Consequences of quantum fluctuations for cosmology according to unimodular quantum gravity

Natascha Riahi

Faculty of Physics University of Vienna

Fourth Annual Conference of COST Action CA18108 Rijeka, July 2023

KORKARYKERKER POLO

Program

- \triangleright Use Unimodular Gravity as starting point for quantization.
- \triangleright Focus on flat FLRW models with a scalar field representing the matter content.
- \blacktriangleright analyze the solutions and their spreading behaviour.
- \blacktriangleright try to give an estimate for the consequences of quantum fluctuations for cosmological predictions.

KORK ERKER ADAM ADA

Quantum Gravity and Quantum Cosmology

 \blacktriangleright The canonical quantization of Einsteins theory leads to the Wheeler de Witt equation (WDW) - a functional differential equation.

KO K K Ø K K E K K E K V K K K K K K K K K

Quantum Gravity and Quantum Cosmology

 \blacktriangleright The canonical quantization of Einsteins theory leads to the Wheeler de Witt equation (WDW) - a functional differential equation.

 \triangleright Applying the simplifications of a homogeneous and isotropic universe: WDW \rightarrow partial differential equation.

Quantum Gravity and Quantum Cosmology

 \blacktriangleright The canonical quantization of Einsteins theory leads to the Wheeler de Witt equation (WDW) - a functional differential equation.

 \triangleright Applying the simplifications of a homogeneous and isotropic universe: WDW \rightarrow partial differential equation.

Structural problems: time vanishes, no positive definite scalar product , no unitary time evolution.

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

.

KORKARYKERKER POLO

1. The Bohmian Strategy

Time from guidance condition of the classical Hamilton-Jacobi Theory:

$$
\frac{\partial L}{\partial \dot{q}} = p = \frac{\partial S}{\partial q}, \text{where} \quad \Psi = Re^{iS/\hbar}
$$

- \blacktriangleright advantage: Time emerges naturally from the canonical structure of the theory
- \blacktriangleright disadvantage: still no positive definite scalar product, no useful notion of uncertainty

.

1. The Bohmian Strategy Time from guidance condition of the classical Hamilton-Jacobi Theory:

$$
\frac{\partial L}{\partial \dot{q}} = p = \frac{\partial S}{\partial q}, \text{where} \quad \Psi = Re^{iS/\hbar}
$$

- \blacktriangleright advantage: Time emerges naturally from the canonical structure of the theory
- \blacktriangleright disadvantage: still no positive definite scalar product, no useful notion of uncertainty

2. Matter as Clock Using one matter variable as "time".

- \blacktriangleright advantage: Choice of scalar product and self-adjoint time evolution possible
- \blacktriangleright disadvantage: one canonical variable is taken out and declared as "time".K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

An alternative: Unimodular Gravity

Quantize Unimodular Gravity

 \blacktriangleright fully equivalent to Einsteins Relativity on the classical level

An alternative: Unimodular Gravity

Quantize Unimodular Gravity

 \blacktriangleright fully equivalent to Einsteins Relativity on the classical level

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

 \triangleright No need to reconstruct time-time does not vanish

An alternative: Unimodular Gravity

Quantize Unimodular Gravity

 \blacktriangleright fully equivalent to Einsteins Relativity on the classical level

 \triangleright No need to reconstruct time- time does not vanish

 \blacktriangleright It was possible to define a scalar product and conditions for a self-adjoint time evolution for a flat Friedmann universe filled with a scalar field. $\sqrt{ }$

KELK KØLK VELKEN EL 1990

Variational formulation of General Relativity - a reminder

$$
\delta_{g_{\mu\nu}} \left(\frac{1}{2\kappa} \int d^4x \sqrt{-g} R + S_{matter} \right)
$$

\n
$$
\Rightarrow R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R = \kappa T_{\mu\nu}
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

- \blacktriangleright Varying the action with respect to the metric.
- \blacktriangleright Getting Einsteins equations.

