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Program

» Use Unimodular Gravity as starting point for quantization.

» Focus on flat FLRW models with a scalar field representing
the matter content.

P analyze the solutions and their spreading behaviour.

» try to give an estimate for the consequences of quantum
fluctuations for cosmological predictions.
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Quantum Gravity and Quantum Cosmology

» The canonical quantization of Einsteins theory leads to the
Wheeler de Witt equation (WDW) - a functional differential
equation.

» Applying the simplifications of a homogeneous and isotropic
universe: WDW — partial differential equation.

Structural problems: time vanishes, no positive definite scalar
product , no unitary time evolution.






1. The Bohmian Strategy
Time from guidance
condition of the classical
Hamilton-Jacobi Theory:
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P advantage: Time
emerges naturally from
the canonical structure
of the theory

» disadvantage: still no
positive definite scalar
product, no useful
notion of uncertainty



1. The Bohmian Strategy 2. Matter as Clock

Time from guidance Using one matter variable
condition of the classical as "time".
Hamilton-Jacobi Theory:
8—1__ =p= ﬁ,where W = Re™/M
9q 9q
P advantage: Time » advantage: Choice of
emerges naturally from scalar product and
the canonical structure self-adjoint time
of the theory evolution possible
» disadvantage: still no » disadvantage: one
positive definite scalar canonical variable is
product, no useful taken out and declared

notion of uncertainty as "time",
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An alternative: Unimodular Gravity

Quantize Unimodular Gravity

» fully equivalent to Einsteins Relativity on the classical level
» No need to reconstruct time- time does not vanish

» It was possible to define a scalar product and conditions for a
self-adjoint time evolution for a flat Friedmann universe filled
with a scalar field. ./



Variational formulation of General Relativity - a reminder

1
6g;w (2/’? / d4X vV—8 R + 5matter>

1
= R - EgWR =KTuw

P Varying the action with respect to the metric.

» Getting Einsteins equations.



Unimodular gravity

1
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» Varying the action with respect to the metric under the
condition det g, = g = —1

» Getting Einsteins equations with an additional term

» ldentifying A with the cosmological constant
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Quantization of unimodular gravity
» There is no Hamiltonian constraint!

» The theory yields a Schrédinger like equation
0 —~—
ih— W = W
"o / Fodx"V,
with W [h,p, t]

» In the case of reduced models there is not any constraint at
all.



Spatially flat Friedmann universe with a scalar field

The Model:

spacetime: matter:

ds? = —N?(t)dt® + a*(t)dQ3 Lagrangian of the field ¢

dQ3...3-dim. flat space s ¢
Lmatter = N a IN2c2 - V(¢)

det g, L 15 N= 1/a%
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The matter content

» common in cosmology: perfect fluid models

p=wc?p, baratropic equation of state

» identification of density and pressure for the scalar field via
energy-momentum tensor

=T p=T Vi) ()

» in general there exists no baratropic fluid equation for the
scalar field
P> exact equivalence between massless scalar field and stiff
matter .
» @

cp=p=



Unimodular Hamiltonian cosmology

Hamiltonian of a spatially flat Friedmann universe with scalar field :

2 p? c2 p2
Huni:?‘/o(z(i —@;Z—FVOV(CZ)). (€:3C4/(87TG):3/K,)

No Hamiltonian constraint, H,,; is a conserved quantity!



Unimodular Hamiltonian cosmology

Hamiltonian of a spatially flat Friedmann universe with scalar field :

2 p? c2 p2
Huni:EVO(z(i —@;Z—FVOV(CZ)). (€:3C4/(87TG):3//€)

No Hamiltonian constraint, H,,; is a conserved quantity!

Choice: Hypi = —Nevy/3,

so that A assumes the value of the cosmological constant in
general relativity.



Unimodular Hamiltonian operator

» canonical quantization:

0 R .
IFL& p¢ = —ih—

» factor ordering that yields a Laplace Beltrami operator

=

~ R?1 0 0 hc?1 92
=2 9,9 v
4vpe a° Da 92 v a0 H¢? +wV(9),

symmetric with respect to the measure a®dad¢



Coordinate transformation:

3
A=2a%/3 B=—"—¢ =
/ \@¢

pofefio, 0 1 &
 wde | ADAT DA A20B2 (7

measure: AdAdB




Lightcone coordinates

u=Ae B v =Ael,
~  R2c® 9?
= %
vo € Qudv tv <

measure du dv
u € (0,00),v € (0,00)



Lightcone coordinates

u=Ae B v =Ael,
~  R2c® 9? u
= VA
vge Oudv v < )

measure du dv
u € (0,00),v € (0,00)

Classical Hamiltonian in light cone coordinates:

2
C u
i S oy (4)
evo 4



Schrodinger equation of unimodular quantum cosmology

Conventional probability interpretation for unitary time evolution
possible !



Condition for the unitary time evolution

requirement on the wavefunction:

i<¢yﬁ/"|¢> =0 for n=2,3

g = =2,3,....
sufficient condition:

P(0,v,t) = C(t)A(v) Y(u,0,t) = C(t)f(u),

where fi(x), f2(x) are real functions with f(0) = +£(0) and C(t)
is arbitrary.



Constructing solutions for an arbitrary scalar field

Search for eigenstates:

1 9?2

1 B Nevg
vop Qudv

Ua(u, v) + vV <:> = 3 Ua(u, v)

with the boundary conditions

¥a(0,x) = A(x)  ¥alx,0) = fa(x),

where fi(x), f2(x) are real functions.
We construct wavepacket solutions by superposition

W(u, v, ) = /OO e 5% (u, v)F (A) dA.



We obtain for the time evolution at the edges

Y(0,v,7) = C(r)A(v)  ¥(u,0,7) = C()f2(v)
where  C(r) = / T () dA .

» The solutions meet the condition for the unitary time
evolution!

> For late times: asymptotic boundary conditions

lim 9(u,0,t) = TIergo P(0,v,t) =0.

T—00



Analysis of the dynamics of the expectation values

The Heisenberg equations
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Analysis of the dynamics of the expectation values

The Heisenberg equations

d, = i o~
Z(WI0[) = — (4] [0, H] ) (6)
apply only in the asymptotic future

Nevo  3Avgc?

h 8rGh

» dynamical analysis independent of concrete wavefunction is
only possible for late times.

P in this quasiclassical time-regime, the expectation values obey
the classical dynamics provided the uncertainties remain small.



Analysis of the uncertainty dynamics

> Consider an expansion of the terms depending on V () about
the (classical) expectation values

> take no higher order terms than (Au)?, (Av)?, A(u, v)

P> get a non-autonomous system of 10 linear equations for the
uncertainties.

d 2u
E(AU)2 = —TO(A(Uan)
d 21
GO ==L a.p)

p=c?/e=21G/(3c?)
It contains the time-dependent functions
0%V 0%V 0%V
=——, Vxn(t)= —% Vi(t)= ———
ov?’ 2(t) ou? 12(t) ovou

which are taken at the classical values u(t), v(t).

Vll(t)



Analysis of the dynamical system

—M(1)- &

>l

d
at
K = (Au)?, (Bv)?, A, v), (Apa)2, (AP, )2,

I
—N

A(pU7 pV)7 A(U, pu)v A(V7 pV)7 AV? pU7 A (U, Pv) }

The analysis requires the behaviour of M(t) fot t — oo

= Knowledge of classical late time behaviour necessary!



Results for uncertainty dynamics
» the stiff matter case:
./\/lo =M
V=0

The system is autonomous. Uncertainties are growing with
leading order t2.

P the general case:
M = Mo + M(t)

the system is unstable for [ [M;(t)| < oo

P> exponential potential:

V = VpetVre

due to classical analysis (Copeland, Liddle, Wands (1998)):
M;(t) integrable — uncertainty dynamics unstable



Classical and not classical epochs

3Avoc*
8w Gh

» intermediate epoch:
quasiclassical time evolution according to classical equation of
motion with growing uncertainties no Heisenberg equations,
no Ehrenfest theorem

P early epoch: t <

> late epoch

Growing uncertainties destroy the quasiclassical time evolution
77

to be analyzed



Open question

How should vy be determined?



Matter density fluctuations

» determine the Wigner transform of the matter density
operator p

» perform an expansion around the classical values up to order
A2,

From our analysis we will assume the uncertainties grow with
leading order t?



Dark matter hypothesis

(p) = pa + Dp



Dark matter hypothesis

visible matter

<p> = Pcl + Ap

total amount of matter dark matter



Estimation

Dark matter ratio :




Estimation

Dark matter ratio :

_ Dp(7)
R(T) =
pai(T)
Rough estimation for a matter dominated universe and
uncertainties ~ t2

R(71)

R(72) (77)6 (1+ 2)°

“\n (14 2)°



Estimation

Dark matter ratio :

pei(T)
Rough estimation for a matter dominated universe and
uncertainties ~ t2

R(Tg) N <2>6 _ (1+22)9
R(Tl) a T1 (1+21)9

Conclusion: Increasing dark mater ratio for increasing uncertainties!




Space-time fluctuations and light rays

geodesic equation:

— stochastic equation:

dr c

— = ——+ At 8

gt = a(0) (t) (8)
At related to quantum fluctuations — calculate possible intrinsic
fluctuations of redshift measurements.



Outlook

» How can we compare vy with observations?

P calculate inhomogeneities with unimodular theory
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