions
- **Considerable differences** among hadronic interaction models (especially pre-LHC ones)
- To be sure that Auger–TA differences are not due to hadronic interaction models, X_{max} distributions themselves should be compared, not mass estimates.
- Complicated by different treatments of detector biases


 (usually folded *into* simulations by TA, *out of* measurements by Auger):
 TA biases to be folded into Auger measurements

Results

• Auger and TA results **on top of each other** when comparing apples to apples:


$$\langle X_{\text{max}} \rangle_{\text{Auger}} - \langle X_{\text{max}} \rangle_{\text{TA}} =$$

(2.9 ± 2.7_{stat} ± 18^{*}_{syst}) g/cm²

- This has been known since 2014!
- How come claims to the contrary have persisted much longer than that?

^{*}Eighteen, not a typo for 1.8 $(17 \text{ g/cm}^2 \text{ roughly corresponds to a factor of 2})$ in the mass number *A*)

Reasons for Auger-TA differences

2 Different analyses:

- Auger fits X_{max} distributions as a mixture of hydrogen, helium, nitrogen and iron, with f_H, f_{He}, f_N as free parameters and f_{Fe} = 1 f_H f_{He} f_N
 Assuming QGSJet: gradual transition from H to He dominance around 10^{18.9} eV; N and Fe compatible with zero at all *E*; poor fit to width of distribution
 Assuming EPOS or Sibyll: gradual transition from H to He around 10^{18.5} eV, then from He to N around 10^{19.2} eV; Fe compatible with zero (Auger collab. ICRC 2017)
- Until 2018, TA **only considered pure compositions**, shifting model predictions by a fitted parameter to account for model uncertainty (and measurement systematics) $E < 10^{18.8}$ eV: Any pure element other than H excluded at $p < 10^{-3}$ $E < 10^{19.2}$ eV: Pure elements other than H or He excluded at $p < 10^{-3}$ $E \ge 10^{19.4}$ eV: Not enough data to exclude anything from H to Fe at p < 5% (TA collab. UHECR 2018)
- In 2019, TA started considering mixed compositions, and did find sizeable fractions of heavier elements at the best fit (TA collab. ICRC 2019)
- 3 Larger statistical error bars in TA, making it harder to rule out QGSJet protons

Outline

Introduction

- Ultra-high-energy cosmic rays and extensive air showers
- The current generation of UHECR observatories: Auger and TA

2 The Auger-TA joint working groups

- Energy spectrum
- Mass composition
- Arrival directions

3 Future prospects

The issue of the energy scale cross-calibration

- The mismatch between Auger and TA energy scales would yield **spurious north–south anisotropies** unless corrected for.
- For example, assume events with $E_{true} = 10$ EeV are reconstructed as $E_{rec} = 9$ EeV by Auger and as $E_{rec} = 11$ EeV by TA:
 - If we select all events with $E_{\rm rec} \ge 10$ EeV, then events with $E_{\rm true} = 10$ EeV are included if detected by TA but not if detected by Auger.
 - This would look like the UHECR flux from the north was larger than from the south.
- Hence, we should correct for the energy scale mismatch the best we can.
- Measurements in the common declination band can be used for this.

Techniques for the energy scale cross-calibration - I

 δ = declination, α = right ascension, $\hat{\mathbf{n}} = (\cos \alpha \cos \delta, \sin \alpha \cos \delta, \sin \delta)$, $d\Omega = d\alpha d(\sin \delta)$

2014-2015 (Auger & TA collabs. 2014, Auger & TA collabs. ICRC 2015)

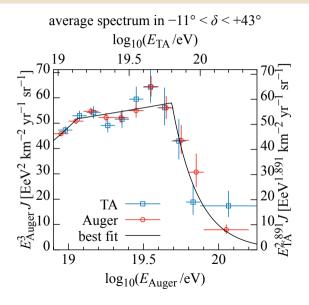
- **1** Auger events $E \ge 8.5$ EeV and TA events with $E \ge 10$ EeV selected
- **2** Residual energy mismatch treated as an exposure correction, i.e. directional exposure assumed to be $\omega(\hat{\mathbf{n}}) = \omega_{\text{TA}}(\hat{\mathbf{n}}) + b\omega_{\text{Auger}}(\hat{\mathbf{n}})$, using an iterative procedure to estimate *b*