Unimodular gravity

$$
\delta_{g_{\mu\nu}} \left(\frac{1}{2\kappa} \int d^4x \sqrt{-g} R + S_{matter} \right) \Big|_{g=-1} = 0
$$

$$
\Rightarrow R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R = \kappa T_{\mu\nu} - \Lambda g_{\mu\nu}
$$

 \triangleright Varying the action with respect to the metric under the condition det $g_{\mu\nu} = g = -1$

 \triangleright Getting Einsteins equations with an additional term

 \blacktriangleright Identifying Λ with the cosmological constant

Unimodular gravity

$$
\delta_{g_{\mu\nu}} \left(\frac{1}{2\kappa} \int d^4x \sqrt{-g} R + S_{matter} \right) \Big|_{g=-1} = 0
$$

$$
\Rightarrow R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R = \kappa T_{\mu\nu} - \Lambda g_{\mu\nu}
$$

 \triangleright Varying the action with respect to the metric under the condition det $g_{\mu\nu} = g = -1$

 \triangleright Getting Einsteins equations with an additional term

 \blacktriangleright Identifying Λ with the cosmological constant

Quantization of unimodular gravity

 \blacktriangleright There is no Hamiltonian constraint!

Quantization of unimodular gravity

 \blacktriangleright There is no Hamiltonian constraint!

 \blacktriangleright The theory yields a Schrödinger like equation

$$
i\hbar\frac{\partial}{\partial t}\Psi=\int\widehat{\mathcal{H}_0}dx^3\Psi\,,
$$

KO K K Ø K K E K K E K V K K K K K K K K K

with $\Psi[h_{ab},t]$

Quantization of unimodular gravity

 \blacktriangleright There is no Hamiltonian constraint!

 \blacktriangleright The theory yields a Schrödinger like equation

$$
i\hbar\frac{\partial}{\partial t}\Psi=\int\widehat{\mathcal{H}_0}dx^3\Psi\,,
$$

with $\Psi[h_{ab},t]$

 \blacktriangleright In the case of reduced models there is not any constraint at all.

Spatially flat Friedmann universe with a scalar field

The Model:

spacetime:

matter:

$$
ds2 = -N2(t)dt2 + a2(t)d\Omega_32
$$

$$
d\Omega_32... 3-dim. \text{ flat space}
$$

$$
det g_{\mu\nu} \stackrel{!}{=} -1 \rightarrow N = 1/a^3
$$

Lagrangian of the field
$$
\phi
$$

\n
$$
L_{matter} = N a^3 \left(\frac{\dot{\phi}^2}{2N^2c^2} - V(\phi) \right)
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

De common in cosmology: perfect fluid models

$$
p = w c2 \rho, \qquad \text{barotropic equation of state}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

 \triangleright common in cosmology: perfect fluid models

 $\rho = w\,c^2\rho, \qquad$ baratropic equation of state

 \triangleright identification of density and pressure for the scalar field via energy-momentum tensor

$$
\rho c^2 = \frac{\dot{\phi}^2}{2} + V(\phi) \qquad \qquad \rho = \frac{\dot{\phi}^2}{2} - V(\phi) \qquad (1)
$$

 \triangleright common in cosmology: perfect fluid models

 $\rho = w\,c^2\rho, \qquad$ baratropic equation of state

 \triangleright identification of density and pressure for the scalar field via energy-momentum tensor

$$
\rho c^2 = \frac{\dot{\phi}^2}{2} + V(\phi) \qquad \qquad p = \frac{\dot{\phi}^2}{2} - V(\phi) \qquad (1)
$$

 \triangleright in general there exists no baratropic fluid equation for the scalar field

 \triangleright common in cosmology: perfect fluid models

$$
p = w c2 \rho, \qquad \text{barotropic equation of state}
$$

 \triangleright identification of density and pressure for the scalar field via energy-momentum tensor

$$
\rho c^2 = \frac{\dot{\phi}^2}{2} + V(\phi) \qquad \qquad p = \frac{\dot{\phi}^2}{2} - V(\phi) \qquad (1)
$$

- \triangleright in general there exists no baratropic fluid equation for the scalar field
- \triangleright exact equivalence between massless scalar field and stiff matter **μ**

$$
c^2 \rho = \rho = \frac{\phi^2}{2}
$$

Unimodular Hamiltonian cosmology

Hamiltonian of a spatially flat Friedmann universe with scalar field :

$$
H_{uni} = \frac{c^2}{2} \frac{p_{\phi}^2}{v_0 a^6} - \frac{c^2}{v_0 a \epsilon} \frac{p_a^2}{a^4} + v_0 V(\phi). \qquad (\epsilon = 3c^4/(8\pi G) = 3/\kappa)
$$

KO K K Ø K K E K K E K V K K K K K K K K K

No Hamiltonian constraint, H_{uni} is a conserved quantity!

