

Departamento de Física Teórica Universidad Zaragoza

Using Machine Learning techniques in phenomenological studies in flavour physics

Jorge Alda, Universidad de Zaragoza/CAPA

jalda@unizar.es

Based on **JA**, J. Guasch, S. Peñaranda arXiv:2109.07405 [hep-ph] Saturnalia, 21st December 2022 Experimental results for the decays of B mesons that don't conform[ed] with the SM predictions.

In particular, these anomalies show hints of violation of the Leptonic Flavour Universality (LFU).

Flavour-changing neutral currents $b \to s \ell^+ \ell^-$, with $\ell = e, \mu.$

• Universality ratios $R_{K^{(*)}}$

$$R_{K^{(*)}} = \frac{{\rm BR}(B\to K^{(*)}\mu^+\mu^-)}{{\rm BR}(B\to K^{(*)}e^+e^-)}\,,$$

In the SM, theoretically clean, and $R_{K^{(*)}} = 1$. LHCb measurements¹:

R_{K+} =
$$0.846^{+0.042}_{-0.039}^{+0.013}_{-0.012}$$
,
R_{K*0} = $0.685^{+0.113}_{-0.069} \pm 0.047$. (3.1 σ tension)

- Angular observables for $B \to K^* \ell^+ \ell^-$: P'_4 , $P'_5 \dots$
- Also $B_s \to \phi \mu^+ \mu^-$ decays.

¹R. Aaij *et al.* (LHCb) arXiv:2103.11769, arXiv:1705.05802

Flavour-changing charged currents $b \to c \ell \nu$, with $\ell = e/\mu, \tau.$

 \blacksquare Universality ratios $R_{D^{(\ast)}}$

$$R_{D^{(*)}} = \frac{\text{BR}(B \to D^{(*)}\tau\nu)}{\text{BR}(B \to D^{(*)}\ell\nu)},$$
$$R_{D} = 0.340 \pm 0.027 \pm 0.013,$$
$$R_{D^{*}} = 0.295 \pm 0.011 \pm 0.008.$$

Combined tension of 3.08σ .¹

- Longitudinal polarization of D^* .
- Also $B_c \to J/\psi \ell \nu$ decays.

¹Y. S. Ahmis et al. (HFLAV) arXiv:1909.12524

4 / 26 Effective Field Theories

We want to investigate whether these anomalies could be originated by some New Physics (NP) beyond the Standard Model. How can we examine [almost] all models at once?

The NP particles are much heavier than the energy scales of the B decays \implies their effects are limited to alterations of the interaction vertices, and these alterations are suppressed by powers of p/Λ . We can study these in a systematical way.

Effective Field Theories (EFTs) describe deviations from the SM in a model-independent way, using effective operators of dim > 4 and their corresponding Wilson coefficients.

At energies Λ above the electroweak scale, the dim-6 SMEFT (2499 operators)¹

$$\mathcal{L} = \mathcal{L}_{SM} + \frac{1}{\Lambda^2} \sum C_i O_i \,.$$

We will focus on the following operators at $\Lambda = 1 \,\mathrm{TeV}$:

$$O_{\ell q(1)}^{ijkl} = (\bar{\ell}_i \gamma_\mu \ell_j)(\bar{q}_k \gamma^\mu q_l), \qquad O_{\ell q(3)}^{ijkl} = (\bar{\ell}_i \gamma_\mu \tau^I \ell_j)(\bar{q}_k \gamma^\mu \tau^I q_l).$$

¹B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek. arXiv:1008.4884

Our setting: in the interaction basis, NP only affects the third generation,¹

$$C_1 = C_{\ell q(1)}^{3333}, \qquad C_3 = C_{\ell q(3)}^{3333}.$$

We have to rotate to the mass basis, using rotation matrices λ^q and λ^ℓ ,

$$C^{ijkl}_{\ell q(1)} = C_1 \lambda^{ij}_{\ell} \lambda^{kl}_q \qquad \qquad C^{ijkl}_{\ell q(3)} = C_3 \lambda^{ij}_{\ell} \lambda^{kl}_q$$

The rotation matrices must be hermitian, idempotent and with $tr\lambda = 1$. Parameterized as

$$\lambda = \frac{1}{1+|\alpha|^2+|\beta|^2} \begin{pmatrix} |\alpha|^2 & \alpha\beta^* & \alpha\\ \alpha^*\beta & |\beta|^2 & \beta\\ \alpha^* & \beta^* & 1 \end{pmatrix} \,.$$

We will fix $C_1 = C_3$ to avoid large deviations in the $B \to K^{(*)} \nu \overline{\nu}$ decays.

¹F. Feruglio, P. Paradisi and A. Pattori. arXiv:1705.00929

Global fits

- The structure of the λ matrices creates Lepton Flavour Violating effects through $\lambda_\ell^{ij}~(i\neq j).$
- RG evolution causes mixing between effective operators:
 - For example, $O_{\ell q(1)}$ mixes with $O_{\varphi \ell(1)} = (\varphi^{\dagger} i \overleftrightarrow{D}_{\mu} \varphi)(\bar{\ell} \gamma^{\mu} \ell)$ that modifies the $Z \ell^{+} \ell^{-}$ couplings.

We need to consider the effects of the New Physics in a wide range of experimentally-measured observables: Global Fits.

7 / 26

Tools used for the global fits (in python3):

- wilson¹: RG evolution and mixing of the Wilson coefficients.
- flavio²: Calculation of observables in EFTs and database of experimental measurements.
 smelli³: Global likelihood function:

$$\Delta \log L = -\frac{1}{2}\Delta\chi^2 = -\frac{1}{2}\sum_{i,j} [\mathcal{O}_i^{\exp} - \mathcal{O}_i^{\operatorname{th}}(\vec{C})](\mathcal{C}^{\exp} + \mathcal{C}^{\operatorname{th}}(C))_{ij}^{-1}[\mathcal{O}_j^{\exp} - \mathcal{O}_j^{\operatorname{th}}(\vec{C})].$$

 \mathcal{O}_i^{\exp} is the experimental measurements for the *i*-th observable, and $\mathcal{O}_i^{\text{th}}$ its SMEMT prediction. \mathcal{C}_{ij}^{\exp} and $\mathcal{C}^{\text{th}}(C)$ are the covariance matrices (usually block-diagonal).

- ¹J. Aebischer, J. Kumar and D. M. Straub. arXiv:1804.05033
- ²D. M. Straub. arXiv:1810.08132
- ³J. Aebischer, J. Kumar, P. Stangl and D. M. Straub. arXiv:1810.07698

Global fits

We perform global fits including $b \to s\ell^+\ell^-$ and $b \to c\ell\nu$ observables, and also electroweak precision tests, nuclear precision observables (superallowed β decays) and Leptonic Flavour Violating observables.

We consider two different scenarios:

- **Scenario I:** Mixing to first generation α are negligible¹.
- **Scenario II:** Mixing to first and second generations².

	Scenario I	Scenario II		
C	-0.13 ± 0.05	-0.13 ± 0.08		
α^{ℓ}		$\pm (0.07^{+0.04}_{-0.07})$		
eta^ℓ	0 ± 0.025	0 ± 0.025		
α^q		$-0.05\substack{+0.12\\-0.07}$		
β^q	$0.8^{+2.0}_{-0.5}$	$0.73^{+2.8}_{-0.6}$		
$\Delta \chi^2_{ m SM}$	40.32	57.06		
SM Pull	5.75σ	6.57σ		

¹F. Feruglio, P. Paradisi and A. Pattori. arXiv:1705.00929 ²J.A., J. Guasch and S. Peñaranda. arXiv:2109.07404

9 / 26

Regions allowed at 1 σ :

- α^{ℓ} is constrained by $R_{K^{(*)}}$.
- β^{ℓ} is constrianed by LFV observables.
 - J.A., J. Guasch and S. Peñaranda. arXiv:2109.07404

 $R_{K^{(*)}}$ requires mixing with the first generation (α^{ℓ})

J.A., J. Guasch and S. Peñaranda. arXiv:2109.07404

12 / 26 Exploring the likelihood function

- We would like to explore the properties of the likelihood function around the best fit point.
- **Problem:** At each point $(C, \alpha^{\ell}, \beta^{\ell}, \alpha^{q}, \beta^{q})$ requires the calculation of 471 observables, many of them need numerical integration.
- In a previous work¹, we used the Hessian approximation,

$$\Delta \log L(\vec{C}) \approx \Delta \log L_{\rm bf} + \vec{C}^T \mathbb{H} \vec{C} \,.$$

- Doesn't work in this case because of non-linear relation between fit parameters and Wilson coefficients (equi-probability surfaces are not ellipsoids).
- **Idea:** Teach a machine to approximate $\log L(\vec{C})$.

¹J.A., J. Guasch and S. Peñaranda. arXiv:2012.14799

Decision tree

13 / 26

xgboost

Regression tree

14 / 26

xgboost

Regression tree

15 / 26

xgboost

A regression tree k defines a function $f_k(x)$. We use an ensemble of trees F for the prediction:

$$\phi(x) = \sum_{k \in F} f_k(x) \,.$$

Extreme Gradient Boosting $(xgboost)^1$.

We have a dataset $\{(x_i, y_i)\}$ with $x_i \in X(\sim \mathbb{R}^n)$ and $y_i \in \mathbb{R}$, and want to find $\phi(x)$ so $\phi(x_i) \approx y_i$. Defining the regularized objective

$$\mathcal{L}[\phi] = \sum_{i} \ell(\phi(x_i), y_i) + \sum_{k} \Omega(f_k) \,.$$

- $\ell(\tilde{y}_i, y_i)$ is the loss function (MAE: $|\phi(x_i) y_i|$).
- $\Omega(f_k)$ penalizes the complexity of the trees.

The objective is optimized iteratively:

- The algorithm starts with one tree with a single leaf.
- At each step, one new tree with one more leaf is added to the ensemble (splitting).
- \blacksquare To prevent overfitting, the weights of the newly added leaf is multiplied by $\eta < 1$ (shrinkage).

¹T. Chen and C. Guestrin. arXiv:1603.02754

Data sample consisting of

- 5000 points re-used from likelihood plots.
- 5000 random points.
- Split in 75% training set, 25% validation set.

Results of the training:

- Pearson regression coefficient r = 0.971.
- Mean Absolute Error 0.655.

J.A., J. Guasch and S. Peñaranda. arXiv:2109.07404

We want to generate a sample of points distributed according to the χ^2 of the fit. We generate random points, that are accepted if

$$\log \tilde{L}(\vec{C}) = \log L_{\rm bf} + \log u \,,$$

with u a random number from the uniform distribution in [0, 1).

We use the trained model $\log \tilde{L}(\vec{C})$ to compute an approximation of the likelihood function.

J.A., J. Guasch and S. Peñaranda. arXiv:2109.07404

Measure of the importance of each parameter in the Machine Learning prediction for a single datapoint¹. Based on game theory (Lloyd Shapley, Nobel Prize in Economics '12).

- Local accuracy: The sum of all SHAP values (plus a constant) is the ML prediction.
- Missingness: If some parameter is missing, its SHAP value is zero.
- **Consistency:** If the model is changed so one parameter has a larger impact, its SHAP value will increase.

¹S. Lundberg, S. Lee. arXiv:1705.07874

- Marginal contributions when adding x^1 : $\phi_{100} - \phi_{000}, \phi_{110} - \phi_{010}, \phi_{101} - \phi_{001}, \phi_{111} - \phi_{011}.$
- SHAP value for x¹ is a weighted average of all its marginal contributions.
- ϕ_{000} is the constant value.

Efficient implementation (poly time) for tree-based Machine Learning models.¹

¹S. Lundberg, G. Erion, S. Lee. arXiv:1802.03888

21 / 26 SHAP values: results

The mixing β^q to the second quark generation and α^ℓ to the first lepton generation are in general the most important features.

For the best fit point, the value of C is also important:

Base	SHAP value for					Final	Actual
value	C	α^{ℓ}	β^{ℓ}	α^q	β^q	prediction	$\log L$
39.43	3.293	4.056	1.993	2.671	4.086	55.537	57.06

J.A., J. Guasch and S. Peñaranda. arXiv:2109.07404

SHAP importances reproduce the dependence of the $-\log L$:

J.A., J. Guasch and S. Peñaranda. arXiv:2109.07404

Correlations between observables

- Moderate correlation between R_K and $BR(B_s \rightarrow \mu^+ \mu^-)$ because $C_9^{\mu} \neq C_{10}^{\mu}$.
- Also moderate correlation between R_K and R_D .
- Perfect correlation between R_D and $BR(B \to K^{(*)}\nu\bar{\nu})$.
- No observable displays large correlations to the global likelihood: global fits are needed.

J.A., J. Guasch and S. Peñaranda. arXiv:2109.07404

23 /

An excess in R_D implies an excess in $BR(B \to K^{(*)}\nu\bar{\nu})$. (Note that the 2021 World Average is not included in our fit).

J. Grygier *et al.* (Belle) arXiv:1702.03224; F. Dattola (Belle-II) arXiv:2105.05754; Y. S. Ahmis *et al.* (HFLAV) arXiv:1909.12524; **J.A.**, J. Guasch and S. Peñaranda. arXiv:2109.07404

Global fits are needed to take in account possible side-effects.

Conclusions

- **xgboost** Machine Learning model is able to approximate the likelihood function.
- SHAP values capture the importance of each parameter in the fit.
- Interesting correlation between $R_{D^{(*)}}$ and $BR(B \to K^{(*)}\nu\bar{\nu})$.
- Explanation in terms of vector leptoquark U_1 coupling to second and third generations of quarks and third $(R_{D^{(*)}})$ and first $(R_{K^{(*)}})$ generation of leptons.

25

- Provisional values for $R_{D^{(*)}}$ from LHCb [https://indico.cern.ch/event/1187939]. Overall tension remains at 3.3 σ .
- Values for $R_{K^{(*)}}$ superseded by LHCb, arXiv:2212:09152-3 (submitted yesterday):

 $R_K^{\text{low}} = 0.994 \pm 0.086 \pm 0.028, \qquad R_{K^*}^{\text{low}} = 0.927 \pm 0.090 \pm 0.035,$

 $R_K^{\text{cen}} = 0.949 \pm 0.041 \pm 0.022, \qquad R_{K^*}^{\text{cen}} = 1.027 \pm 0.070 \pm 0.027.$

The $R_{K^{(*)}}$ anomaly has disappeared (only 0.2 σ)!

Back-up slides

The B anomalies are defined at $\mu=m_b,$ we need to integrate the heavy SM particles. We obtain the WET:

$$\begin{array}{c} O_{9}^{\ell} = (\bar{s}_{L}\gamma_{\alpha}b_{L})(\bar{e}_{\ell}\gamma^{\alpha}e_{\ell}) \\ O_{10}^{\ell} = (\bar{s}_{L}\gamma_{\alpha}b_{L})(\bar{e}_{\ell}\gamma^{\alpha}\gamma_{5}e_{\ell}) \end{array} \end{array} \implies \qquad R_{K^{(*)}}.$$

$$O_{VL}^{\ell} = (\bar{c}_{L}\gamma_{\alpha}b_{L})(\bar{e}_{\ell}_{L}\gamma^{\alpha}\nu_{\ell}) \implies \qquad R_{D^{(*)}}.$$

Translating between the two EFTs: 1-loop RG running $\Lambda \to \mu_{\rm EW}$ + matching:

J.A., J. Guasch and S. Peñaranda. arXiv:2109.07404

Correlations between WCs

- Correlation in C_{10}^e , C_{VL}^e and C_{ν}^e , all proportional to $C\lambda_{23}^{\ell}\lambda_{11}^{\ell}$.
- Correlation in C_{10}^{μ} , C_{VL}^{μ} and C_{ν}^{μ} , all proportional to $C\lambda_{23}^{q}\lambda_{22}^{\ell}$.
- Correlation in C_{VL}^{τ} and C_{ν}^{τ} , all proportional to $C\lambda_{23}^{q}\lambda_{33}^{\ell}$.
- $C_9^{\mu} = C_9^{\text{loop}}$ correlated to τ sector $(C\lambda_{23}^q \approx C\lambda_{23}^q \lambda_{33}^\ell).$
- $C_9^e = -C_{10}^e + C_9^{\text{loop}}$ partially correlated to e and τ sectors.

5/7

_{6/7} Connection to Leptoquarks

Vector Leptoquark $U_1 \sim (\bar{\mathbf{3}}, \mathbf{1}, 2/3)$,

$$\mathcal{L}_{U_1} = x_L^{ij} \bar{q}_i \gamma_\mu U_1^\mu \ell_j + x_R^{ij} \bar{d}_{Ri} \gamma_\mu U_1^\mu e_{Rj} + \text{h.c.}$$

Matching to the SMEFT Wilson coefficients

$$\begin{split} C^{ijkl}_{\ell q(1)} &= C^{ijkl}_{\ell q(3)} = \frac{-\Lambda^2}{2M_U^2} x_L^{li} x_L^{kj*} \,, \\ C^{ijkl}_{ed} &= -\frac{1}{2} C^{ijkl}_{qde} = \frac{-\Lambda^2}{2M_U^2} x_R^{li} x_R^{kj*} \,, \end{split}$$

In terms of the parameters of our fit,

$$|x_L^{ji}|^2 = -\frac{2}{M_U^2} C \lambda_{ii}^\ell \lambda_{jj}^q \,,$$

$$\operatorname{Arg}(x_L^{ji}) = \operatorname{Arg}(\lambda_{j3}^q) - \operatorname{Arg}(\lambda_{i3}^\ell) + \theta.$$

Couplings to vector leptoquark U_1 in Scenario II (mixing to first and second generation):

$$x_L = \begin{pmatrix} -2.27 \times 10^{-3} & -3.76 \times 10^{-10} & -0.0325\\ 0.0319 & 5.29 \times 10^{-9} & 0.458\\ 0.0437 & 7.25 \times 10^{-9} & 0.627 \end{pmatrix} \approx \begin{pmatrix} 0 & 0 & 0\\ x_1 & 0 & x_3\\ x_1 & 0 & x_3 \end{pmatrix}.$$

- Couplings x_L^{23} and x_L^{33} , previously proposed to describe the $R_{D^{(*)}}$ anomaly¹. Compatible with experimental limits.
- \blacksquare Additionally, couplings x_L^{21} and x_L^{31} to describe the $R_{K^{(\ast)}}$ anomaly.

Other leptoquark models, and W' and Z' models, do not generate $C_{\ell q(1)} = C_{\ell q(3)}$.

¹A. Bhaskar, D. Das, T. Mandal, S. Mitra and C. Neeraj. 2101.12069