2016-2019 (Auger & TA collabs. UHECR 2016, Auger & TA collabs. UHECR 2018)

1 TA data used to estimate the cumulative flux $\int_{10 \text{ EeV}}^{+\infty} \int_{\delta_{\min}}^{\delta_{\max}} J(E, \hat{\mathbf{n}}) dE d\Omega$

2 Auger data used to estimate $\int_{E_{\min}}^{+\infty} \int_{\delta_{\min}}^{\delta_{\max}} J(E, \hat{\mathbf{n}}) dE d\Omega$ as a function of E_{\min} , searching for the value resulting in a flux as close as possible to the TA one

Techniques for the energy scale cross-calibration - II


 δ = declination, α = right ascension, $\hat{\mathbf{n}} = (\cos \alpha \cos \delta, \sin \alpha \cos \delta, \sin \delta)$, $d\Omega = d\alpha d(\sin \delta)$

2021-present (Auger & TA collabs. ICRC 2021, Auger & TA collabs. UHECR 2022)

- **1** Auger and TA data to estimate $\int_{E_j}^{E_{j+1}} \int_{\delta_{\min}}^{\delta_{\max}} J(E, \hat{\mathbf{n}}) d\Omega dE$ in various energy bins *j*
- **2** Establish parameterizations $E_{\text{TA}} = \text{PL}(E_{\text{Auger}} | \boldsymbol{\theta}_E), \quad \int_{\delta_{\min}}^{\delta_{\max}} J(E, \hat{\mathbf{n}}) \, \mathrm{d}\Omega = \text{BPL}(E | \boldsymbol{\theta}_J),$ where PL = power law and BLP = broken power law
- **③** Simultaneously fit the parameters $\boldsymbol{\theta}_{E}$ and $\boldsymbol{\theta}_{J}$ to the binned data
- **3** Use the best-fit $\boldsymbol{\theta}_E$ to convert Auger energies to the TA scale and vice versa

(Note: with these parameterizations, it's irrelevant whether Auger energies are assumed correct and TA energies are converted to the Auger scale or vice versa — identical results are obtained either way.)

Energy cross-calibration results (Auger & TA collabs. UHECR 2022)

$\frac{E_{\text{Auger}}}{10 \text{ EeV}} = a \left(\frac{E_{\text{TA}}}{10 \text{ EeV}}\right)^b$, where:
• $\ln a = -0.159 \pm 0.012$
• $b = 0.945 \pm 0.016$
• $\operatorname{corr}(\ln a, b) = -0.17$
$\chi^2/n = 20.7/14 \ (p = 0.11)$
$E_{\text{Auger}} = 8.53 \text{ EeV} \leftrightarrow E_{\text{TA}} = 10 \text{ EeV}$
$E_{\text{Auger}} = 10 \text{ EeV} \leftrightarrow E_{\text{TA}} = 19.5 \text{ EeV}$
$E_{\text{Auger}} = 16 \text{ EeV} \leftrightarrow E_{\text{TA}} = 40.5 \text{ EeV}$

• Note: different datasets than used by the spectrum WG; results *not* to be extrapolated to lower energies

Large-scale anisotropy results (Auger & TA collabs. UHECR 2022)

Less significant than Auger-only ones (Auger collab. ICRC 2021) due to higher energy threshold

Table 1. Our measurements of the dipole and quadrupole r	moments. The first uncertainty is statistical, the second is due
to the uncertainty in the cross-calibration of energy scales.	Values in <i>italics</i> (bold) are locally significant at $\geq 2\sigma$ ($\geq 4\sigma$).

E_{Auger} [EeV]	[8.53, 16)	[16, 32)	[32,+∞)
E_{TA} [EeV]	[10, 19.49)	[19.49, 40.5)	$[40.5, +\infty)$
d_x [%]	$-0.2 \pm 1.1 \pm 0.0$	$+0.9 \pm 1.9 \pm 0.0$	$-4.4 \pm 3.7 \pm 0.1$
d_y [%]	$+5.0 \pm 1.1 \pm 0.0$	$+4.4 \pm 1.9 \pm 0.0$	$+10.0 \pm 3.5 \pm 0.0$
d_z [%]	$-3.0 \pm 1.3 \pm 1.2$	$-8.4 \pm 2.2 \pm 1.3$	$+3.3 \pm 4.4 \pm 3.5$
$Q_{xx} - Q_{yy}$ [%]	$-4.3 \pm 4.6 \pm 0.0$	$+12.9 \pm 8.1 \pm 0.0$	$+39.7 \pm 15.0 \pm 0.0$
$Q_{\chi z}$ [%]	$-2.7 \pm 2.7 \pm 0.0$	$+4.1 \pm 4.7 \pm 0.0$	$+4.9 \pm 9.7 \pm 0.1$
Q_{yz} [%]	$-4.3 \pm 2.7 \pm 0.0$	$-8.3 \pm 4.6 \pm 0.1$	$+12.8 \pm 9.1 \pm 0.3$
Q_{zz} [%]	$+0.5 \pm 3.1 \pm 1.5$	$+4.5 \pm 5.4 \pm 1.5$	$+22.0 \pm 10.3 \pm 4.1$
Q_{xy} [%]	$+1.3 \pm 2.3 \pm 0.0$	$-0.6 \pm 4.0 \pm 0.1$	$+4.0 \pm 7.8 \pm 0.1$

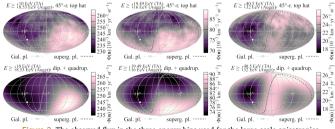
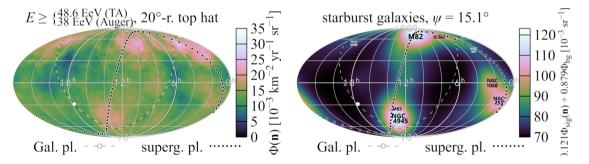



Figure 2. The observed flux in the three energy bins used for the large-scale anisotropies (top panels), and the reconstructed directional flux truncated to $\ell \leq 2$ (bottom panels).

Medium-scale anisotropy results (Auger & TA collabs. UHECR 2022)

- UHECR propagation effects neglected for the time being
- Correlation with galaxies at distances 1 Mpc $\leq D < 250$ Mpc (Skrutskie et al. 2006) significant at 2.8 σ post-trial
- Correlation with starburst galaxies at 1 Mpc $\leq D < 130$ Mpc (Lunardini et al. 2019) significant at 4.7 σ post-trial

Energy spectrum

Soon: Continued investigation into energy-dependent discrepancy **Eventually**: Convergence to common FY and E_{inv} • Bijective $E_{TA} \leftrightarrow E_{Auger}$ mapping with goodness of fit and uncertainties (à la anisotropy WG)

Arrival directions

Soon: simulations to estimate the effect of neglected UHECR propagation effects **Eventually:** more studies (harmonic-space cross-correlation power spectrum, two- and three-point autocorrelation function, ...)

Mass composition

Soon: Continued study of compatibility between Auger and TA X_{max} distribution, and investigation into any differences
Eventually: Only using modern hadronic interaction models (EPOS-LHC, Sibyll 2.3d) in Auger-only, TA-only, and Auger+TA
Comparisons of northern vs equatorial vs southern sky (à la spectrum WG)
Systematics as puisance parameters

- Systematics as nuisance parameters
- Use of SD-based mass estimators (using machine learning, upgraded detectors, ...) in Auger+TA