Unimodular Hamiltonian cosmology

Hamiltonian of a spatially flat Friedmann universe with scalar field :

$$
H_{uni} = \frac{c^2}{2} \frac{p_{\phi}^2}{v_0 a^6} - \frac{c^2}{v_0 a \epsilon} \frac{p_a^2}{a^4} + v_0 V(\phi). \qquad (\epsilon = 3c^4/(8\pi G) = 3/\kappa)
$$

No Hamiltonian constraint, H_{uni} is a conserved quantity!

Choice: $H_{uni} \equiv -\Lambda \epsilon v_0/3$,

so that Λ assumes the value of the cosmological constant in general relativity.

KELK KØLK VELKEN EL 1990

Unimodular Hamiltonian operator

 \blacktriangleright canonical quantization:

$$
\hat{p}_a = -i\hbar \frac{\partial}{\partial a}, \quad \hat{p}_\phi = -i\hbar \frac{\partial}{\partial \phi}, \tag{2}
$$

 \blacktriangleright factor ordering that yields a Laplace Beltrami operator

$$
\Rightarrow \hspace{1.6cm} (3)
$$

$$
\widehat{H} = \frac{\hbar^2 c^2}{4 v_0 \epsilon} \frac{1}{a^5} \frac{\partial}{\partial a} a \frac{\partial}{\partial a} - \frac{\hbar^2 c^2}{2 v_0} \frac{1}{a^6} \frac{\partial^2}{\partial \phi^2} + v_0 V(\phi) , \qquad (4)
$$

symmetric with respect to the measure *a⁵da d* ϕ (5)

Coordinate transformation:

$$
A = a^3/3 \t B = \frac{3}{\sqrt{2\epsilon}}\phi \Rightarrow
$$

$$
\hat{H} = \frac{\hbar^2 c^2}{v_0 4\epsilon} \left\{ \frac{1}{A} \frac{\partial}{\partial A} A \frac{\partial}{\partial A} - \frac{1}{A^2} \frac{\partial^2}{\partial B^2} \right\},
$$

measure:
$$
A dA dB
$$

Lightcone coordinates

$$
u = Ae^{-B} \qquad v = Ae^{B},
$$

\n
$$
\hat{H} = \frac{\hbar^2 c^2}{v_0 \epsilon} \frac{\partial^2}{\partial u \partial v} + v_0 V \left(\frac{u}{v}\right)
$$

\nmeasure du dv
\n
$$
u \in (0, \infty), v \in (0, \infty)
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Lightcone coordinates

$$
u = Ae^{-B} \qquad v = Ae^{B},
$$

\n
$$
\hat{H} = \frac{\hbar^{2}c^{2}}{v_{0} \epsilon} \frac{\partial^{2}}{\partial u \partial v} + v_{0}V\left(\frac{u}{v}\right)
$$

\nmeasure du dv
\n
$$
u \in (0, \infty), v \in (0, \infty)
$$

Classical Hamiltonian in light cone coordinates:

$$
H=-\frac{c^2}{\epsilon v_0}p_u p_v+v_0 V\left(\frac{u}{v}\right).
$$

Schrödinger equation of unimodular quantum cosmology

$$
\frac{\hbar^2 c^2}{v_0 \epsilon} \frac{\partial^2}{\partial u \partial v} \psi + v_0 V \left(\frac{u}{v}\right) \psi = i \hbar \frac{\partial}{\partial t} \psi
$$

Conventional probability interpretation for unitary time evolution possible !

KO K K Ø K K E K K E K V K K K K K K K K K

Condition for the unitary time evolution

requirement on the wavefunction:

$$
\frac{d}{dt}\langle \psi | \hat{H}^n | \psi \rangle = 0 \quad \text{for} \quad n = 2, 3, \dots.
$$

sufficient condition:

$$
\psi(0, v, t) = C(t) f_1(v) \qquad \psi(u, 0, t) = C(t) f_2(u),
$$

where $f_1(x)$, $f_2(x)$ are real functions with $f_1(0) = \pm f_2(0)$ and $C(t)$ is arbitrary.

