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the effect of alternative boundary conditions
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Intro: Bondi energy-loss formula
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Considered historically as a theoretical proof that gravitational waves exist

1 ("
one of the most useful equations of GR: M(uy) — M(uy) = — —j J News?>
MO S

the first in a series of flux-balance laws that allow the reconstruction of a GW signal
obtained from EEs via an asymptotic expansion far away from the source

alternatively can be derived from an application of Noether’s theorem to situations
when the symplectic potential is not conserved in time

this viewpoint has been the starting point for a series of recent developments,
ranging from the phenomenology of GW to more theoretical questions of boundary
symmetries in gauge theories and gravity



outline

* Part |: review of Noether’s theorem and surface charges

* Part ll: dependence of gravitational charges on boundary conditions
e covariant phase space language
* non-null boundaries
* null boundaries

* Part lll (time permitting): asymptotic symmetry algebras (extensions of BMS)



Noether’'s theorem

If the Lagrangian has a continuous symmetry, then there is a current
which is conserved on-shell.
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Noether’'s theorem

If the Lagrangian has a continuous symmetry, then there is a current
which is conserved on-shell.

oL=dY, = dji.=0, j.:=10-Y,

Je = C,.+dg,

= constraint (global charge) + boundary term (surface charge)




Noether’'s theorem

Textbook examples:
*Global U(1) invariance: conservation of electric charge
X¥Poincaré invariance: conserved energy-momentum tensor

Less known:
*local U(1) invariance: conservation of surface charges
X¥-diffeo invariance: conservation of surface charges




Noether’'s theorem

Finstein-Hilbert: L7 = Re
infinitesimal continuous symmetry: 6,8, = £:8,, = 0:L = di.L
Nother current: Jf — 159 — Yg — l&E + dqé
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Noether’'s theorem

Einstein-Hilbert: L™ = Re
infinitesimal continuous symmetry: 6,8, = £:8,, = 0:L = di.L

Nother current: _]5 — 159 — Yf — l&E + dqé

]5 p— G/f&” _ VI/V[”&U] for Kerr: ‘anw = aM
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the role of boundary conditions

Gravitational radiation makes the definition of energy ambiguous
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the role of boundary conditions

Gravitational radiation makes the definition of energy ambiguous
This ambiguity is commonly fixed by imposing Dirichlet b.c.

Asymptotically flat — ADM, BMS

Quasilocal — BY (up to anomalies)

So

Analogy with thermodynamics:
Dirichlet = isothermal — internal energy
Neumann = adiabatic — free energy

How about gravity? What happens to energy if we use different types of
boundary conditions?
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covariant phase space:::

Start with the Einstein-Hilbert Lagrangian

L*" = Re
Arbitrary variation gives SL"" = G,08" €+ do="
GEH = (Kﬂyéq/’”’ _ 25K) ex+dd  SLPH %0

Need boundary Lagrangian L = L*" + df
Now @ := O + 6¢ — d9 0~ 0

Improved Noether charge prescription (GO, Rigoon-Bret, Specile 22

[Harlow, Wu, *18]



boundary conditions and phase space polarization

Symplectic potential 0 := 0" + 6¢ — d9 in its most basic form is given by
slele

Boundary conditions in their most basic form are given by dg=0

DIRICHLET: og =10 | X DIFFERENT POLARIZATIONS OF THE PHASE SPACE
MIXED: aoq + bop =0

(g = 0 FOR DIFFERENT DEF OF ()



pullback of 8" to the timelike boundary
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pullback of 8" to the timelike boundary

OFH — (wasqw _ 251<) es + d9PH = T g™, + 5(2Key) + 9

OFH = — ¢ 511" dx + d9™H



pullback of 8" to the timelike boundary

NEUMANN BOUNDARY CONDITIONS: STTI* = 0

O = — g, 611" d°x + d9*™



oullback of 0°" to the timelike boundary

One particular choice of mixed bc that is geometrically motivated: ok 50
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oullback of 0°" to the timelike boundary

One particular choice of mixed bc that is geometrically motivated: ok 50

—1/3

Fixed conformal induced metric: g, := ¢~ "°q,, and the trace of

extrinsic curvature 6¢,, = 0 = 6K

4 2
O"M = — (P65, + ~0K)er = <5(Koq) + d9EH

YORK BOUNDARY CONDITIONS: 6q,,=0& 5K =0



All these cases can be parametrized by a real parameter b

L =L 4 g¢?
0 := 9L + 50 — J9EH

(always with the same corner symplectic potential)

EH . U — Uy U
J=7 = —u ,onfeg = u'n"og, €

boundary conditions | quantity fizred on boundary | value of b
Dirichlet Quv 2
York (duv, K) 2/3
Neumann 1 g 0




Dirichlet (b=2) H" = — 2{ nHE? (IZW -q,,K ) €g = — ZJ &L, eg
\) \)

_ | _
York (b=2/3) HfY = — 2L nts | K, — quK €g = — 2L a3 § VY,

Neumann (b=0) Hg = — ZJ' n”é’/IZMUGS = — ZJ ntcv {11, — EQWH €

\ \
boundary conditions | quantity held fixed | value of b | quasi-local energy | Kerr (renormalized)
Dirichlet Quv 2 k M
York (Q&V,K) 2/3 k—2K/3 2M /3
Neumann | Lt 0 k— K M/2 (GO, Speziale *21]
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pullback of 0" to the null boundary

€<—

o= = J'/V [B””(Syw — 20,61" +25(0 + k) + 8nlzn/"51ﬂ] ey + d9"

DIRICHLET BOUNDARY CONDITIONS: 5@,, =0&06/# =0 £ =2k+ 0)




pullback of 0" to the null boundary

€<—

0 = LV [B””(S}/W — 2w,60" +26(6 + k) + anlzn/’télﬂ] e+ d9™"

DIRICHLET BOUNDARY CONDITIONS: 57,,w =0&06/# =0 £ =2k+ 0)

£ =—201In0e ,



pullback of 0" to the null boundary

€<—

o= = J'/V [B””(Syw — 20,61" +25(0 + k) + 8nlzn/"51ﬂ] ey + d9"

= J 087,,+ 6 (20+K) + 20,60 | €, +25 (0 y) + d9*"
N

“YORK” BOUNDARY CONDITIONS: 07, = 0 & o(k +20) =0 & o/" = 0 £ = 20¢



properties of the charges

canonical charges by Chandrasekaran, Flanagan, Prabhu 18 conserved
on non-expanding horizons defined with Dirichlet polarization

changing to York polarization leads to charges conserved both on NEH
and on minkowski lightcones

might have interesting implications for dynamical processes



properties of the charges

canonical charges by Chandrasekaran, Flanagan, Prabhu 18 conserved
on non-expanding horizons defined with Dirichlet polarization

changing to York polarization leads to charges conserved both on NEH
and on minkowski lightcones

[Wald (wip)]

might have interesting implications for dynamical processes oo

Alternative boundary conditions on null hypersurfaces

Gloria Odak, Antoine Rignon-Bret and Simone Speziale
Aiz Marseille Univ., Univ. de Toulon, CNRS, CPT, UMR 7332, 13288 Marseille, France
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Why an infinite-dimensional
symmetry group?

because scri is null, there is a degenerate direction and the inertial observers are not mapped among themselves by the Poncaré
group but by an infinite-dimensional extension

The big difference is that a null hyperplane has a degenerate metric:
there is no distinguished notion of Cartesian coordinate in the degenerate direction

= freedom of non-rigid translations: supertranslations

zero distances along
the null directions

transverse directions:

BMS = SL(2,C) X | distances measured

by the round 2-sphere metric




why look for larger symmetries?

[Strominger group, Campiglia-Larddha,...]

* subleading soft theorems — generalized BMS . o
* holography — extended BMS s tosen
* larger symmetry = more control over quantization . Grumilr il nd many o

* the algebra of quasi-local observables on null surfaces is larger than BMS

[Donnay, Giribet, Gonzalez, Pino ’16]
[Chandrasekara, Flannagan,Prabhu 18]

® i n f O r m a.t i O n I O S S p a r a d O X Hawking, Strominger. Perry *16] [Freidel, Oliveri, Pranzetti, Speziale 21]



corner charge algebras

e at . : BMSW algebra

diff (S) X R X |

» at finite distance: extended corner symmetry algebra

diff (S) X sl(2,R) X |

* generic covariant theory: universal symmetry algebra

diff (S) x gl(2,!

) X |



