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Program

I Use Unimodular Gravity as starting point for quantization.
I Focus on flat FLRW models with a scalar field representing

the matter content.
I analyze the solutions and their spreading behaviour.
I try to give an estimate for the consequences of quantum

fluctuations for cosmological predictions.



Quantum Gravity and Quantum Cosmology

I The canonical quantization of Einsteins theory leads to the
Wheeler de Witt equation (WDW) - a functional differential
equation.

I Applying the simplifications of a homogeneous and isotropic
universe: WDW → partial differential equation.

Structural problems: time vanishes, no positive definite scalar
product , no unitary time evolution.
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1. The Bohmian Strategy
Time from guidance
condition of the classical
Hamilton-Jacobi Theory:
∂L
∂q̇ = p = ∂S

∂q ,where Ψ = ReiS/~ .

I advantage: Time
emerges naturally from
the canonical structure
of the theory

I disadvantage: still no
positive definite scalar
product, no useful
notion of uncertainty

2. Matter as Clock
Using one matter variable
as ”time”.

I advantage: Choice of
scalar product and
self-adjoint time
evolution possible

I disadvantage: one
canonical variable is
taken out and declared
as ”time“.
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An alternative: Unimodular Gravity

Quantize Unimodular Gravity

I fully equivalent to Einsteins Relativity on the classical level

I No need to reconstruct time- time does not vanish

I It was possible to define a scalar product and conditions for a
self-adjoint time evolution for a flat Friedmann universe filled
with a scalar field.
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Variational formulation of General Relativity - a reminder

δgµν

( 1
2κ

∫
d4x
√
−g R + Smatter

)
⇒ Rµν −

1
2gµνR = κTµν

I Varying the action with respect to the metric.
I Getting Einsteins equations.



Unimodular gravity

δgµν

( 1
2κ

∫
d4x
√
−g R + Smatter

) ∣∣∣∣∣
g=−1

= 0

⇒ Rµν −
1
2gµνR = κTµν−Λ gµν

I Varying the action with respect to the metric under the
condition det gµν = g = −1

I Getting Einsteins equations with an additional term
I Identifying Λ with the cosmological constant
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Quantization of unimodular gravity

I There is no Hamiltonian constraint!

I The theory yields a Schrödinger like equation

i~ ∂
∂t Ψ =

∫
Ĥ0dx3Ψ ,

with Ψ [hab, t]

I In the case of reduced models there is not any constraint at
all.
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Spatially flat Friedmann universe with a scalar field

The Model:
spacetime:

ds2 = −N2(t)dt2 + a2(t)dΩ2
3

dΩ2
3 . . . 3-dim. flat space

det gµν
!= −1→ N = 1/a3

matter:

Lagrangian of the field φ

Lmatter = N a3
(

φ̇2

2N2c2 − V (φ)
)



The matter content
I common in cosmology: perfect fluid models

p = w c2ρ, baratropic equation of state

I identification of density and pressure for the scalar field via
energy-momentum tensor

ρc2 = φ̇2

2 + V (φ) p = φ̇2

2 − V (φ) (1)

I in general there exists no baratropic fluid equation for the
scalar field

I exact equivalence between massless scalar field and stiff
matter

c2ρ = p = φ̇2

2
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Unimodular Hamiltonian cosmology

Hamiltonian of a spatially flat Friedmann universe with scalar field :

Huni = c2

2
p2
φ

v0a6 −
c2

v04ε
p2

a
a4 + v0V (φ) . (ε = 3c4/(8πG) = 3/κ)

No Hamiltonian constraint, Huni is a conserved quantity!

Choice: Huni ≡ −Λεv0/3 ,

so that Λ assumes the value of the cosmological constant in
general relativity.
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Unimodular Hamiltonian operator

I canonical quantization:

p̂a = −i~ ∂
∂a , p̂φ = −i~ ∂

∂φ
, (2)

I factor ordering that yields a Laplace Beltrami operator

⇒ (3)

Ĥ = ~2c2

4v0ε

1
a5

∂

∂aa ∂
∂a −

~2c2

2v0

1
a6

∂2

∂φ2 + v0V (φ) , (4)

symmetric with respect to the measure a5da dφ (5)



Coordinate transformation:

A = a3/3 B = 3√
2ε
φ ⇒

Ĥ = ~2c2

v04ε

{
1
A
∂

∂AA ∂

∂A −
1

A2
∂2

∂B2

}
,

measure: A dA dB



Lightcone coordinates

u = Ae−B v = AeB ,

Ĥ = ~2c2

v0 ε

∂2

∂u∂v + v0V
(u

v

)
measure du dv
u ∈ (0,∞), v ∈ (0,∞)

Classical Hamiltonian in light cone coordinates:

H = − c2

εv0
pu pv + v0V

(u
v

)
.
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Schrödinger equation of unimodular quantum cosmology

~2c2

v0ε

∂2

∂u∂v ψ + v0V
(u

v

)
ψ = i~ ∂

∂tψ

Conventional probability interpretation for unitary time evolution
possible !



Condition for the unitary time evolution

requirement on the wavefunction:

d
dt 〈ψ|Ĥ

n|ψ〉 = 0 for n = 2, 3, . . . .

sufficient condition:

ψ(0, v , t) = C(t)f1(v) ψ(u, 0, t) = C(t)f2(u) ,

where f1(x), f2(x) are real functions with f1(0) = ±f2(0) and C(t)
is arbitrary.



Constructing solutions for an arbitrary scalar field

Search for eigenstates:

1
v0

∂2

∂u∂v ψΛ(u, v) + v0V
(u

v

)
= −Λεv0

3 ψΛ(u, v)

with the boundary conditions

ψΛ(0, x) = f1(x) ψΛ(x , 0) = f2(x),

where f1(x), f2(x) are real functions.
We construct wavepacket solutions by superposition

ψ(u, v , τ) =
∫ ∞
−∞

ei t Λεv0
3 ψΛ(u, v)F (Λ) dΛ .



We obtain for the time evolution at the edges

ψ(0, v , τ) = C(τ)f1(v) ψ(u, 0, τ) = C(τ)f2(u)

where C(τ) =
∫ ∞
−∞

ei t Λεv0
3 F (Λ) dΛ .

I The solutions meet the condition for the unitary time
evolution!

I For late times: asymptotic boundary conditions

lim
τ→∞

ψ(u, 0, t) = lim
τ→∞

ψ(0, v , t) = 0 .



Analysis of the dynamics of the expectation values

The Heisenberg equations

d
dt 〈ψ|Ô|ψ〉 = − i

~
〈ψ|

[
Ô, Ĥ

]
|ψ〉 (6)

apply only in the asymptotic future

t � Λεv0
~

= 3Λv0c4

8πG~

I dynamical analysis independent of concrete wavefunction is
only possible for late times.

I in this quasiclassical time-regime, the expectation values obey
the classical dynamics provided the uncertainties remain small.
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Analysis of the uncertainty dynamics
I Consider an expansion of the terms depending on V

(u
v
)

about
the (classical) expectation values

I take no higher order terms than (∆u)2, (∆v)2,∆(u, v)
I get a non-autonomous system of 10 linear equations for the

uncertainties.

d
dt (∆u)2 = −2µ

v0
(∆(u, pv )

d
dt (∆v)2 = −2µ

v0
(∆(v , pu))

...

µ = c2/ε = 2πG/(3c2)
It contains the time-dependent functions

V11(t) = ∂2V
∂v2 , V22(t) = ∂2V

∂u2 V12(t) = ∂2V
∂v∂u

which are taken at the classical values u(t), v(t).



Analysis of the dynamical system

d
dt
−→
∆ =M(t) ·

−→
∆

−→
∆ =

{
(∆u)2, (∆v)2,∆(u, v), (∆pu)2, (∆pv )2,

∆(pu, pv ),∆(u, pu),∆(v , pv ),∆v , pu,∆ (u, pv )
}

The analysis requires the behaviour of M(t) fot t →∞

⇒ Knowledge of classical late time behaviour necessary!



Results for uncertainty dynamics
I the stiff matter case:

M0 ≡M
∣∣∣∣∣
V=0

The system is autonomous. Uncertainties are growing with
leading order t2.

I the general case:

M =M0 +M1(t)

the system is unstable for
∫∞

t0
|M1(t)| <∞

I exponential potential:

V = V0eλ
√
κφ

due to classical analysis (Copeland, Liddle, Wands (1998)):
M1(t) integrable → uncertainty dynamics unstable



Classical and not classical epochs

I early epoch: t � 3Λv0c4

8πG~
I intermediate epoch:

quasiclassical time evolution according to classical equation of
motion with growing uncertainties no Heisenberg equations,
no Ehrenfest theorem

I late epoch
Growing uncertainties destroy the quasiclassical time evolution
??
to be analyzed



Open question

How should v0 be determined?



Matter density fluctuations

I determine the Wigner transform of the matter density
operator ρ̂

I perform an expansion around the classical values up to order
∆2.

From our analysis we will assume the uncertainties grow with
leading order t2



Dark matter hypothesis

〈ρ〉 = ρcl + ∆ρ



Dark matter hypothesis

〈ρ〉 = ρcl + ∆ρ

total amount of matter

visible matter

dark matter



Estimation

Dark matter ratio :
R(τ) ≡ ∆ρ(τ)

ρcl (τ)

Rough estimation for a matter dominated universe and
uncertainties ∼ t2

R(τ2)
R(τ1) =

(
τ2
τ1

)6
= (1 + z2)9

(1 + z1)9

Conclusion: Increasing dark mater ratio for increasing uncertainties!
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Space-time fluctuations and light rays

geodesic equation:
dr
dt = c

a(t) (7)

→ stochastic equation:

dr
dt = c

a(t) +A(t) (8)

At related to quantum fluctuations → calculate possible intrinsic
fluctuations of redshift measurements.



Outlook

I How can we compare v0 with observations?

I calculate inhomogeneities with unimodular theory
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