Constructing solutions for an arbitrary scalar field

Search for eigenstates:

$$
\frac{1}{v_0}\frac{\partial^2}{\partial u \partial v}\psi_\Lambda(u,v) + v_0 V\left(\frac{u}{v}\right) = -\frac{\Lambda \epsilon v_0}{3}\psi_\Lambda(u,v)
$$

with the boundary conditions

$$
\psi_{\Lambda}(0,x)=f_1(x)\qquad \psi_{\Lambda}(x,0)=f_2(x),
$$

where $f_1(x)$, $f_2(x)$ are real functions. We construct wavepacket solutions by superposition

$$
\psi(u, v, \tau) = \int_{-\infty}^{\infty} e^{i t \frac{\Lambda \epsilon v_0}{3}} \psi_{\Lambda}(u, v) F(\Lambda) d\Lambda.
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

We obtain for the time evolution at the edges

$$
\psi(0, v, \tau) = C(\tau) f_1(v) \qquad \psi(u, 0, \tau) = C(\tau) f_2(u)
$$

where
$$
C(\tau) = \int_{-\infty}^{\infty} e^{i \tau \frac{\Lambda \epsilon v_0}{3}} F(\Lambda) d\Lambda.
$$

- **In The solutions meet the condition for the unitary time evolution!**
- **For late times: asymptotic boundary conditions**

$$
\lim_{\tau\to\infty}\psi(u,0,t)=\lim_{\tau\to\infty}\psi(0,\nu,t)=0.
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Analysis of the dynamics of the expectation values

The Heisenberg equations

$$
\frac{d}{dt}\langle\psi|\widehat{O}|\psi\rangle = -\frac{i}{\hbar}\langle\psi|\left[\widehat{O},\widehat{H}\right]|\psi\rangle\tag{6}
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

apply only in the asymptotic future

$$
t \ll \frac{\Lambda \epsilon v_0}{\hbar} = \frac{3 \Lambda v_0 c^4}{8 \pi G \hbar}
$$

Analysis of the dynamics of the expectation values

The Heisenberg equations

$$
\frac{d}{dt}\langle\psi|\hat{O}|\psi\rangle = -\frac{i}{\hbar}\langle\psi|\left[\hat{O},\hat{H}\right]|\psi\rangle\tag{6}
$$

apply only in the asymptotic future

$$
t \ll \frac{\Lambda \epsilon v_0}{\hbar} = \frac{3\Lambda v_0 c^4}{8\pi G \hbar}
$$

 \triangleright dynamical analysis independent of concrete wavefunction is only possible for late times.

 \triangleright in this quasiclassical time-regime, the expectation values obey the classical dynamics provided the uncertainties remain small.

Analysis of the uncertainty dynamics

- ▶ Consider an expansion of the terms depending on $V\left(\frac{\mu}{V}\right)$ $\frac{u}{v}$) about the (classical) expectation values
- \triangleright take no higher order terms than $(\Delta u)^2, (\Delta v)^2, \Delta(u, v)$
- \triangleright get a non-autonomous system of 10 linear equations for the uncertainties.

$$
\frac{d}{dt}(\Delta u)^2 = -\frac{2\mu}{v_0}(\Delta(u, p_v))
$$

$$
\frac{d}{dt}(\Delta v)^2 = -\frac{2\mu}{v_0}(\Delta(v, p_u))
$$

$$
\mu = c^2/\epsilon = 2\pi G/(3c^2)
$$

It contains the time-dependent functions

...

$$
V_{11}(t) = \frac{\partial^2 V}{\partial v^2}, \quad V_{22}(t) = \frac{\partial^2 V}{\partial u^2} \quad V_{12}(t) = \frac{\partial^2 V}{\partial v \partial u}
$$

which are taken at the classical values $u(t), v(t)$ $u(t), v(t)$ $u(t), v(t)$, we are the second second

