ALP production in weak mesonic decays Alfredo Walter Mario Guerrera and Stefano Rigolin, 2211.08343

ALP production in weak mesonic decays Alfredo Walter Mario Guerrera¹ ¹Università degli studi di Padova and INFN, sezione di Padova

Alfredo Walter Mario Guerrera

Saturnalia²²

Motivation **ALPs and non-universal models**

ALPs

- Dark Matter candidate
- Naturally decoupled from SM
- Scales beyond colliders reach

Motivation **ALPs and non-universal models**

Non-universality

- Connection to SM flavour puzzle
- Relax bounds
- DFSZ-like 2HDM

¹Università degli studi di Padova and INFN, sezione di Padova

Motivation **Focal Points**

ALP production in weak mesonic decays

- Model Independent couplings
- Tree levels and penguins
- Pseudoscalars and vectors
- ALP masses in MeV-GeV range

- 10^{-4} $\overline{(1)}$ 10^{-5} Ge 10^{-6} <u>§</u> 10⁻⁷ 10^{-8}
 - 10^{-9}
 - 10^{-10}
 - 10^{-11}
 - 10^{-12}
 - 10^{-13}
 - 10^{-14}
 - 10^{-15}
 - 10^{-16}
 - 10^{-17}
 - 10^{-18}

¹Università degli studi di Padova and INFN, sezione di Padova

ALPs searches

Figure is taken from [Irastorza Redondo, 2018].

Overview

ALP production in weak mesonic decays

 Axions and ALPs Hadronization of different channels • Phenomenology of different searches Summary

LCSR for Mesogenesis

 Introduction on LCSR Form Factors & symmetries Results

¹Università degli studi di Padova and INFN, sezione di Padova

Theory Recap

Only need an extra U(1) spontaneously broken at f_a

Axions

problem are tied

ALP production in weak mesonic decays Alfredo Walter Mario Guerrera¹ ¹Università degli studi di Padova and INFN, sezione di Padova

Axions and ALPs pseudo-Goldstone Bosons

- Solve the Strong CP
- Mass and SSB scale

ALPs

- Do not solve Strong (P)
- Arbitrary mass and SSB scale

[Peccei Quinn, 77] [Wilczek, 77] [Weinberg, 77]

Axions and ALPs pseudo-Goldstone Bosons

Weakly coupled

- Always enters as a/f_a

- Derivative couplings
- Neutral pseudoscalar boson

¹Università degli studi di Padova and INFN, sezione di Padova

Axions and ALPs Non-Universality

Low Energy Effective Couplings

 $-\frac{\partial_{\mu}a}{2f_a}\sum_{f=u,d,\ell}\bar{f}\gamma^{\mu}\left(C_V+C_A\gamma^5\right)f$

- C_V and C_A matrices in flavour space
- Off-diagonal elements give FCNC

[Georgi Kaplan Randall, 86] [Bauer et al, 21]

ALP EFT Bound states

ALP production in weak mesonic decays Alfredo Walter Mario Guerrera¹ ¹Università degli studi di Padova and INFN, sezione di Padova

Axions and ALPs Phenomenological Model

ALP physics at GeV scale:

Experiment

Missing energy 2/3-body final states

¹Università degli studi di Padova and INFN, sezione di Padova

Hadronization of different channel

Local and bi-local operators

Hadronization of different channels Phenomenological Model

Hadronic matrix elements

Lattice and Light Cone Sum Rules

Lattice QCD results for local operators

[Carrasco et al, 16] [Ball Zwicky, 04]

Hadronization of different channels **Penguins Hadronization**

[Izaguirre Lin Shuve, 16] [Bauer Neubert Thamm, 17]

Hadronization of different channels Phenomenological Model

Hadronic matrix elements

Brodsky-Lepage Hadronization

Used for bi-local operators

[Lepage Brodsky, 80] [Szczepaniak Henley Brodsky, 90]

Hadronization of different channels **Brodsky-Lepage**

Based on Distribution Amplitudes

Assumptions

Quark-Hadron duality High energy transfer

Allows one to compute meson-to-vacuum and meson-to-meson matrix elements

¹Università degli studi di Padova and INFN, sezione di Padova

Phenomenology of different searches

Features and bounds

Phenomenology of different searches Meson-to-meson decay

Mesonic decays amplitudes

[AWMG Rigolin, 2211.08343]

Penguins

Phenomenology of different searches Meson-to-meson decay

B-sector

Channel	Tree–Level	Penguin
$B_c^{\pm} \to D_s^{\pm} a$	$(6 - 160) \times 10^{-11}$	2×10^{-6}
$B_c^{\pm} \to D^{\pm}a$	$(1 - 30) \times 10^{-11}$	3×10^{-7}
$B_c^{\pm} \to K^{*\pm}a$	$(2-70) \times 10^{-11}$	n.a.
$B_c^{\pm} \to \rho^{\pm} a$	$(4 - 100) \times 10^{-11}$	n.a.
$B_c^{\pm} \to K^{\pm}a$	$(8 - 230) \times 10^{-12}$	n.a.
$B_c^{\pm} \to \pi^{\pm} a$	$(3 - 85) \times 10^{-11}$	n.a.
$B^{\pm} \to D_s^{\pm} a$	$(5-30) \times 10^{-12}$	n.a.
$B^{\pm} \to D^{\pm}a$	$(1-7) \times 10^{-12}$	n.a.
$B^{\pm} \to K^{*\pm}a$	$(1-7) \times 10^{-12}$	4×10^{-6}
$B^{\pm} \to \rho^{\pm} a$	$(3-20) \times 10^{-12}$	4×10^{-7}
$B^{\pm} \to K^{\pm}a$	$(8-50) \times 10^{-13}$	2×10^{-6}
$B^{\pm} \to \pi^{\pm} a$	$(3-20) \times 10^{-12}$	3×10^{-7}

Phenomenology of different searches Meson-to-meson decay

D-sector

$D_s^{\pm} \to K^{*\pm}a$	$(1 - 60) \times 10^{-11}$	6×10^{-12}
$D_s^{\pm} \to \rho^{\pm} a$	$(3 - 170) \times 10^{-11}$	n.a.
$D_s^{\pm} \to K^{\pm}a$	$(6 - 300) \times 10^{-12}$	7×10^{-12}
$D_s^{\pm} \to \pi^{\pm} a$	$(2 - 120) \times 10^{-11}$	n.a.
$D^{\pm} \to K^{*\pm}a$	$(2 - 100) \times 10^{-12}$	n.a.
$D^{\pm} \rightarrow \rho^{\pm} a$	$(7 - 290) \times 10^{-12}$	3×10^{-12}
$D^{\pm} \to K^{\pm}a$	$(1-50) \times 10^{-12}$	n.a.
$D^{\pm} \to \pi^{\pm} a$	$(5 - 200) \times 10^{-12}$	6×10^{-12}

Phenomenology of different searches Meson-to-meson decay

K-sector

$K^{*\pm} \to K^{\pm}a$	$(5-25) \times 10^{-13}$	4×10^{-8}
$K^{*\pm} \to \pi^{\pm}a$	$(3-20) \times 10^{-12}$	3×10^{-9}
$\rho^{\pm} \to K^{\pm}a$	$(8 - 25) \times 10^{-12}$	2×10^{-9}
$\rho^{\pm} \to \pi^{\pm} a$	$(3-9) \times 10^{-11}$	4×10^{-10}
$K^{\pm} \to \pi^{\pm} a$	$(2 - 10) \times 10^{-12}$	5×10^{-10}

Phenomenology of different searches Meson-to-meson decay

 $c_s(c_d = \pm c_s)$

$C_s(C_u = \pm C_s)$	
----------------------	--

C _C	

Direct extension of $K^+ \to \pi^+ \bar{\nu} \nu$ measurement and $K_L \to \pi^0 \bar{\nu} \nu$

Picture from [AWMG Rigolin, 2211.08343]

Picture from [AWMG Rigolin, 21]

Phenomenology of different searches Leptonic decays

Three body Leptonic decay amplitude

Massless ALP limit

 $\mathcal{E}_h \approx \frac{i G_F V_{\text{CKM}} f_M M_M^2}{\sqrt{2} f_a (k \cdot P_M)} \left(\bar{\ell} \not k P_L \nu_\ell \right) (c_q - c_Q)$

Phenomenology of different searches Leptonic decays

 $M \to \ell \bar{\nu}_{\ell} a$ three body decay

Phenomenology of different searches Leptonic decays

[Gallo AWMG Penaranda Rigolin, 2021]

Phenomenology of different searches Leptonic decays

 $M \to \ell \bar{\nu}_{\ell} a$ three body decay

[Gallo AWMG Penaranda Rigolin, 2021]

80-70 Vents/4 MeV²/c⁴ 20 10 0 10^{-3}

Leptonic decays

[Gallo AWMG Penaranda Rigolin, 2021]

¹Università degli studi di Padova and INFN, sezione di Padova

Summary

Flavour Conserving Parameters

¹Università degli studi di Padova and INFN, sezione di Padova

Summary on Flavor Conserving parameters

10 ⁵		100 $f_a[GeV]$	

	$K \rightarrow e \nu a$ $D \rightarrow e \nu a$ $D_{s} \rightarrow e \nu a$ $B \rightarrow e \nu a$	C _e
	$\begin{array}{c} \mathbf{K} \rightarrow \mu \nu \mathbf{a} \\ D_s \rightarrow \mu \nu \mathbf{a} \\ \mathbf{D} \rightarrow \mu \nu \mathbf{a} \\ \mathbf{B} \rightarrow \mu \nu \mathbf{a} \end{array}$	c_{μ}
	$\begin{array}{c} B \rightarrow \tau \nu a \\ D_s \rightarrow \tau \nu a \\ D \rightarrow \tau \nu a \end{array}$	$C_{\mathcal{T}}$
	$K \rightarrow \pi a$ $K \rightarrow e \nu a$ $B \rightarrow \mu \nu a$ $B \rightarrow e \nu a$ $K \rightarrow \mu \nu a$ $B \rightarrow \tau \nu a$ $B \rightarrow K^* a$ $B \rightarrow K^* a$	C _U
	$K_L \rightarrow \pi^0 a$ $D \rightarrow e \nu a$ $D \rightarrow \pi a$ $D \rightarrow \mu \nu a$ $D \rightarrow \tau \nu a$	Cd
	$K \rightarrow \pi a$ $K \rightarrow e \nu a$ $D_s \rightarrow e \nu a$ $K_L \rightarrow \pi^0 a$ $D_s \rightarrow \mu \nu a$ $K \rightarrow \mu \nu a$ $D_s \rightarrow \tau \nu a$	C _S
	$K \rightarrow \pi a$ $D_{s} \rightarrow e \nu a$ $D \rightarrow e \nu a$ $D_{s} \rightarrow \mu \nu a$ $D \rightarrow \pi a$ $D \rightarrow \mu \nu a$ $D_{s} \rightarrow \tau \nu a$ $D \rightarrow \tau \nu a$	C _C
	$\begin{array}{c} Y \rightarrow \gamma \ a \\ B \rightarrow \mu \ \nu \ a \\ B \rightarrow e \ \nu \ a \\ B \rightarrow \tau \ \nu \ a \\ D \rightarrow \pi \ a \\ B \rightarrow K \ a \\ B \rightarrow K^* \ a \end{array}$	Сb
	$K \rightarrow \pi a$ $B \rightarrow K a$ $K_L \rightarrow \pi^0 a$ $B \rightarrow K^* a$	c_t
0.1		

Branching Fractions of B Meson Decays in Mesogenesis Alfredo Walter Mario Guerrera and Gilly Elor, 2211.10553

LCSR & Mesogenesis

¹Università degli studi di Padova and INFN, sezione di Padova

Operator	Initial	Final	ΔM				
and Decay	State	State	(MeV)				
	B_d	$\psi + n (udd)$	4340.1		B_d	$\psi + \Lambda_c + \pi^- (cdd)$	2853.6
$\mathcal{O}_{ud} = \psi b u d$	B_s	$\psi + \Lambda (uds)$	4251.2	$\mathcal{O}_{cd} = \psi b c d$	B_s	$\psi + \Xi_c^0 (cds)$	2895.0
$\bar{b} \rightarrow \psi u d$	B^+	$\psi + p(duu)$	4341.0	$b \rightarrow \psi c d$	$ B^+$	$\psi + \Lambda_c^+ (dcu)$	2992.9
	Λ_b	$\bar{\psi} + \pi^0$	5484.5		Λ_b	$\psi + D^{\circ}$	3754.7
	B,	$a/2 \pm \Lambda (218d)$	1164 0		B_d	$\psi + \Xi_c^0 (csd)$	2807.8
$\mathcal{O}_{1} = \partial_{1} h \eta_{2}$	B^{Da}	$\psi + \Xi^0 (use)$	4025.0	$\mathcal{O}_{cs} = \psi b c s$	B_s	$\psi + \Omega_c (css)$	2671.7
$\begin{bmatrix} Uus - \psi Uus \\ \bar{h} \rightarrow \psi us \end{bmatrix}$	$\begin{vmatrix} D_s \\ R^+ \end{vmatrix}$	$\psi + \Box (uss)$ $\psi + \Sigma^+ (uss)$	1020.0	$\bar{b} \rightarrow \psi c s$	B^+	$\psi + \Xi_c^+ (csu)$	2810.4
$\psi - \psi u \delta$	Λ_b	$\psi + \Sigma (uus)$ $\bar{\psi} + K^0$	5121.9		Λ_b	$\bar{\psi} + D^- + K^+$	3256.2

¹Università degli studi di Padova and INFN, sezione di Padova

LCSR & Mesogenesis Introduction

Mesogenesis

CPV from Mesons systems Total baryon number is conserved Testable at colliders

¹Università degli studi di Padova and INFN, sezione di Padova

LCSR & Mesogenesis Introduction

Collider Tests

Belle-II Search $B^0 \to \Lambda \Psi_B$

- 10^{-1}
- fraction 10^{-3} nchin Brar

¹Università degli studi di Padova and INFN, sezione di Padova

LCSR & Mesogenesis Introduction

Collider Tests

LHCb proposal for many observables

¹Università degli studi di Padova and INFN, sezione di Padova

LCSR & Mesogenesis Introduction

$Br(B \rightarrow \mathcal{B}_{SM} + \psi_{\mathcal{B}})$ challenging calculation

One can employ Light-Cone Sum Rules

Hadronic Dispersion Relation

 $\Pi_{I}((P+q)^{2}, q^{2}) \supset \int ds \frac{\rho_{I}(s, q^{2})}{s - (P+q)^{2}}$

ALP production in weak mesonic decays Alfredo Walter Mario Guerrera¹ ¹Università degli studi di Padova and INFN, sezione di Padova

LCSR & Mesogenesis Introduction

 $\int d^4x \ e^{i(P+q)\cdot x} \langle 0 | \operatorname{T}\{j_B(x)\mathcal{O}_{d_i u_k d_j}\} | \mathcal{B}_{SM} \rangle$

Light-cone OPE

 $\Pi_{I}^{\text{OPE}}((P+q)^{2}, q^{2}) = \frac{1}{\pi} \int ds \frac{\text{Im}\{\Pi_{I}^{\text{OPE}}(s, q^{2})\}}{s - (P+q)^{2}}$

 $m_B^2 f_B F_I(q^2) e^{-m_B^2/M^2} = rac{1}{\pi} \int_{m_b^2}^{s_0^B} ds \ e^{-s/M^2} \mathrm{Im}\{\Pi_I^{\mathrm{OPE}}(s,q^2)\},$

LCSR & Mesogenesis **Form Factors and Symmetries**

Results

 $R_{1}(q^{2}) = \frac{m_{b}^{3}}{4m_{B}^{2}f_{B}} \int_{0}^{\alpha_{0}^{B}} d\alpha \ e^{(m_{B}^{2} - s(\alpha))/M^{2}} \left\{ \frac{\tilde{V}(\alpha)}{(1 - \alpha)^{2}} \left(1 + \frac{(1 - \alpha)^{2}m_{\mathcal{B}_{SM}}^{2} - q^{2}}{m_{b}^{2}} \right) \right\}$ $R_2(q^2) = \frac{m_b m_{\mathcal{B}_{\rm SM}}^2}{4m_B^2 f_B} \int_0^{\alpha_0^B} d\alpha \ e^{(m_B^2 - s(\alpha))/M^2} \left(\widetilde{V}(\alpha) - 3\frac{m_b}{m_{\mathcal{B}_{\rm SM}}} \frac{\widetilde{T}(\alpha)}{m_{\mathcal{B}_{\rm SM}}(1 - \alpha)}\right)$ $\widetilde{L}_{1}(q^{2}) = \frac{m_{b}m_{\mathcal{B}_{SM}}^{2}}{4m_{B}^{2}f_{B}} \int_{0}^{\alpha_{0}^{B}} d\alpha \frac{\widetilde{V}(\alpha)}{(1-\alpha)} e^{(m_{B}^{2}-s(\alpha))/M^{2}}$

 $m_B^2 f_B F_I(q^2) e^{-m_B^2/M^2} = \frac{1}{\pi} \int_{m_b^2}^{s_0^B} ds \ e^{-s/M^2} \operatorname{Im}\{\Pi_I^{OPE}(s,q^2)\},$

LCSR & Mesogenesis **Form Factors and Symmetries**

Input needed: Baryonic Distribution Amplitudes (DAs)

Figure taken from [Bali et al, 2019]

Flavorful Operator $\psi_{\mathcal{B}} b \, u \, d$ $\psi_{\mathcal{B}} b \, u \, s$ Ţ $\psi_{\mathcal{B}} b \, c \, d$ Ι $\psi_{\mathcal{B}} b c s$

ALP production in weak mesonic decays Alfredo Walter Mario Guerrera¹

¹Università degli studi di Padova and INFN, sezione di Padova

LCSR & Mesogenesis Results

Decay	$F_R^{\mathcal{O}}, \widetilde{F}_L^{\mathcal{O}}$	$F_R^{\mathcal{O}}, \widetilde{F}_L^{\mathcal{O}}$	$\operatorname{Br}(B \to \mathcal{B}_{\mathrm{SM}} + \psi_{\mathcal{B}})$	$\operatorname{Br}(B \to \mathcal{B}_{\mathrm{SM}})$
Channel	$\mathcal{O} = \mathcal{O}_{b,u_id_j}$	$\mathcal{O} = \mathcal{O}_{d_k, u_i b}$	$\mathcal{O} = \mathcal{O}_{b,u_id_j}$	$\mathcal{O}=\mathcal{O}_{d_k}$
$B_d \to \psi_{\mathcal{B}} + n$	$R_1, 0$	$R_1, 0$	$3.7_{\pm 0.4} \cdot 10^{-7}$	$8.3_{\pm 0.9} \cdot 10$
$B_s \to \psi_{\mathcal{B}} + \Lambda$	n.a.	n.a.	n.a	n.a.
$B^+ \to \psi_{\mathcal{B}} + p$	R_2, \widetilde{L}_1	$R_1, 0$	$9.6_{\pm 0.6} \cdot 10^{-8}$	$8.9_{\pm 0.9} \cdot 10$
$B_d \to \psi_{\mathcal{B}} + \Lambda$	R_1, O	$R_1, 0$	$1.2_{\pm 0.06} \cdot 10^{-5}$	$3.2_{\pm 0.6} \cdot 10$
$B_s \to \psi_{\mathcal{B}} + \Xi^0$	R_2, \widetilde{L}_1	R_3, \widetilde{L}_1	$2.6_{\pm 0.1} \cdot 10^{-6}$	$4.8_{\pm 0.2} \cdot 10$
$3^+ \to \psi_{\mathcal{B}} + \Sigma^+$	R_2, \widetilde{L}_1	$R_1, 0$	$2.5 \pm 0.3 \cdot 10^{-6}$	$2.1_{\pm 0.2} \cdot 10$
$B_d \to \psi_{\mathcal{B}} + \Sigma_c^0$	R_2, \widetilde{L}_1	R_3, \widetilde{L}_1	$1.3 \pm 0.6 \cdot 10^{-6}$	$2.7_{\pm 1.5} \cdot 10$
$B_s \to \psi_{\mathcal{B}} + \Xi_c^0$	R_2, \widetilde{L}_1	R_3, \widetilde{L}_1	$1.2_{\pm 0.6} \cdot 10^{-6}$	$2.3_{\pm 1.3} \cdot 10$
$3^+ \to \psi_{\mathcal{B}} + \Sigma_c^+$	R_2, \widetilde{L}_1	R_3, \widetilde{L}_1	$1.4 \pm 0.7 \cdot 10^{-6}$	$2.9_{\pm 1.6} \cdot 10$
$B_d \to \psi_{\mathcal{B}} + \Xi_c^0$	R_2, \widetilde{L}_1	R_3, \widetilde{L}_1	$8.4_{\pm 3.7} \cdot 10^{-6}$	$3.2_{\pm 1.7} \cdot 10$
$B_s \to \psi_{\mathcal{B}} + \Omega_c$	R_2, \widetilde{L}_1	R_3, \widetilde{L}_1	$9.0_{\pm 4.0} \cdot 10^{-6}$	$4.4_{\pm 2.0} \cdot 10$
$3^+ \to \psi_{\mathcal{B}} + \Xi_c^+$	R_2, \widetilde{L}_1	R_3, \widetilde{L}_1	$1.8 \pm 0.6 \cdot 10^{-5}$	$3.5_{\pm 1.9} \cdot 10$

ALP production in weak mesonic decays Alfredo Walter Mario Guerrera¹ ¹Università degli studi di Padova and INFN, sezione di Padova $B^{0}_{d} \rightarrow n + \psi_{\mathcal{B}}$ $B^{+} \rightarrow p^{+} + \psi_{\mathcal{B}}$ $O_{d,ub}$ 1.0 0.8 10^5 0.6 0.4 0.2 $0.0 \left[(y/M_Y)_{\text{max}}^2 = 3.2 \times 10^{-7} \text{ GeV}^2 \right]$ 3.0 3.5 1.0 1.5 2.0 2.5 $m_{\psi_{\mathcal{B}}} \, [\text{GeV}]$ $\begin{array}{ccc} B_d^0 \to \Lambda + \psi_{\mathcal{B}} & B_s^0 \to \Xi^0 + \psi_{\mathcal{B}} \\ & & & \\ \end{array} & & B^+ \to \Sigma^+ + \psi_{\mathcal{B}} & O_{s,ub} \end{array}$ 10^5 3 $(y/M_Y)_{\rm max}^2 = 3.2 \times 10^{-7} \ {\rm GeV}^2$ 0 1.0 1.5 2.0 2.5 3.0 $m_{\psi_{\mathcal{B}}} \, [\text{GeV}]$

$$B_{d}^{0} \rightarrow \Xi_{c}^{0} + \psi_{B}$$

$$B_{s}^{0} \rightarrow \Omega_{c}^{0} + \psi_{B}$$

$$B_{s}^{0} \rightarrow \Omega_{c}^{0} + \psi_{B}$$

$$B_{s}^{0} \rightarrow \Omega_{c}^{0} + \psi_{B}$$

$$0.0 \quad (y/M_{Y})_{max}^{2} = 8.9 \times 1.0 \quad 1.5$$

$$B_{d}^{0} \rightarrow \Xi_{c}^{0} + \psi_{B}$$

$$B_{s}^{0} \rightarrow \Omega_{c}^{0} + \psi_{B}$$

¹Università degli studi di Padova and INFN, sezione di Padova

Conclusions Summary

- Calculation for new s and t-channels contributions
 - Tree-level and loop amplitudes correlations
 - LCSR for mesogenesis predictions

Future projects

- Visible ALP scenarios
- More on non-universal axion
- Different UV completions for mesogenesis operators
 - Different mesons in $M \to \mathcal{B}_{SM} + \psi_{\mathcal{B}}$

Acknowledgements

Thank you for your time!

¹Università degli studi di Padova and INFN, sezione di Padova

Backup slides

Refs and Extras

Larger Confinig Group $QCD \oplus QCD'$ $m_a^2 f_a^2 = m_\pi^2 f_\pi^2 + \Lambda'$ [2001.05610]

ALP production in weak mesonic decays Alfredo Walter Mario Guerrera¹

¹Università degli studi di Padova and INFN, sezione di Padova

Heavy/Light Axions

Models

How can one have heavier/lighter Axions?

Blurred lines between ALPs and Axions.

Light Axion

Flatten The Axion Potential N degenerate copies of SM result $m_a^2 f_a^2 = m_\pi^2 f_\pi^2 2^{-N}$ [2102.00012]

 $V(a) = -m_{\pi}^2 f_{\pi}^2 \sqrt{1 - \frac{4m_u m_d}{(m_u + m_d)^2}} \sin^2 \left(V(a) \approx \frac{1}{2} \left(m_{\pi}^2 f_{\pi}^2 \frac{m_u m_d}{f_a^2 (m_u + m_d)^2} \right) a^2 \right)$

¹Università degli studi di Padova and INFN, sezione di Padova

Axion Paradigm

Dynamical solution to the strong CP problem

The coupling to $SU(3)_c$ gives the Axion a potential

[Peccei+Quinn 77] [Weinberg, 78] [Wilczek, 78]

 $\Psi_L \to \chi_L, \\ H_{u,d} \to \chi_{u,d}.$

ALP production in weak mesonic decays

¹Università degli studi di Padova and INFN, sezione di Padova

Axion Paradigm

UV Complete Models

The simplest way to implement the PQ mechanism was given by the Weinberg-Wilczek (WW) model.

W.W.

The two higgs doublets are necessary for the charges to produce an axial anomaly.

The scale $f_a \simeq v$ excludes WW. [Goldman Hoffman, 78]

"Invisible Axion" models are born

 $10^{-8} < m_a < 10^{-5}$ and $10^9 < f_a < 10^{12}$ GeV

- Alfredo Walter Mario Guerrera¹

Charges

Yukawa term imposes

 $\chi_u + \chi_d = 2\chi_{q_L} - \chi_{u_R} - \chi_{d_R}$

a

ALP production in weak mesonic decays Alfredo Walter Mario Guerrera¹

¹Università degli studi di Padova and INFN, sezione di Padova

Axion Paradigm

UV Complete Models

[Kim, 79] [Shifman Vainshtein Zakharov, 80]

2 Higgs doublets $(H_{u,d})$ Complex Scalar Φ Breaking Pattern is: $U(1)_{H_u} \times U(1)_{H_d} \times U(1)_{\Phi}$ $U(1)_Y \times U(1)_{\rm PQ}$

ALP production in weak mesonic decays Alfredo Walter Mario Guerrera¹

¹Università degli studi di Padova and INFN, sezione di Padova

Axion Paradigm

UV Complete Models

D.F.S.Z.

This model escapes esclusion thanks to $v_{\mathrm{PQ}} \simeq v_{\Phi}.$ The ALP-fermion couplings depend on the single parameter $\tan\beta = v_u/v_d.$ The anomalous couplings depend on which higgs doublet couples to leptons. [Zhitnitsky, 80] [Dine Fischler Srednicki, 81]

2 Higgs doublets $(H_{u,d})$ Complex Scalar Φ Breaking Pattern is: $U(1)_{H_u} \times U(1)_{H_d} \times U(1)_{\Phi}$ $U(1)_Y \times U(1)_{\rm PQ}$

ALP production in weak mesonic decays Alfredo Walter Mario Guerrera¹

¹Università degli studi di Padova and INFN, sezione di Padova

Axion Paradigm

UV Complete Models

D.F.S.Z.

Down Leptons E/NUp Model-I $-1/3\cos^2\beta$ $-1/3\cos^2\beta$ $-1/3\cos^2\beta$ 8/3 Model-II $-1/3\cos^2\beta$ $-1/3\cos^2\beta$ $1/3\cos^2\beta$ 2/3where $\frac{\alpha}{8\pi}E/N$ is the ALP-photon coupling. [Zhitnitsky, 80] [Dine Fischler Srednicki, 81]

QCD anomaly from SM quarks Extra Higgs doublet $f_a = \frac{v}{6}\sin 2\beta$ Axion couples too strongly

ALP production in weak mesonic decays Alfredo Walter Mario Guerrera¹

¹Università degli studi di Padova and INFN, sezione di Padova

Benchmark Models

Axion

More on UV complete Axions

KSVZ

Heavy colored fermion Complex scalar Anomaly from Heavy sector $U(1)_{\rm PQ}$ is SB at a scale $v_{\phi} \gg v$

Effective Field Theory

Basis

Higgs coupling redundant Field dependent rotation changes interactions Chiral conserv. \leftrightarrow Chiral chang.

Extended scalar sector $U(1)^3 \rightarrow U(1)_Y \times U(1)_{PQ}$ $U(1)_{\rm PQ}$ charges from Yukawas Direct coupling to SM J^{5}_{μ} 's.

DFSZ

 $\mathcal{L}'_{a} = \frac{1}{2}\partial_{\mu}a\partial^{\mu}a - \frac{1}{2}m_{a}^{2}a^{2} + \frac{\alpha_{s}}{8\pi}\frac{a}{f_{a}}G^{a}_{\mu\nu}\tilde{G}^{\mu\nu a} + \frac{\alpha}{8\pi}c_{\gamma}\frac{a}{f_{a}}F_{\mu\nu}\tilde{F}^{\mu\nu} + \frac{\partial_{\mu}a}{2f_{a}}\sum_{f=n,d,\ell}\bar{f}\gamma^{\mu}\left(C_{V} + C_{A}\gamma^{5}\right)f.$

¹Università degli studi di Padova and INFN, sezione di Padova

Effective Lagrangian

Model Independent Description

The most general dimension 5 Lagrangian [Georgi Kaplan Randall, 86] $\mathcal{L}_{a} = \frac{1}{2} \partial_{\mu} a \partial^{\mu} a - \frac{1}{2} m_{a}^{2} a^{2} + \sum_{X} c_{X} \frac{\alpha_{X}}{8\pi} \frac{a}{f_{a}} X_{\mu\nu} \tilde{X}^{\mu\nu} + \frac{\partial_{\mu} a}{f_{a}} \left(c_{H} H^{\dagger} i \overset{\leftrightarrow}{D^{\mu}} H + \sum_{F} \bar{\Psi}_{F} \gamma^{\mu} C_{F} \Psi_{F} \right).$ At low energies, E << v,

Effective Couplings

 C_V and C_A are matrices in generation space

Flavor Violation

Off-diagonal elements mix same charge fermions

Diagonal Couplings

Flavor Violation is loop induced Can reproduce off-diagonal terms

ALP production in weak mesonic decays Alfredo Walter Mario Guerrera¹

¹Università degli studi di Padova and INFN, sezione di Padova

Effective Lagrangian

Model Independent Description

Disregard anomalous gauge couplings and off-diagonal fermionic couplings: $\mathcal{L}'_{a} = \frac{1}{2} \partial_{\mu} a \partial^{\mu} a - \frac{1}{2} m_{a}^{2} a^{2} + \frac{\partial_{\mu} a}{2f_{a}} \sum_{f=u,d,\ell} \bar{f}_{i} \gamma^{\mu} \left((C_{V})_{ii} + (C_{A})_{ii} \gamma^{5} \right) f_{i}$ partial integration and conservation of $U(1)_{\rm e.m.}$ vector current implies: $\mathcal{L}'_{a} = \frac{1}{2} \partial_{\mu} a \partial^{\mu} a - \frac{1}{2} m_{a}^{2} a^{2} + \frac{a}{f_{a}} \sum_{f=u,d,\ell} c_{i} \bar{f}_{i} m_{i} \gamma^{5} f_{i}.$

The parameters $c_i (= (C_A)_{ii})$ are all independent and non universal.

[Izaguirre Lin Shuve, 2017] [Gavela et al., 2019]

¹Università degli studi di Padova and INFN, sezione di Padova

Hadronization Techniques

Brodsky-Lepage

s—channel factorization: [AG Rigolin, 2021] [Gallo AG Penaranda Rigolin, 2021] [GA Rigolin, TBA]

Hadronization

 $\left< 0 \right| \left(\bar{q} \, \Gamma_{\mu} Q \right) \left| M \right>$

Hadronization

 if_M

ALP production in weak mesonic decays Alfredo Walter Mario Guerrera¹

¹Università degli studi di Padova and INFN, sezione di Padova

Hadronization Techniques

Brodsky-Lepage

s-channel factorization: $M_I \to M_F a \text{ and } M \to \ell \bar{\nu}_\ell a$ [AG Rigolin, 2021] [Gallo AG Penaranda Rigolin, 2021] [GA Rigolin, TBA]

 $\left< 0 \right| \left(\bar{q} \, \Gamma_{\mu} Q \right) \left| M \right>$

 $dx \operatorname{Tr}[\Psi_M(x)\Gamma_{\mu}]$

Hadronization

 $\langle M_F | (\bar{Q}' \Gamma_\mu Q) (\bar{q} \Gamma'^\mu q') | M_I \rangle$

 $-\frac{f_{M_F}f_{M_I}}{\sqrt{2}}\int dx\,dy\times$

 $\mathrm{Tr}[\Psi_{M_I}(x)\Gamma'^{\mu}\Psi_{M_F}(y)\Gamma_{\mu}]$

ALP production in weak mesonic decays Alfredo Walter Mario Guerrera¹

¹Università degli studi di Padova and INFN, sezione di Padova

Hadronization Techniques

Brodsky-Lepage

t-channel factorization: Only for $M_I \to M_F a$ [AG Rigolin, 2021] [GA Rigolin, TBA]

¹Università degli studi di Padova and INFN, sezione di Padova

Experimental Signatures

Stellar

Figure is taken from [Irastorza Redondo, 2018].

Plot Legend

Helioscopes: primakoff conversion from Axion sun fluxes Sun: Neutrino Flux and Helioseismology

HB: Ratio of Horizontal Branch to red

giants, ratio decreses with Primakoff

¹Università degli studi di Padova and INFN, sezione di Padova

Experimental Signatures

Cosmological

Figure is taken from [Irastorza Redondo, 2018].

Plot Legend

Monochromatic lines of photons from ALP 2 body decay

Extragalactic Background Light (EBL),

BBN, CMB, X-Rays

Charged Mesonic decays amplitudes

[AWMG Rigolin, 2211.08343]

 $G_F V_{CKM} f_I f_F($ $\sqrt{2}f_a$ $\sqrt{2}f_a$

ALP production in weak mesonic decays Alfredo Walter Mario Guerrera¹ ¹Università degli studi di Padova and INFN, sezione di Padova

Phenomenology of different searches Meson-to-meson decay

Tree level *s***-channel**

$$\frac{(k \cdot P_F)}{M_I}$$

 $\int dx \, g_I(x) \left[\frac{c_q m_q}{m_a^2 - 2k \cdot P_I(1-x)} - \frac{c_Q m_Q}{m_a^2 - 2k \cdot P_I x} \right]$

	Channel	Tree–Level	Penguin
	$B_c^{\pm} \rightarrow D_s^{\pm} a$	$(6 - 160) \times 10^{-11}$	2×10^{-6}
	$B_c^{\pm} \to D^{\pm}a$	$(1 - 30) \times 10^{-11}$	3×10^{-7}
	$B_c^{\pm} \to K^{*\pm}a$	$(2-70) \times 10^{-11}$	n.a.
	$B_c^{\pm} \rightarrow \rho^{\pm} a$	$(4 - 100) \times 10^{-11}$	n.a.
	$B_c^{\pm} \to K^{\pm}a$	$(8 - 230) \times 10^{-12}$	n.a.
	$B_c^{\pm} \to \pi^{\pm} a$	$(3 - 85) \times 10^{-11}$	n.a.
	$B^{\pm} \rightarrow D_s^{\pm} a$	$(5 - 30) \times 10^{-12}$	n.a.
	$B^{\pm} \rightarrow D^{\pm}a$	$(1-7) \times 10^{-12}$	n.a.
	$B^{\pm} \to K^{*\pm}a$	$(1-7) \times 10^{-12}$	4×10^{-6}
	$B^{\pm} \rightarrow \rho^{\pm} a$	$(3-20) \times 10^{-12}$	4×10^{-7}
	$B^{\pm} \to K^{\pm}a$	$(8-50) \times 10^{-13}$	2×10^{-6}
-	$B^{\pm} \to \pi^{\pm} a$	$(3-20) \times 10^{-12}$	3×10^{-7}
$-\int \phi_{\tau}(r)$	$D_s^{\pm} \to K^{*\pm}a$	$(1-60) \times 10^{-11}$	6×10^{-12}
$\varphi I(\omega)$	$D_s^{\pm} \to \rho^{\pm} a$	$(3 - 170) \times 10^{-11}$	n.a.
	$D_s^{\pm} \to K^{\pm} a$	$(6 - 300) \times 10^{-12}$	7×10^{-12}
	$D_s^{\pm} \to \pi^{\pm} a$	$(2 - 120) \times 10^{-11}$	n.a.
	$D^{\pm} \to K^{*\pm}a$	$(2 - 100) \times 10^{-12}$	n.a.
$- \phi_I(x)$	$D^{\pm} \rightarrow \rho^{\pm} a$	$(7 - 290) \times 10^{-12}$	$3 imes 10^{-12}$
$\varphi I(\omega)$	$D^{\pm} \to K^{\pm}a$	$(1-50) \times 10^{-12}$	n.a.
	$D^{\pm} \to \pi^{\pm} a$	$(5-200) \times 10^{-12}$	6×10^{-12}
	$K^{*\pm} \to K^{\pm}a$	$(5-25) \times 10^{-13}$	4×10^{-8}
	$K^{*\pm} \to \pi^{\pm} a$	$(3 - 20) \times 10^{-12}$	$3 imes 10^{-9}$
	$\rho^{\pm} \to K^{\pm}a$	$(8-25) \times 10^{-12}$	2×10^{-9}
	$\rho^{\pm} \to \pi^{\pm} a$	$(3-9) \times 10^{-11}$	4×10^{-10}
	$K^{\pm} \to \pi^{\pm} a$	$(2-10) \times 10^{-12}$	5×10^{-10}

Charged Mesonic decays amplitudes

[AWMG Rigolin, 2211.08343]

ALP production in weak mesonic decays Alfredo Walter Mario Guerrera¹ ¹Università degli studi di Padova and INFN, sezione di Padova

Phenomenology of different searches Meson-to-mes

on deca	Channel	Tree–Level	Penguin
	$B_c^{\pm} \to D_s^{\pm} a$	$(6 - 160) \times 10^{-11}$	2×10^{-6}
	$B_c^{\pm} \to D^{\pm}a$	$(1-30) \times 10^{-11}$	3×10^{-7}
	$B_c^{\pm} \to K^{*\pm}a$	$(2-70) \times 10^{-11}$	n.a.
	$B_c^{\pm} \to \rho^{\pm} a$	$(4 - 100) \times 10^{-11}$	n.a.
	$B_c^{\pm} \to K^{\pm}a$	$(8 - 230) \times 10^{-12}$	n.a.
	$B_c^{\pm} \to \pi^{\pm} a$	$(3-85) \times 10^{-11}$	n.a.
	$B^{\pm} \rightarrow D_s^{\pm} a$	$(5-30) \times 10^{-12}$	n.a.
	$B^{\pm} \to D^{\pm}a$	$(1-7) \times 10^{-12}$	n.a.
	$B^{\pm} \to K^{*\pm}a$	$(1-7) \times 10^{-12}$	4×10^{-6}
	$B^{\pm} \to \rho^{\pm} a$	$(3-20) \times 10^{-12}$	4×10^{-7}
	$B^{\pm} \to K^{\pm}a$	$(8-50) \times 10^{-13}$	2×10^{-6}
	$B^{\pm} \to \pi^{\pm} a$	$(3-20) \times 10^{-12}$	3×10^{-7}

Neutral Mesonic decays amplitudes

[AWMG Rigolin, 2211.08343]

ALP production in weak mesonic decays Alfredo Walter Mario Guerrera¹ ¹Università degli studi di Padova and INFN, sezione di Padova

Phenomenology of different searches Meson-to-meson decay

Tree level t-channel

$\begin{aligned} \mathcal{C}_{\mathrm{I}}^{(t)} &= -i \frac{G_F V_{CKM} f_I f_F}{2 f_a} \epsilon^{\alpha}(P_I) P_I^{\beta}(k^{\beta} P_F^{\alpha} - k^{\alpha} P_F^{\beta}) \\ &\int_0^1 dx \Big[\frac{c_Q m_Q \, \theta(x - \delta_a^M)}{m_a^2 - 2k \cdot P_I x} - \frac{c_q m_q \, \theta(1 - x - \delta_a^M)}{m_a^2 - 2k \cdot P_I (1 - x)} \Big] \phi_I(x) \end{aligned}$ $\int_{0}^{1} dx \Big[\frac{c_{Q}m_{Q}\theta(x-\delta_{a}^{M})}{m_{a}^{2}-2k\cdot P_{I}x} (\varepsilon_{\alpha\beta\delta\rho}k^{\rho}-ik^{\beta}g^{\alpha\delta}+ik^{\alpha}g^{\beta\delta}) + \frac{c_{q}m_{q}\theta(1-x-\delta_{a}^{M})}{m_{a}^{2}-2k\cdot P_{I}(1-x)} (\varepsilon_{\alpha\beta\delta\rho}k^{\rho}-ik^{\alpha}g^{\beta\delta}+ik^{\beta}g^{\alpha\delta}) \Big] \phi_{I}(x)$

Channel	Tree–Level	Penguins
$B^0_s \rightarrow D^0_s a$	n.a.	4×10^{-7}
$B^0_s ightarrow D^0 a$	$(7 - 70) \times 10^{-12}$	n.a.
$B_s^0 \to K^{*0}a$	n.a.	4×10^{-6}
$B_s^0 \to \rho^0 a$	$(4-50) \times 10^{-13}$	n.a.
$B_s^0 \to K_L^0 a$	n.a.	3×10^{-7}
$B^0 \to K^{*0}a$	n.a.	4×10^{-6}
$B^0 \rightarrow D^0 a$	$(3 - 30) \times 10^{-11}$	n.a.
$B^0 \to \rho^0 a$	$(2-20) \times 10^{-12}$	6×10^{-7}
$B^0 \to K_L^0 a$	n.a.	4×10^{-6}
$B^0 \rightarrow \pi^0 a$	$(1 - 10) \times 10^{-12}$	5×10^{-7}
$D^0 \to K^{*0}a$	$(7 - 300) \times 10^{-12}$	n.a.
$D^0 \rightarrow \rho^0 a$	$(5 - 200) \times 10^{-12}$	4×10^{-12}
$D^0 \to K^0_L a$	$(7 - 270) \times 10^{-13}$	n.a.
$D^0 \to \pi^0 a$	$(2 - 100) \times 10^{-12}$	3×10^{-12}
$K^{*0} \to K^0 a$	$(2-6) \times 10^{-12}$	3×10^{-9}
$K^{*0} \to \pi^0 a$	$(1-2) \times 10^{-11}$	$3 imes 10^{-9}$
$\rho^0 \to K^0 a$	$(1-3) \times 10^{-11}$	2×10^{-9}
$\rho^0 \to \pi^0 a$	$(2-7) \times 10^{-11}$	$3 imes 10^{-9}$
$K_L^0 \to \pi^0 a$	$(4 - 20) \times 10^{-15}$	1×10^{-10}

Charged Mesonic decays amplitudes

[AWMG Rigolin, 2211.08343]

ALP production in weak mesonic decays Alfredo Walter Mario Guerrera¹ ¹Università degli studi di Padova and INFN, sezione di Padova

Phenomenology of different searches Meson-to-meson decay

Penguins

Channel	Tree–Level	Penguin
$B_c^{\pm} \to D_s^{\pm} a$	$(6 - 160) \times 10^{-11}$	2×10^{-6}
$B_c^{\pm} \rightarrow D^{\pm}a$	$(1 - 30) \times 10^{-11}$	3×10^{-7}
$B_c^{\pm} \to K^{*\pm}a$	$(2-70) \times 10^{-11}$	n.a.
$B_c^{\pm} \rightarrow \rho^{\pm} a$	$(4 - 100) \times 10^{-11}$	n.a.
$B_c^{\pm} \to K^{\pm}a$	$(8 - 230) \times 10^{-12}$	n.a.
$B_c^{\pm} \to \pi^{\pm} a$	$(3 - 85) \times 10^{-11}$	n.a.
$B^{\pm} \rightarrow D_s^{\pm} a$	$(5 - 30) \times 10^{-12}$	n.a.
$B^{\pm} \rightarrow D^{\pm}a$	$(1-7) \times 10^{-12}$	n.a.
$B^{\pm} \to K^{*\pm}a$	$(1-7) \times 10^{-12}$	4×10^{-6}
$B^{\pm} ightarrow ho^{\pm} a$	$(3 - 20) \times 10^{-12}$	4×10^{-7}
$B^{\pm} \to K^{\pm}a$	$(8-50) \times 10^{-13}$	2×10^{-6}
$B^{\pm} \to \pi^{\pm} a$	$(3 - 20) \times 10^{-12}$	3×10^{-7}
$D_s^{\pm} \to K^{*\pm}a$	$(1-60) \times 10^{-11}$	6×10^{-12}
$D_s^{\pm} \to \rho^{\pm} a$	$(3 - 170) \times 10^{-11}$	n.a.
$D_s^\pm o K^\pm a$	$(6 - 300) \times 10^{-12}$	7×10^{-12}
$D_s^{\pm} \to \pi^{\pm} a$	$(2 - 120) \times 10^{-11}$	n.a.
$D^{\pm} \to K^{*\pm}a$	$(2 - 100) \times 10^{-12}$	n.a.
$D^{\pm} \rightarrow \rho^{\pm} a$	$(7 - 290) \times 10^{-12}$	3×10^{-12}
$D^{\pm} \to K^{\pm} a$	$(1-50) \times 10^{-12}$	n.a.
$D^{\pm} \to \pi^{\pm} a$	$(5 - 200) \times 10^{-12}$	6×10^{-12}
$K^{*\pm} \to K^{\pm}a$	$(5-25) \times 10^{-13}$	4×10^{-8}
$K^{*\pm} \to \pi^{\pm} a$	$(3 - 20) \times 10^{-12}$	$3 imes 10^{-9}$
$\rho^{\pm} \to K^{\pm}a$	$(8 - 25) \times 10^{-12}$	2×10^{-9}
$\rho^{\pm} \rightarrow \pi^{\pm} a$	$(3-9) \times 10^{-11}$	4×10^{-10}
$K^{\pm} \rightarrow \pi^{\pm} a$	$(2 - 10) \times 10^{-12}$	5×10^{-10}

Neutral Mesonic decays amplitudes

[AWMG Rigolin, 2211.08343]

ALP production in weak mesonic decays Alfredo Walter Mario Guerrera¹ ¹Università degli studi di Padova and INFN, sezione di Padova

Phenomenology of different searches Meson-to-meson decay

Tree level *t*-channel

 $|\mathcal{C}_{\mathrm{I}}^{(t)}| \approx \frac{G_F V_{\mathrm{CKM}} f_I f_F}{4 f_{\mathrm{c}}} M_I^2 (c_Q - c_q)$

 $|\mathcal{D}_{\rm I}^{(t)}| \approx \frac{G_F V_{\rm CKM} f_I f_F M_I^2}{4 f_a} \sqrt{(c_Q - c_q)^2 + 4 \frac{M_F^2}{M_I^2} (c_Q^2 + c_q^2)}$

Channel	Tree–Level	Penguins	
$B^0_s \to D^0_s a$	n.a.	4×10^{-7}	
$B_s^0 \to D^0 a$	$(7 - 70) \times 10^{-12}$	n.a.	
$B^0_s ightarrow K^{*0}a$	n.a.	4×10^{-6}	
$B_s^0 ightarrow ho^0 a$	$(4-50) \times 10^{-13}$	n.a.	
$B_s^0 \to K_L^0 a$	n.a.	3×10^{-7}	
$B^0 \to K^{*0} a$	n.a.	4×10^{-6}	
$B^0 ightarrow D^0 a$	$(3 - 30) \times 10^{-11}$	n.a.	
$B^0 \to \rho^0 a$	$(2-20) \times 10^{-12}$	6×10^{-7}	
$B^0 \to K_L^0 a$	n.a.	4×10^{-6}	
$B^0 \to \pi^0 a$	$(1 - 10) \times 10^{-12}$	5×10^{-7}	
$D^0 \to K^{*0}a$	$(7 - 300) \times 10^{-12}$	n.a.	
$D^0 \rightarrow \rho^0 a$	$(5 - 200) \times 10^{-12}$	4×10^{-12}	
$D^0 \to K^0_L a$	$(7 - 270) \times 10^{-13}$	n.a.	
$D^0 \to \pi^0 a$	$(2 - 100) \times 10^{-12}$	$3 imes 10^{-12}$	
$K^{*0} \to K^0 a$	$(2-6) \times 10^{-12}$	3×10^{-9}	
$K^{*0} \to \pi^0 a$	$(1-2) \times 10^{-11}$	$3 imes 10^{-9}$	
$\rho^0 \to K^0 a$	$(1-3) \times 10^{-11}$	2×10^{-9}	
$ ho^0 ightarrow \pi^0 a$	$(2-7) \times 10^{-11}$	3×10^{-9}	
$K_L^0 ightarrow \pi^0 a$	$(4 - 20) \times 10^{-15}$	1×10^{-10}	

Channel	$f_a [GeV] up-quark$		f_a [GeV] down-quark		$f_a [GeV]$ lepton	
	$m_a = 0$	$m_a = M_M/2$	$m_a = 0$	$m_a = M_M/2$	$m_a = 0$	$m_a = M_M/2$
$B^{\pm} ightarrow e^{\pm} \bar{\nu}_{e}$	2.8	0.079	4	1.3	0.0005	0.00013
$B^{\pm} \to \mu^{\pm} \bar{\nu}_{\mu}$	6	0.16	8.3	2.7	0.2	0.06
$B^{\pm} \to \tau^{\pm} \bar{\nu}_{\tau}$	0.38	0.006	0.5	0.065	0.2	0.05
$D^{\pm} ightarrow e^{\pm} \bar{\nu}_{e}$	6	2.1	5.7	0.86	0.02	0.00053
$D^{\pm} \to \mu^{\pm} \bar{\nu}_{\mu}$	4	1.3	3.7	0.56	0.27	0.070
$D^{\pm} \to \tau^{\pm} \bar{\nu}_{\tau}$	0.007		0.007		0.006	
$D_s^{\pm} \to e^{\pm} \bar{\nu}_e$	8	3	8.2	1.9	0.002	0.00066
$D_s^{\pm} \to \mu^{\pm} \bar{\nu}_{\mu}$	5.5	2	5.7	1.3	0.3	0.09
$\left \begin{array}{c} D_s^{\pm} \to \tau^{\pm} \bar{\nu}_{\tau} \end{array} \right $	0.02		0.01		0.02	
$K^{\pm} ightarrow e^{\pm} \bar{\nu}_{e}$	249.	87	170	10	0.243	0.06
$K^{\pm} \rightarrow \mu^{\pm} \bar{\nu}_{\mu}$	1.7	0.5	1.2	0.05	0.32	0.06

Phenomenology of different searches Leptonic decay of mesons

Three body Leptonic decay amplitude

 Table from [Gallo AWMG Penaranda Rigolin, 2021]

Massless ALP limit

Phenomenology of different searches Semileptonic decay

Limits on ALP-leptons couplings $D_s \rightarrow \mu \, \nu_\mu \, a$ with BR and M_M^2 distribution [Gallo AWMG Penaranda Rigolin, 2021]

Dispersion Relation

ALP production in weak mesonic decays Alfredo Walter Mario Guerrera¹

¹Università degli studi di Padova and INFN, sezione di Padova

LCSR & Mesogenesis Introduction

 $Br(B \rightarrow \mathcal{B}_{SM} + \psi_{\mathcal{B}})$ challenging calculation

Correlation function $\int d^4x e^{i(P+q)\cdot x} \langle 0 | T\{j_B(x), \mathcal{O}_{d_i u_k d_j}\} | \mathcal{B}_{SM} \rangle$

 $\Pi_{I}((P+q)^{2}, q^{2}) \supset \int ds \frac{\rho_{I}(s, q^{2})}{s - (P+q)^{2}}$

OPE

 $\Pi_{I}^{\text{OPE}}((P+q)^{2}, q^{2}) = \frac{1}{\pi} \int ds \frac{\text{Im}\{\Pi_{I}^{\text{OPE}}(s, q^{2})\}}{s - (P+q)^{2}}$

¹Università degli studi di Padova and INFN, sezione di Padova

LCSR & Mesogenesis Introduction

How to generate a matter/antimatter asymmetry

Image: Stolen from the Internet

The Sakharov conditions (1967):

Out of thermal equilibrium: Late decays of "inflaton" field to SM Mesons.

CP Violation: In SM Meson systems.

"Baryon number violation": SM Meson decays to dark leptons or baryons.

G. Elor

GE, M. Escudero, A. E. Nelson, PRD, [1810.00880] G. Alonso-Alvarez, GE, A. E. Nelson, H. Xiao, JHEP, [1907.10612] GE, R. McGehee, PRD [2011.06115] G. Alonso-Alvarez, GE. M. Escudero, PRD, [2101.02706] F. Elahi, GE, R. McGehee, [2109.09751] G. Alonso-Alvarez, GE, M. Escudero, B. Fornal, B. Grinstein, J.M. Camalich [arXiv:2111.12712]

ALP production in weak mesonic decays Alfredo Walter Mario Guerrera¹

¹Università degli studi di Padova and INFN, sezione di Padova

LCSR & Mesogenesis Introduction

Mesogenesis \sim B_d^0 B^0_s **CP** Violation

 B_a^0

LCSR & Mesogenesis Introduction

B meson/anti-meson mixing has sizable CP violation

Experimental Observable:

 $A_{\rm SL}^q = \frac{\Gamma\left(\bar{B}_q^0 \to B_q^0 \to f\right) - \Gamma\left(B_q^0 \to \bar{B}_q^0 \to \bar{f}\right)}{\Gamma\left(\bar{B}_q^0 \to B_q^0 \to f\right) + \Gamma\left(B_q^0 \to \bar{B}_q^0 \to \bar{f}\right)}$

G. Elor

¹Università degli studi di Padova and INFN, sezione di Padova