Analysis of the dynamical system

$$
\frac{d}{dt}\overrightarrow{\Delta} = \mathcal{M}(t) \cdot \overrightarrow{\Delta}
$$
\n
$$
\overrightarrow{\Delta} = \left\{ (\Delta u)^2, (\Delta v)^2, \Delta(u, v), (\Delta p_u)^2, (\Delta p_v)^2, \Delta(p_u, p_v), \Delta(u, p_u), \Delta(v, p_v), \Delta v, p_u, \Delta(u, p_v) \right\}
$$

The analysis requires the behaviour of $\mathcal{M}(t)$ fot $t \to \infty$

⇒ **Knowledge of classical late time behaviour necessary!**

KID KØD KED KED E 1990

Results for uncertainty dynamics

 \blacktriangleright the stiff matter case:

$$
\mathcal{M}_0 \equiv \mathcal{M}\bigg|_{\mathbf{V}=\mathbf{0}}
$$

The system is autonomous. Uncertainties are growing with leading order t^2 .

 \blacktriangleright the general case:

$$
\mathcal{M}=\mathcal{M}_0+\mathcal{M}_1(t)
$$

the system is unstable for $\int_{t_0}^{\infty} |\mathcal{M}_1(t)| \, < \infty$

 \blacktriangleright exponential potential:

$$
V=V_0e^{\lambda\sqrt{\kappa}\phi}
$$

due to classical analysis (Copeland, Liddle, Wands (1998)): $\mathcal{M}_1(t)$ $\mathcal{M}_1(t)$ $\mathcal{M}_1(t)$ i[n](#page-37-0)tegra[b](#page-39-0)l[e](#page-34-0) \rightarrow uncertainty dyna[mics](#page-37-0) [u](#page-39-0)n[sta](#page-38-0)ble

Classical and not classical epochs

- **D** early epoch: $t \ll \frac{3\Lambda v_0 c^4}{8\pi G\hbar}$
- \blacktriangleright intermediate epoch:

quasiclassical time evolution according to classical equation of motion with growing uncertainties no Heisenberg equations, no Ehrenfest theorem

\blacktriangleright late epoch

Growing uncertainties destroy the quasiclassical time evolution ??

to be analyzed

Open question

How should v_0 be determined?

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Matter density fluctuations

- \blacktriangleright determine the Wigner transform of the matter density operator ˆ*ρ*
- \triangleright perform an expansion around the classical values up to order Δ^2 .

From our analysis we will assume the uncertainties grow with leading order t^2

Dark matter hypothesis

$$
\langle \rho \rangle = \rho_{cl} + \Delta \rho
$$

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코』 Y 9 Q @

Dark matter hypothesis

Estimation

Dark matter ratio :

$$
R(\tau) \equiv \frac{\Delta \rho(\tau)}{\rho_{cl}(\tau)}
$$

Estimation

Dark matter ratio :

$$
R(\tau) \equiv \frac{\Delta \rho(\tau)}{\rho_{cl}(\tau)}
$$

Rough estimation for a matter dominated universe and uncertainties $\sim t^2$

$$
\frac{R(\tau_2)}{R(\tau_1)} = \left(\frac{\tau_2}{\tau_1}\right)^6 = \frac{(1+z_2)^9}{(1+z_1)^9}
$$

KO K K Ø K K E K K E K V K K K K K K K K K

Estimation

Dark matter ratio :

$$
R(\tau) \equiv \frac{\Delta \rho(\tau)}{\rho_{cl}(\tau)}
$$

Rough estimation for a matter dominated universe and uncertainties $\sim t^2$

$$
\frac{R(\tau_2)}{R(\tau_1)} = \left(\frac{\tau_2}{\tau_1}\right)^6 = \frac{(1+z_2)^9}{(1+z_1)^9}
$$

Conclusion: Increasing dark mater ratio for increasing uncertainties!

Space-time fluctuations and light rays

geodesic equation:

$$
\frac{dr}{dt} = \frac{c}{a(t)}\tag{7}
$$

 \rightarrow stochastic equation:

$$
\frac{dr}{dt} = \frac{c}{a(t)} + \mathcal{A}(t) \tag{8}
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

At related to quantum fluctuations \rightarrow calculate possible intrinsic fluctuations of redshift measurements.

Outlook

 \blacktriangleright How can we compare v_0 with observations?

 \blacktriangleright calculate inhomogeneities with unimodular theory

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @